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1. Introduction. A complex-valued arithmetic fonetion A is said
t0 be multiplicative it h(1) =1 and h(mn) = h(m)Rh{n), whenever m and
7 are positive integers, prime to each other. Necessary and sufficient con-
ditions for a real-valued multiplicative function to have 2 distribution
which. is not degenerate at zero (see the definition below) were obtained
by Bakstys [1] and Galambos [2]. The main tool used by both of them
is the one developed by Zolotarev in 1962 for the investigation of products
of independent random variables. The method involves effective use of
the so-called characteristic transforms and the known resulfs on mean-
values of multiplicative functions. In. this paper we shall give a straight-
forward proof, which uses no ideas more sophisticated than the well
known Kolmogorov's three series theorem from probability theory, Turdn—
Kubiliug inequality and a result of Halasz [3] on the mean-values of
multiplicative functions, We actually use a very particular case of Haldsz's
result. We shall also find the spectrum of the distribution of b, if it exists.

2. Notations and definitions. Let m,n, N denote positive integers;
p, q denote primes; and k, j denote non-negative integers.

DEFINTTION. A complex-valued arithmetic fanction f is said to be

" additive it f(mn) = fim)+f(n), whenever (m, %) == 1. Further, if fi{p")

= f(p) for all k& > 1 and primes p, then fis said to be strongly additive.
Tor any set B of positive integers, let

1
rx{B) :-F.#:{m: 1< m< N and m e B},

%(B) = lim supyy(B) and m(B) = lim infuy(B).
: N0 Neroa
DrrINITION. A set of positive integers B is said to have density, if
#(B) = nu(B). The conumon value z(B) is called the density of B.
DREINITION. A Teal-valued arithmetic function f is said to have & dig-
tribution, if there exists a distribution funetion F such that the set
(m: f(m) < ¢) has density I"(¢), for ail continuity points ¢ of I,
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Finally we define, for any multiplicative function 7,

Tp(m) = ” ,,,.(pfc)

n<n, plijm

wimy =[] riph).

Py ,pk || 7

and

3. Main results. Suppose % is a multiplicative function such that
the series

<

1

W p)
MpY=0

is divergent. Then =mm: k(m) = 0) = 1. That is, h has a degenecrate
distribution. This follows from the fact that for any m,

Fm: h(m) #0) < 7@lm: h,(m) 3 0)
< #m: pm for p<n with h(p)== 0)

I1.=5+5)

Mp)=0, p=n

The product above tends to zero as # —» oo.
So from now on we shall agssume that tho serics {1) converges. Lot

us note here that in thiy ease, the set (m: h(m)= 0) has density less than
unity.

TurorEM 1. Lot b be a real-valued multiplicative SJunotion such that the
series

(2) | > 1p
’ R{p)t

- converges. If for some real number a > 1, the three series

~r 1 1 1 ‘
@ N Y steenwip, Y S loglh(p)]

converge, them h has a distribution, wheve S denotes the sum over all primes
such that 1ja < [h(p)| < a and 2" denotes the sum over the remaining primes.
We need the following lemma.

LEl\e{MA 1. Let b be o real-valued multiplioative Junetion, Suppose the
three series (3} comverge; then for any & > 0,

»ﬂﬂ: z(m: [log K" (m)|| > &, h*(m) s 0) =.0.

]?ro of. The lie_mma, follows easily on applying Turfn—Kubilius in-
~equality (see Kubilius [5], Lemma 3.1, p. 31) to the additive funetion fim
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defined by
™ (m) = log [h{p)].

n>n, plm, D)0
Proof of Theorem 1. Lebt {Z,} be a sequence of independent dis-
crete yandom variables defined on some probability space satisfying for
any real number s,

o)==
Let
X, — |z, i Zp.-#(), 7, — 0 if Zp.=0,
1 otherwize, 1 . otherwise
and
T - 0 if Z,20,
U i Z,<0.

Clearly Z, = X,Y,¢™"» and the sequences {X,}, {¥,}, {U,} are se-
quences of independent random variables. We have :

| Z}?(Up £ 0) =%:P(Zp<o)g%j%+ 2%< co.
n

hp)<0 _
So, with probability 1, U, = 0 for all sufficiently large p. Thus the series
2 U, converges a.e. As a result [[exp(inU,) converges a.e. By the conver-
n

»
gence of the three series (3) and by the Xolmogorov's three series theorem
(see Halmos [4], p. 199) we have that the series ) log X, converges a.e.

»
Thus []X, converges a.e. The convergence of the product [ ¥, follows,
i : 2
since []¥, = 0 if ¥, = 0 for some p and 1 otherwise. So []Z, converges
» D
a.e. Let H be the distribution funetion of Z = [[Z,. We shall show that H
»

is the distribution of A. First we note that convergence of the first series
in (8) implies the convergence of series (1). We have

vylm: B (m) < 0) <oy (m: pim for some p>n)+
+ylm: gllm for some g > n such that h(g) < 0)

T3 b

nEn g=n, hghso
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Thus, we have by the convergenee of the series (1) and (2), that
(4) w{m: K" (m) < 0) — 0

s -+ oo, Also note that for any interval T, the sef (m: h,(m) e 1) hag
density P( [] Z, e I). :

nEN
Let ¢ > 0 be & continuity point of H. Tor any &> 0, we havo

@m: h(m) < o
< a{m: Bylm) < (o/Hr(m), K {m) > 0)4-wm: K*(m) < 0)
< @(m: R (m) < ee', W (m) > 0) +ai(m: h(m) < 0) -
| +aim: (B (m)| < 67)
< wlm: ki (m) < ce’) +27(m: W™(m) < 0) -
_ +5(m: [log W (m){| = e, W (m) # 0)
=P( [] Z, < ce")+27(m: K" (m) < 0} +

nEn

.

+(m: [log| Bt (m)|| = £, B"(m) # 0)
=+ P(Z < ee*) = H{ce"), .

ag % — oo, by (4) and by Lemma 1. Thus we have
(3) Zm: h{m) <o) <PZ< ).
Similarly, it follows that

(6) a(m: him) < o) = P(Z < o).
Bince ¢ is a continuity point of A, we have
alm: him) <o) =P(Z < c).
Validity of the above equality for ¢ < 0 follows by a similar argument,

This completes the proof of Theorem 1.

Wo shall now show that under the hypothesis of Theorem 1, the
spectrum of the distribution of & iy the closure of the sot {h{m): m 3 1}
Recall that the spectrum of a distribution function ' is the smallest closed
subset of the real-line whose F-measure is 1.

TurorEM 2. Under the hypothesis of Theorem, 1, for any énteger m = 1,
him) belongs o the spectrum of the distribution of h.

‘ Proc.»f. Let Z, and H be ag in the proof of Theorem 1. Lot i(m) =0
for someklnteger m = 1. Then there exists a prime ¢ and. an integer % such
that A(g") == 0. For any &> 9, we have that

PHHZP}{ a) > P(Z, = 0)3 ¢ (1—g) >0,
P _
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S0 zero belongs to the spectrum if h(m) = 0 for some m = 1. We ghall
now show that if A{m) = 0 for some integer m > 1, then h(m) belongs

to the spectrum of H. Since [] Z, convergesa.e., [[Z,—13a.e. a8 N — co.
n>N

»
So for any & > 0 there exists an integer N > m such that

P{| [ 21| <lmom) >1s2.

PN

By the independence 0f Z, we have

?(|[] 7o-nm|< =8| [ 2,-1| < (etmim, | ] 2, = hom)

ot s & T3

PEN <N
where

WP (m) =h{p) i p"[m.

Thizs completes the proof of Theorem 2.

Remark 1. By Theorem 2, it follows that the multiplicative funetion
in Theorem 1 has a non-degenerate distribution unless h(m) = 1 for all
integers . ‘

THROREM 3. Let h be a real-valued maultiplicative function such thal
the three series (3) converge. If the series (2) diverges, then h has a non-
degenerate symmetric distribution. :
We start the proof with some lemmas.
Levua 2. Let f be a multiplicative function such that for all m, | f{m)| < 1.

If
1 .
7 — [1—Re(f(p)p")] = oo
(M) Z [Tl
for all veal numbers 1, then f has zero mean-value. That 18
1 N
1
= 2{ Fim)y—>0

as N — oo,

TFor a proof see [3]

LemMA 3. Let f be a multiplicative function taking only the two values
+1 and —1. If the series

(8) 2 ip
foy=—1
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diverges, then [ has zero mean-value. In particulor,
mm: f(m) =1} = afm: f(m) = —1) = }.

Prooif. We shall show that (7) holds for all real numbers t. The diver-
genee of the sericg (8) imyplies (7) for ¢ = 0. The result follows if we show
that for any set @ of primes and ¢ % 0

@ Zp [+ Be(p")]+ > = D5 I=Re)] = co.
Pe@ 2GR

Suppose for some real number # £ 0, (9) does not hold. Since for any
Bl <1y

1 —Re(z*) < 4(1 —Rez)
we have
- .
(10) : —[1—Re(p*] < oo,
% - (5]

But (10) is false, because log({(0)/|L(o—~iw)|) > o0 a8 ¢ 1% for every
. real number » 5 0. Here [ denotes the Riemann zeta function. So (9)
holds for all non-zere real numbers #. This completes the proof of Lemma 3.

We use only Lemma 3. Lemma 2 i presented here just to prove
Lemma 3. Let r be the multiplicative function defined by

and let # be the multiplicative function detined by

1 if

S ft, B A0

h(pt) < 0,
Clearly b = ru. Let
By = {km: u"(m) = é and (p,m) == 1 for all p < n),

where 8 = +1 or —1.
LevmaA 4. For any positive integer % nol divisible by any primo p > n,

TR
2k en p

Proof. By Lemma 3, we have for any n > 2, that

7 ('Biﬁ,'n.) =

a{m: wh(m) =1} = alm: w*(m) = —-1) =}.
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So ag N -» oo,

B =5 3 1=

¥ W m) =38, mN [l pEn mENkp, wWh(m)=4

w_%n(l-—%)n(m: P (m) = 8) =—2% (1—%).

This completes the proof of Lemma 4.
Let

A, = {k: (p, k) =1 for all > n and r,(k) eI, u,(k) = &}

and
B, = {m: r,(m) el, u,(m) = &, w"(m) = &}

where I is an interval, 6 = +-1or —1 and 8 = +1or —1.

Wa have
Lmva 5. For any interval I, the density of B, is

Yz(m: 7y(m) e, u,(m) = 8.

Proof. Clearly

Bn = U Bk.n7
ked,,

ked, psn

vy (Br,n) < %— and 2},;- <[] (1 —-%)—'1'.
Ho ' '
(B — ) By
Teedy, . _
< 3 ow(Bral+ 3 wBrn) + D i(Bra) =7 (Buw)l -
< X 2/k+ D) I (Bi) —7(Buw)l,

where ) denotes the sum over ke d,, &> k' and 3, denotes the sum
over the remaining k e 4,. Since >/ 1/k—0 as k'~ oo, it follows from
the above inequality and from Lemma. 4, that

n(B,) = ZW(BIc,n) = Z 7% H( ——)

feedy, kedy pER
= }alkm: ke d, and (m,p) =1 for all P < n)

= Lnim: r,(m) eI, u,(m) = 5,)'

This completes the proof of the lemma.
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Proof of Theorem 3. By Theorem 1, r has a distribution 7. By
Remark 1 it follows that ¥ is not degenerate at zero. Let ¢ > 0 be a conti-
nuity point of F. We have

vN('m.: h(m) < c)

= wylm: r(m) <o, u(m) =1} +uy(m: rim) > —e, u(m) = 1)
= wyim: r{m) < ¢, w(m) = 1) +mylm: u(m) = —1).
By Lemma 3, we have m(m: #(m) = —1) = }. We shall show that

the next to the last term in the equation above tends to the limit 1.5 (c),
ag N — oca. .
For any & > 0, we have

(1) wylm: 7, (m) < c6™* w(m) = 1} —wylm: #"(m) = 0} —

' —wp(m: r*{m) 0 and |logr™{m)| = 6)
< rylm: r(im) < o, uim) = 1)
< s 78 (m) = )b () < o', ) = 1)

+uplm: #"(m) # 0 and [logr* (in)] 2 g}.
By Lemma 5, we have for any positive real number by ag N — oo

vl r(m) < b, u(m) =1}

= wy{th: 1,(m) < b, u,(m) = 1, w'(m) = 1)+
Fuylme v, (my < b, u,(m) = —1, u(m) = —1)
— Halm: #,(m) < b, u,(m) =1) +ar( t oy (m) < by, (m)= —1))
= a(m: r,(m) < b).
Thus for any real number b 0
(12) am: 7, (m) < b, uim) = 1) = fafm: a"n('.%) < D).

Since, by the convergence of the series (1), % (m: " (m) == 0) > 0 ak n =+ oo,
and since F is continuous at ¢, we have by (11), (12) and Lemma 1

n(me 2(m) < ¢, u(m) = 1)+ 3 P(e),

a8 N — co. So if ¢> 0 is a continuity pomt of F, then m(m: him) < o)

exists and equals %{1—|~F {¢}). Bimilarly it follows tham if ¢ < 0 is & conti-
nuity pomtpl_i F, then
alm: him) < of = bafm: »(m)

P '--6') = n%(:I.-wl[f"(“-c)).

Thus -k has a non-degenerate symmetric distribution.
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The following corollary is an 1n1med1ate consequence of Theorems 1
and 3.

CorOLLARY. A real-valued multiplicative function has a distribution,
if the three series (3) converge.

Conversely, we have the following

THROREM 4. Suppose h 18 a real-valued mulliplicative arithmetic funetion
hawing a distribution which is not degenerate ab zero. Then the throe series (3)
CORDETYe. ’

Proof. Since % has a distribution which is not degenerate at zero,
convergence of the series (1) follows from what we have noted at the

beginning of this section. So z(m: h(m)= 0) < 1. Hence, for some positive

real nwmbers b<e, _
mm: b < |h(m)] < e} > 0.
If f is the additive arithmetic function defined by

h(p*) #0
otherwise,

f(Pk) — '{log |h(19k)| i
0

then we have,
aim: logh < f(m) < loge) > 0.

As in the proof of Theorem 2 of B. M. Paul [6], it follows that 21 (F (o)

' < oco. That is, for gome & > 1, the first two geries in (3) converge As in

the proof of Theorem 1, it fo]lows that there exists a distribution function &
snch that
(18) vylm: h{m)| 64N < 6] > F(e)

a8 N - oo, for each continuity point ¢ of #, where

PN, Ye<|h{pli<a

1
—log|k(p)|.

Since k] has a distribution H and since alm: him) = 0) <1, we have
from {13) that the sequence {dy} is bounded. Let 6 be a limit point of
the sequence {4} Wehave from (13) that & (c6®) = F (o) for all ¢. Since H
is not concentrated at zero, the sequence {4} has only one limit point.
Thus 4, tends to a limit as N —» co. This completes the proof of the
theorem.

Remark 2. From the theorems above, it follows that a muliipli-
eative function » has a distribution which is hot degenerate at zero if .
and only if the series in (3) converge. Of course all this analysis is done
under the assumption that the series (1) converges.
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On the remainder term of the prime number formula L
On a preblem of Littlewood

by

J. Pintz (Budapest)

1. In the present paper we shall deal with the prime number formula
and other well known sums depending on the prime numbers. Let us define

(11) Ay(@) 2 (o) ~liz = 2 T
logr
pEE ]
el . Lch 1
(1.2) Ayle) & () —liw ™ ;‘:n(mu”) —lio,
(1.3) A(0) L 0(z)—2ZE Ylogp —u,
bt
(1.4) Ay(@) Z p(@)—2 = 3 A(n)~a.

n<m

) All these pums depend on the nontrivial zeros ¢ = g+iy (0 < < 1)
of [(s). The corresponding formula has the simplest character in the case
of A,(z) where the formula of Biemann—von Mangoldt states: if

A,(®) = po(a) —2 = W(ﬁo);w*o) 7

- ¢ 1 1 !
A(o) = ”Z% —~5log (“E) -—-%(0)

where o = f-+4y stand for the zeroz with 0 < 8 < 1. This shows that

(1.5)

(z > 1)

then we have

(1.6)

(L.7) 4,(®) = — ZE;— + 0 (loga).



