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On systems of three quadratic forms
by
5
SusaN E. Sonuve (East Lansing, Mich.)

1. Introduction. In this paper we correct the proof of the following
theorem of Birch and Lewis [1]:

Tewormy. If fy, fa, f ore quadratic forms in at loast 13 variables over
o p-adic field T, where the vesidue class field k* has odd characteristic and
containg at least 49 elements, then f,, fa, fa have a common non-trivial zero in .

The mistake, the omission of several capes, was found in the process
of extending the theorem to fields % with smaller residue class field [4];
in fact, the correction and the theorem hold for fields whose residue
class fleld k* has 0dd cardinality ¢ greater than or equal to 11.

We refer the reader to the original paper [1] for all notation and
for the numbering of the lemmas.

2. The corrections.

Lgpwaa 16, If V* containg a line definod over k* then V* has @ non-
singular point,

Revised proof. The hypothesw implies that the dimension of the
largest lihear space contained in V*, defined over k%, is at least 1; ie.,
o 2 2. A-puitable nonsingular transformation makes thls the space Dpg1
=... =9, =0, 50 that

fi =a L+ ... +o,L,+g,

where the L's axe linear forms and the ¢’s are quadratic forms in Dty veey Bye

Suppose the result is not true: suppose that all the points of V* _
are singular. In pa.rtmu_lam e ={1,0,0,...) is a gingular point of V¥,
50 there exist a;, a,, a3 € k*, not all zero, such that

(¢ =1,2,3),

iy Ly + “21321 +ag Ly =

If also ay Ly a, Ly -+ a, Ly, = 0 for Jj==2,...,0 then the proof given
in [1] yields the desired contradiction. Otherwise al j—[— tty Ligg~- 3 Ly; 5 0
for soms j, say § = 2. In this event the set f7, f5, £y is eqmvalent to the
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sof f5, £, /¥, where fi = ayffbayfitagfy = Lyt ...+, Lk g,
and L, = 0. Following 2 change of variable we can suppose that I, = @,,,.

Now, e, is also & singular point of V*, so there exist by, b,, by, not
all zera, such that
‘ by Lyt by Lo+, = 0. -

Here b, and b, cannot both be zero; say b, # 0. Replacing f; by fi' = b i +
b bofr by fe = wp Dy 4@y Loy ... +8,L4,+gs, we obtain a systoem
LR FY, equivalent to f7, fy , £y, in which £;' it free of #,. Following
changes of variable, we have the two cases
() Iféz = Ppi1y I’;l = Warq3 (D) ng = Boa1s Lél == Ylgp1 e
(a) In this case
fl =040, M +Qy,
fa = B B+ Qay
f;‘ == mama+1+st
where to simplify the notation we have dropped the primes and put

Lll = L, L” e MJ ‘rllld.. .wsLig*]" E“mu 1d+gt Q’i’
t=1,2,8,

Note that, by replacing @, and =, by appropriate linear forms z, + aw; -+
+ b, + ... and @, oexs - do, -+ ..., respeetively, and then by subtracting
appropriate multiples of the resulting f; and f; from f7, we can ensur
that L, M, §,, @, and @, are free of o, and &,, that L and @, are free of wﬁ_:
and that M and @ are free of m,,,.

Recall that ¢ 2, so that, by Lemma 12, of fa b and ¢(@) = 3
Hence it M 0, there 18 & nonsingular zero @& = (@, ..., By Ggygy -- -y O
of @, such that a, ,M(a) %0 (by Lemma 5). Taking tpy =0, @
= —Qy(a)[ @y, a0d ay = (—ay —Q. (@)} /M (@), We get a nonsmgulan
solution of our system.

A gimilar argument works if M =0 but L =£0. If L =M =
let & = (ay, ..., a,) De a nonsingular zero of @, such that a,,_,.lad,i_ﬁ %0
take ay = —@y(a@)fa,,, and a, = —Q4(a)/a,.,. The point so obtaine(

" is a nonsingular point of 7,
(b) We have
= 0y L2 M 4 Q1
fi = v& @1+ Qs
f: = 9"‘2”5»4-1""@3--

Suppose first that ¢ = 0. Then I £ 0, or elge the order of the systen

would be less than p. Henee we can find a non-singular zero & of @, suct
- that a,,,L{a) # 0. Taking e, = —Q4(a}/a,.,, a;=(—a, M (@) ~Q, () (@)} /L( a’)
we get & nonsmgular point of ¥*.
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From now on we may suppose y % 0; dividing f; == 0 by y, we may
suppose y = 1. Replacing @, by @, + axs+ b, + ... and o, by @, -+ 6+ da, +
+ ..., and subtracting multiples of fy, fy from £, we get an equivalent
system in which L, M, Q,, @, are all free of ., .

If L =M =0 one obtains a nonsingular solution almost exactly
as in the last part of cage (a); 80 we assume henceforth that L, M are
not both identically zero, say (without loss of generality) L =< 0. Suppose
we take @, %0, % = —Qafz, .y, ® = —O4fr, ,. Then, substituting
into the equation fi = 0, we get

— L@ fwery —MQgjw, s -+Qy =0
so that we need to solve the cubic equation
¢ =14, +MQ3—$a-1-1Q1 =0
with #,,; 0. Since, as is easily checked,
Off (6w, Off[0na  OfF [0y
ofy 6w, &fy[0my  Ofy|0m;| = —@py 100005, §=3,..., 0,
s 6wy 85 [0my O 10

2 nonsingular solution of ¢ = 0 with z,,, # 0 will yleld a nonsingular
point of V™.

Now, (' containg at least 4 variables, or else the order of i fas £ would
be less than 7, contrary to Lemoma 12, Hence ¢ has a nontrivial zero in %*,
and so by Theorem 2 of [3] it has a nonsingular zero with z,,, # 0, unless

.41 C. But if @, |0, then =, [(1Q, +MQS), and sinece LQy}le/It.’,}3 is free

-of the variable #,,,, we have

L@, +MQ3 = 0.

Hence L|MQ,, and since ¢, does not factor over k%, I|M. Say M = ol
Then we have

L(@y+afs) =0
80
Qa‘l‘ ay = 0,

but then f; + af; = @y (2, + aw,), conteadicting the Corollary to Lemma 12.
It follows that the required nongingular solution exists,. and the proof
is complete.. '

Levva 17. If V* contains o planar conic defined over &*, then V* has
a nonsingular point. ' h

Revised proof. We assume that ¥* has only singular points and
obtain a contradiction. By the preceding lemma, we can suppose that V*
does not contain a line. After a change of variable we can assumée that
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@2 = wy@, is the equation of the econic contained in V*; then each of the
forms f; (y, &, 75, 0, ..., 0) is proportional to ws — @0y, Hence we ean,
make a change of basis of 4* so that

f;" = @ — &y -} By Ly B Ly + 2 Ly g1y
f: == wlM]_'l"mﬂﬂfﬂ"l_mﬂMﬁ_i"gﬂf
f: = ﬂilNl‘}'mgNa'l‘maNB"}"gﬁ?

where the I’s, M’s and N’s ave linear forms and the g's are quadratic
formsin o, ..., 2,. As afurther simplification, if we replace @, by @y Ly, %,
by @+ Ly, and. 2, by 0, — L L,, we can assume that the L’s are identically
Zero.

Tor all s, ¢ in %%, (s2, sf, 12, 0,...,0) is a point of V*, which must
be singular. In particular, e, is a point of this form, so the Jacobian J(e,)
- has rank < 3, It follows that there exist g, » in &* such that uM; 4+, = 0;
again changing our basis for 4%, we may suppose that ¥, is identically
zero. A similar argument using the point e; shows that one of My, Ny
can be assumed to be identically zero, though we are no longer free to
specify which one.

We now divide the proof into-cases, according to the dimension of
the linear space (N., N> generated by N, and N,.

(a) Aim<{N,, Ny» = 0. This is the case considered in [1]. One obtains
the desired contradiction provided ¢ = 11.

(b) dim{N,, N> =2. We can assume without loss of generality
that Ny = a,, Na = @5, S0 that fi = @,8, 232, --¢; and M, = 0. Since
(s, 82,12 0, ..., 0) is a singular point of V*for all s, ¢, every 3 x3 minor
of the Jacobian J(s%, s¢,12, 0, ..., 0) has determinant 0. Congidering the
minors formed from columns 2, 4 and j, § > 6, we have -—2s%%(s?dM, |0, +
+888M 4 0m;) = 0for all 8, ¢ e %* and all j > 6. Hence

for all 5,1 s 0. But then by Lemma 4

for §>6. Further, taking the determinamt of the minor formed from
columng 2, 4 and 5, we obtain

2822 [P O.My | Oy + 516 My |Omy — OM D) — 8O M, [ 8] = O
for all s, e k", whence
| OM [0, = 0,
since ¢ > 5. It follows that

M, = ax,,

eM 0w, =0, 8M,/0n, = OM,/dn,

Ma = ams. .
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If & = 0 then we have M, =M,=M, =0, and we are back in cage (a).
Thus we may suppose ¢ 7+ 0, and we may divide f5 by a. Then we have

* 2
i =w—mestg,,
ok
fz = @y Lyt Dy B+ Gy
E
fi = @@+ 239,

If we write g, = 2,84k, where & is a form in »,, o5, %, ..., z,, then
h st 0; for it k = 0, then f; = @2, + (2, + 8), contrary to the corollary
to Lemma 12. Hence for ¢= b there exist points not on 2,k = ¢. Now
take a; = 0; choose a,, ¢;, ..., g, such that g, = 0;and take a, = —g;/a,,
@y = —gpfty = —hjay, and ay = (a3--g)/ay = —a,(ag+g,)/h. The result
is a nonsingular point of ¥,

(¢) dim{¥,, Ng> = 1. In this case we can agsume, after a change
of variable, that

N, =omy, Ny=dz,

where at least one of ¢, d is not zero. We still have rank J(s?, si, e 3 0,...,0)
<< 3, whence '

st2[83¢ O, [Om,; - 8%t (0 OM , | Oy - A 6, [ Omy) +
+-st2(c 0My[0m; 4 O M, [Om) +-12d .M, [0x;] = O

for all ¢, t e k* and all j > 4. (This is the determinant of columns 2, 4and j
of J(s2,st,%%,0,...,0).) Hence

08, | 0wy — 0 8,8y 4 d DM, [y = ¢ O My, + d DM o [Bs; = A M), = O
(> 4).

It follows that 3, = aw,, M, = bw,; M, == uz,, and we can asgums
that at least one of @, b, # is not zero or else we would be back in case (a).
‘We have

* 7
fi =& —am+g,
'
Jo = amy 2, + 0@y By + UDyBy +
b
Js = 0wy, + dwyw,+ gy i

In studying thizs system it iy convenient to consider separately the two
(inequivalent) cares @ = 0 and & # 0; however, as the arguments are
quite similar, we shall give the proof only for the case d = 0.

If d = 0, then ¢ == 0, and we can divide f; by ¢ to make the coef-
ficient of @, %, equal to 1. Subtracting a multiple of f; from £, ‘we can make
b equal to 0. Finally, we can assume o = 0 (and thus ¢ == 1) because o,
and 2, can be permuted without changing the shape of fi,f7, fs. Hence
wo have fi = @@, 4 Uty x, +¢, and f; = 2,3, + g,



320 8. E, 8chuux

Now take @, # 0, @, = —g,/#t, and @, = —uwy— g/2,. Substituting
in the equation f§ = 0, we find that we need to solve

G = %R’}:}IW;"}”(&?@%)@;‘i‘glﬁ:"'gg =0

nonsingularly with 2, # 0. Thig equation, considered s & quadratic in z,,
hag digeriminant

4 = @} (g —4u (g 54+ g3))
Suppose there exist a,, ..., 4, such that g, 7 0 and A(a,, ..., a,) is & non-
zero square. Then G = 0 is solvable with #, 5 0; and furthermore 0G-(w} /0w,
= Quala,+a,0, = V4, so the solution is nonsingular. Hence we may

suppose A(a) is zero or a nonsguare whenever g, = 0. Thus for each
choice of ag, ..., @, € k", the equation

AL, Bs, gy oo ey @) = Y

(where # is a nons'qua.re of k&*) hag at least 4--2(g—4) = 2¢ — 4 wolutions
(x5, v) in &*. It follows (sec Hasse [2], and the proof of Theorem 2 of [3])
that either
12g—4+1—g| <2Vq

or”
' 4 = nR?,
R a quadratic form. The inequality cannot hold for ¢:>11. Henco

4 = o (gi—du(g o)+ g3)) = 9E",
80 there is a quadratic form @ such that

g~ du (g1 -+ g5) = nQ*,
or
g = du(ge{+g).

Now if we write g, = @,Jy-+Qs, fa=2Ly+Qy @ = m L'+
where the L’s are linear forms in @, ...,%, and the ¢’s arve quadratic
fomus in. s, ..., @, and if we set 2, = 0 in the lart equation, we still have
an identity:

Qs —nQ"? = dugy.

We show that this identity eannot hold by congidering what happens
to it over the extension field %*(%'*). Recall that fy = o, (@, Ly) +Qs,
so that o(Qs) = 2 and @, iy irreducible over &*. If o(Q,) > 3, then @, is
irreducible over &*(»'*) ag well, while @2 —#Q'* factors into two quadratic
fagtors, -

B —nQ"® = (@ —n"Q) (ut 7"Q);
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80 @, divides one of these factors, say
Qz“'ﬁl"zQ’ = ?Qa:
Write ¥y =y, +%"y,. Then
(71— Qo)+ (129 +€7) = 0.
Bub 9@ —0, and v,0,+¢" have coefficients in %%, so this imples
Y =@ and @ = —Q". .
The first of these two equations is envugh to yield a contradicion. We have

vifi = = ma e +I;3) + 1 Qa — (2,2, Uy, b 2y Ly - Qg)
= 0, (Y1 By + y1 Ly~ @y —wmy — L),

y e K (7'").

i

which is impossible by the Corollary to Lemma 12.

There remaing the possibility that o(Q,) = 2. In that case, since ¢,
is irreducible over ¥, we must have

Q@ = I? _WME:
where I and M are nonproportional linear forms. Then, over E* ('),
we have :
(@ —7Q) (@ +0"Q) = du(L —y' P MY (L4 MY,
Suppose (L —5" M) |(Q; —7n*Q"). (Bssentially the same argument works

i (L= M) [(@a+ Q")) XE also (L+9'" M) [(Q:—7"Q"), then Q|(Qa—

—4Q"), and we get the contradiction as above. Hence we may suppose
Qu—1"Q = y(L—mPM)? = (yy + 1" Py (L —0 2 M)

Upon simplifying this equation, we obtain

(Qe—y1 L2+ 20y LM — my, MPY 47 ( Q' — yo I - 2y, LU — 7, M) = 0.
It follows, in particular, thatb '
Qs =y I* — 29y, LM -y, M2,
whence

'}’if; "‘“fz* == @, (101 %y =y La — @y — Uity — L) -+ M ( "‘2’77’11”"1”‘2’?;)’2-5)!
an imposgibility (by the Corollary to Lemma 12). '

This completes the proof. _

3. Remarks. As noted in the Intreduction, the rest of Birch and
Lowis’s proof can alse be extended to ¢ 2> 11 (although we only had ¢ = 17
in [47). One has to congider many cases, and in some places the compu-
tationg are guite lengthy, but the arguments are similar to those used here.

We also showed in [4] that a system of three quadratic forms in at least 31
variables hag & nontrivial zero in % for g = 3.
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Equivalence classes of sets of functions over a finite field
by

Gary I, Muziex (Sharon, Penn.)

1. Introduction. In [3] and [6] 8. Cavior and the author studied
properties of left equivalence of functions over a finite field. In [4] 8. Cavior
extended the notion of left equivalence to sets of functions. In the present
paper we study o further generalization of left. equivalence of functions.
over a finite ticld.

In Section 2 we develop a notion of lett equivalenes which generalizes
all of the forms of left equivalence studied in [3], [4], and [6]. In par-
ticular, we consider left equivalence of sets of functions over a finite field
relative to arbitrary greups of permutations. Moreover, we show that
many of the results in this general setting can be reduced to the single
function cage, which was studied in detail in [6].

'\ Let K = GF(g) denote the finite field of order g and K (r=1)
., &,] = K[#] represent the
ring of polynomials in » indeterminates over K. By the Lagrange Interp-
olation Formula ([5], p. 55), each function from K" into K ecan be sxpressed
uniguely as a polynomial of degree << g. The group of all permutations
of K will be represented by @ so that @ is isomorphic to 8,. That (2 is
an arbitrary subgroup of @ will be denoted by 2 < @ and. {&] will denote
the order of Q.

2. General theory. If % = 1 is a positive integer the k-tuple of functions
(f1s ---s i) Will be denoted by (f;) so that there are a total of ¢ distinet
ic “tuples of functions each containing & functions.

DEEINTIION 2.1, Let @, ..., 2, < &. Then (f,) is left eqmvalem to (g;)
relative to @,, ..., 2, if there omst ¢, € @, such that g, f;=g,fori=1, ..., k.

This is clearly an equivalence relation which, if & =1, reduce.s to
that of the author in [67. If & =1 and 2, = @, we obtain the left equiv-
alence considered by Caviorin [3). Tk >1and @ = &fori=1,..., %
then Definition 2.1 reduces to that of Cavior in [4].

As an jllustration, congider the case where K = GF(6), r =1, and
k =2, Suppose that in c¢ydic notation p, = (01) and @, = (284). For



