340 - G. Jogesh Babu

References

T1]1 A. Bakstys, On the distribution of values of mulliplicative arithmelic funetions,
Seviet Math, Dokl. 10 (4) (1960, pp. 1001-1005.

121 J.Galambos, On ihe distribution of sirongly maltiplicative funeiions, Bull. London
Math. Soe. 3 (1971), pp. 307-312.

{31 G Haldsrez, Hoer die Mitichwerte Multiplikativer Zallentheorelischer Funclionen,
Acta Math. Acad, Sei. Hungar. 19 (19068), pp. 366402

{41 P. R. Halmos, Measure theory, D. van Nostrand, Prinecton, New Jorrey 1062,

(6] J. Kubiling, Probabilistic wmethods in the theory of numbers, vol. 11, Transl,
Math, Mono., Amer. Math. Soe., 1964,

[6] E. M. Paul, Dengity in the lght of probabilily theory III, Bankhys, Sories A,
25 (3} (1963), pp. 273-280.

'STAT.-MATH, DIVISION
INDIAN STATISTICAYL INSTITUTE
Oaleutta, India

Received on 23, 5. 1977
and in vevised form on 2. I. 1978 (943)

icm

ACTA ARITHMETICA
XXXV (1980)

On the remainder term of the prime number formula L
On a preblem of Littlewood

by

J. Pintz (Budapest)

1. In the present paper we shall deal with the prime number formula
and other well known sums depending on the prime numbers. Let us define

(11) Ay(@) 2 (o) ~liz = 2 T
logr
pEE ]
el . Lch 1
(1.2) Ayle) & () —liw ™ ;‘:n(mu”) —lio,
(1.3) A(0) L 0(z)—2ZE Ylogp —u,
bt
(1.4) Ay(@) Z p(@)—2 = 3 A(n)~a.

n<m

) All these pums depend on the nontrivial zeros ¢ = g+iy (0 < < 1)
of [(s). The corresponding formula has the simplest character in the case
of A,(z) where the formula of Biemann—von Mangoldt states: if

A,(®) = po(a) —2 = W(ﬁo);w*o) 7

- ¢ 1 1 !
A(o) = ”Z% —~5log (“E) -—-%(0)

where o = f-+4y stand for the zeroz with 0 < 8 < 1. This shows that

(1.5)

(z > 1)

then we have

(1.6)

(L.7) 4,(®) = — ZE;— + 0 (loga).
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The corresponding formula for A,(@) or A,(») is more complicated,

namely, with the modification

. -] = (
(1.8) dy(a) = et 0 Ao =0)

2

wo have the explicit formula (see o. g. Landau [107, p. 36)

H
e 1"— _ “
E {1 (®) - 1i ( %f oyl o —~log2

Y

(1.9)  dy(2) =

and an analogous, but much more sophisticatod formula can be derived
from this for A, (#), owing to the relation

(1.30) mle) = > ur) ().

pe=1

Thus, from {1.9), we have

Ay(@) = — D (@) 4 li(z*9) -+ 0 (1).

¥=0

Further (1.11) and the elementary estimation

(1.11)

(1.12) Ay — A, () = IT{2) — n(2) = 0( Va )
- loga
imply the relation
T Vi
(1.13) A (@) = -—Z (1 12) 4-1i (22~ 9) +0 (100:0)

¥>a

2, In this paper and in the next one we shall investigate the possi-
hility to give lower bounds for the functions 4,(w) in terms of the zeros
of £(s), and to clear somewhat the conneetion between the order of magni-
tude of 4,(z) and the configuration of the f-roots,

Let ns denote by ¢ the least upper bound of the real parts of the
{-zeros. Phragmén proved the relation

(2.1) ' A@(m) = Q, (2"
and. Erhard Sehmidt [147 in 1903 proved

= 2,(/%)
2.1) in case o = 12,

(2.2) . A, ()
which is better than (

3. However, these results have a curious ineffective character. They
do not give aJny exphclt X values for which with at least one < X value
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the inequality

(3.1) A, () > ea®*
or -
(3.2) A (3 < —ox™

would hold. The reason for it iz a basie one. Namely, all these proofs
use an ineffective theorem concerning Dirichlet’s 1ntegmls which was
proved in a final form by Landan.

4. These facts indoced Littlewood [11] to write in. 1837: #.., Those
familiar with the theory of the Riemann zeta-function in connectlon with,
the digtribution of primes may remember that the interference diffieulty
arises with the function -

2° \*1 PR

Jio) = o & Bty

3
(where the p’s are the complex zeros of [(s)). There exist proofs that i 6
ig the upper bound of the s (so that 8 = 1 it Riemann hypothesis is true)
then f(x) is of order at least "¢ in z. But these proofs are curiously in-
direct: if (6> 4 and ) we ave given a particular g = g, for which = f, > %,

. they provide no explicit X depending only upon gy, ¥, and & such that

If(x)| > XM~ for some @ in (0, X). There are no known ways of showing
(for any explicit X) that the single term z’0*¥0 (8, -+iy,) of f is not inter-
fered with by other terms of the series over the range (0, X)".

5. Such a theorem was proved by Turdn [17] in 1950 using the
powersum method.

TarzorEM (Turdn). If op = BoF+ive fo = %, is an arbilrary non-trivial
zero of £(s), then for
(5.1) T > max ey, ¢ (o))
one has
Tfa log T'log, T )
5.2 max |4,{x}| > —— @X (
(5.2) % 14,(0)] > — g 52| ~01 7y g

l@o]

where the ¢s as in the following always are empliciily caleulable positive
eonstants.

Thig theorem says at the first sight nothmg on the value of z, for
which the inequality (5.2) (i.e. the corresponding inequality without max)
is valid. But the trivial remark

(5.3) ' 4,(z) = 0 ()

tells us that the inequality is trivially true for the tightenéd interval
[TFe=¢, T7] for T > ¢ (o, &).
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So the guestion arises whether one can get analogous statemonts
with better localizoed » values. This is really possible, due to the following
theorem proved by W. Sta§ [16] in 1959 (applying Turin’s method).

Tozorem (Stas). If g0 = Bo+ive, Bo>
zero of [{8), then for

4, 18 on arbilrary non-trivial

(5.4} T' > max{e,, exp oxp(2]g,}))
one hos

logt
5.b A o S E
(52 lr:?rxg (@ > GXI)( loglogfl’)
where

log I'log, T

5.6 I: T Y J o 1,
>.6) [z~ ogiogmne) =1 7]

We note that the corresponding inequauh’ty follows for A,i(@) mmedi-
ately by partial summation. On the other hand for the more interesting
cage f,> 4 (because il the Riemann hypothesis is supposed to be frue,
other methods furnished already bebter results, ag o.g. the theorem of B.
Schmidt in (2.2)) the same statements for A,(x) and A,{®) and further
for 4, (_ #) and 4, (»} are equivalent hecause the order of their difference is

0 ( Va
loge

- ) and ()(l/w) respectively.

6. However, two interesting problems remained alse open after
the quoted theorem of Stag.

Firstly we note that the absolute value of the “true error cauged

by a zero g, = ﬂo'l‘Wo (o= )7 1s
s

(6.1) &
. ' 2l
in case of dy(a) and 4,(w), and it is

! .
(6.2) (%)) ~ T (for @ o)

|90|10g

in case of A,(z) and 4,(x). At the same timo the estimates oceurring
in (5,2) and (6.5) are weaker.

Thus it would be important to show that the ervor term of the prime
number formula can have the same order of magnitude — even. in an
explicitly caloula,ble interval (0, X(gy)) for a suitable ® — as the error
(6,1) and (6.2) respectwelv “eaused” by the single zero g,.

- The theorems of Phragmén (2.1) and B. Schmids (2.2) and other

- similar results of Littlewood [12]and Ingham [4] are *one-sided” theorems,

icm
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i.e. thege theorems assure that the remainder termy cam have Infinitely
many times a large absolute value with prescribed sign. On the other
hand our guoted theorems are only “two-sided”. The problem to find
one-gided theorems instead of two-sided ones was already stated as one
of the main preblems in Turan’s book [18].

These difficulties were essentially overwhelmed by the one-sided
powersurn  theorems developed by Turan, Knapowski, Dancs. These
results had & large secale of application already in the investigation of
the distribution of primes in arithmetic progressions {see Knapowski—
Turdn [7], [8])- However, it turned out (Knapowski-Turédn [9]) that
aeven two-sided powersum theorems can lead fo one-sided theorems.

The first difficulty is caused by the fact that by the use of powersum
theorems we nsnally cannot estimate the powersum purely by the largest
term, but also a factor depending on the number of terms occurs, which
is nsnally relatively small owing to the large number of terms. This problem
can be solved cither by a powersum . theorem of Atkingon [1] which,
however, has the constant factor 1/6, or by a slightly modified form
of a powersum theorem due to Montgomery [13] (for the theorem and
its proof see the Appendix, Theorent 1) which in this formulation has
only the factor 1—e& (We note that actually also Divichlet’s elassical
theorem could be used, but we should not gain anything by it and the
localization of the correspondin g z value would be extremely bad in depen-
dence of g,.)

Thus ag an answer to Littlewood’s problem we ean prove the fol-
lowing theorem, which is completely satisfactory concerning the lower

THEOREM 1. Let 0 < &<
@& gg = fo-+iyy zero of £(8) with

Bo=14+48>1% ond
1< 4 and for every H satisfying

1/50 and let us assume the ewistence of

o > 400 /20
(6.3) min (HO2H™MY > max (y,, 6)

(where o 18 on absolute constant explicitly caleulable, positive) we have in
the interval

-4‘—19:{10.&7’0
(6.4} I=[H,H# ]
an x; el and an x; =1 for which
o G
Aoy > (L—g) - b
sto) > { leollog ,
(6.5) ( H)'BO (i =1,2)
€T
Ay < —(l—g) = '
d lgollog;
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and
: ()
{6.6) 0 (i =3, 4)
(% )ﬂ"
A (wf) < — (1 —g) ==
' Loy

wéspeata'wly hold.

7. First we note that it is enough to prove the inequalities (6.5)
gnd (6.8) for 1 =2 and 4 = 4 with the factor 1 —9¢/10 instead of 1 —s.
Namely, owing to the elementarily provable inequalitics

00Vs
(7.1) 0 < dy(3) — 4y (x) < —'i-(;'g—;ﬂ-— (e = 2)
and
(7.2) 0< A,(2) — dg () < 100V (23 2)

and considering (6.3), we have

1/3
(7.3) >H > (y )llﬁ">(‘l‘%?“(‘)‘f@o|) !
Le.
mfo
7.4
74 10 el

which assures (6.5) and (6.6) for the cases 4 = 1 and 1 = 3 too.

The second natural question would be whether it is enough to prove
the theorem (perhaps with a slight modifieation) either only for ¢ = 2
or only for ¢ = 4. It would be advantageous, if it were sufficient to prove
this for the casier treatable case ¢ = 4, This would be really the case if
we congidered the two-sided analogon of Theorem 1, owing to the relations

o Adm) A
(7.5) dy(w) = Toga +2f ozt du -0 (1)
and
(7.6) Ay(i) = dy( f—m-—m-d +0(1)

which can be proved easily by partial summastmn (for (7.B) soe e.g.
Ingham {87, p. 64).

However, dealing with one-gided th.eorems the gituation eulready
changes in an/unpleasant way. It turns out that if we prove for the case

i =2 the inequalities (6.5) with the factor 1—%’;- instead of 1-—o
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and with the stronger localization

—EL R 1"9”"’]

(which in this case is no problem) then the inequality (6.6) is satisfied

with 1 —9e/10 instead of 1—e¢ and with the original interval I in (6.4).
Namely, if we suppose to the contrary to the above that for

every % I one has

(7.7)

wbo

' 9¢
A, (u <(1———)—
o (%) 0] ol

(7.8)

then by (7.5) we get for every w e I'

(7.9) (=)
: 9z \ uh
9e 2% ﬂ:( ) [@o] i L
1——-—— .
<( ) |go]loga +1.! u10g2 bz +O(2f wlogtu du)
9z\ af 2 Yz 8\  afo
- 1 Lo o)
<(s 10) e (7 siozs) +O i) <| 10) [eolloga

in centradiction to the modified form of (6.5
same for the other part of (6.6).)

But this way of argument breaks down if we want to prove
that the inequality (6.6) for ¢ = 4 implies (6.5) for ¢ = 2. Namely, a short
reflection on the formula (7.6) tells us that even large negative values
of A,{%) near to # can “effect” large positive values for 4, (x).

Thus the curious situation occurs that we must prove Theorem. 1
for the more difficult case ¢+ = 2 and this implies the same result for ¢ — 4
but not conversely.

J- (Proof is naturally the

8. Though Theorem 1 is very satisfactory regarding the lower esti-
made, the localization of  in (6.4) is rather bad. So it would be important
to prove a theorem which combines relatively good localization with
an only somewhat weaker lower estimate tham that given in Theorem 1.

Now, using the so-called second main theorem of the powersum theory
due to T. 868 and P. Turdn [15] (see Appendix, Theorem 2) instead of
Montgomery’s powersum theorem (Appendix, Theorem. 1), it is really
possible to prove such a result. :

TaroreM 2. Let 0 < &< 1/50, and let us assume the existence of a

@0 = Py-tiye zero of [(s) with By = }+ 0o > ¥+ and

(8.1)

1012
&3 )

Yo > eXpexp (
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Then for 1 < i< 4 and for every H satisfying
(8.2) Y % max(y,, o,)
we have in the inlerval
(8.3) I = [H, "
an % I and o} €I for which
, A
A,y oo
'J’u logu;
(84) . . (ﬂ"”)ﬂo = 17 2)
’ 4
and
A, (@) > ““("C%i_{).'ii ’
(8.5) Yo (i =3, 4)
(@) ’

4;00) < — —1
m ¥t

hold respectively.

This theorem is necessary if we want to invostigate the dependence
of the remainder terms A,(¢) on infinitely many {-zeros and to prove
conuections between the romainder terms and zorofree regions of £(s).
This application of Theorem 2 we shall d.l&(}llﬁb in the next Jpaper.

Let us note that here even the case ¢ = 2 does not imply tho case
7 = 4. 8o it would be necessary to prove it for both cases i =2,4and
Irom this one can infer the corresponding result for ¢ = i 3 as JL was
shown in Section 7. We shall not give a full proof even for i = 2; we only
point out the differences with respect to Theorem 1. Furthor we clo not dis-
cuss the case ¢ = 4; we only give the corresponding starting formulae, be-
cause the Wholoprooi‘ rund on the same lines as ford== 2 (itis, as ean be ox-
pected, even simpler than for i = 2), ' '

© ‘We want to make it perfeetly clear that in Theorems 1 and 2
we suppose the existence of a zero with a real part 8, > 4, Le. wo suppose
the Riemann hypothesis is not true, This is due to the already mentioned
fact that if the Riemann hypothesis is supposed to be true, then by the
famous results of Littlewood [12] the case is settled even Wlth lower enti-
mates for every. 4;(x). Howover, Littlewood’s proof in ity oviginal form
did not furnish any localization, but later this problem too was solved
by Ingham [4].

It is also worth nofmg that as all the zeros in the critical gtrip lie
on the line ¢ =} .up to the height 10° if we choose & = 1/50 any
possible  zero g, = f,+iy, with f,>1 certainly satisfies

icm
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condition y, = 400/¢? and so the inegualities (6.5) and (6.6) hold with the
constant 0.98 instead of X — e for suitable #; and «; in I (given by (6.4)).
Finally we mention the interesting corollary of Theorem 2, namely the

COorOLLARY 1. To every & > 0 there ewists an ineffective constant ¥ y(e),
such that for ¥ > ¥ (&) every A (x) changes its sign in the interval

(8.6) I=T[Y, "+,

The result trivially follows from Theorem 2 if the Riemann hypoth-
esis is mot true. If it is frue, then the stronger theorem of Ingham f4]
givey the result even for any interval of the form
(8.7} I=1Y,07]

with 2 consfant C.
From Corollary 1 follows directly that denoting the number of sign
changes of A,(2) in [2, ¥] by V, (¥} we have the

COROLLARY 2.
7Y .
B ToglogT —° (SESA

This result is better than the first result of Knapowski [5], [61 statmg

V. (¥)
. Iim ————
(8.8) yl_lm loglog ¥

But recently the latter was improved by Knapowski and Turén [9] to

lim VilT)
Forco log”"’ Y (loglog X)~*

(8.9)

Further the author obtained the following 1111pr0vement of (8.9)
(see part IV of thid series): '

: 7
lim Vil¥)

(8.10) = (log V) (loglog ¥1-2

>0 (1<i<4),

" We'note that it is possible to prove analogous results to that contained
in this series for algebraic number fields and Dedekind zefa-functions too.
To thege problems we shall return later.

9. Now we shall prove Theorem 1 for the case ¢ = 2 with the a:lreadj
mentioned slight modifications, that we shall eonstruct &; and #;" in T4
given by (7.7} for which the inequalities (6.5) hold. with 1 - 8¢/10 ingtead
of 1 —¢. Our proof ghall follow the line of Knapowski-Turén [9].
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‘Wea shall deal with the function

0 for
{8.1) gy = 1
: logn

LnEy
due to Gamnss.
Obviously ‘
lgo =Tlia+0(1).

Let o, = pi+4y, be a {-zero with the maximal real part §, among

thoge gatisfying the imequality

(9.2) 0<yi<
(Naturally o, = g, is posgible.)
Let further
,det & 1 aet 1
(9:3) “=% S0 =7

Let % be a real number to be determined later for which

(9.4) 3(¢')%logH < k < 90log Hlog v,.
Let further '
aet k

(9.5) 124 m‘-(';;'j—z— = kﬂ.a,
(9.8) A% exp(u—38ki) = explu(l—3),
(9.7) BE exp(u+3ki) = exp(u(l+3¢)),

2m (1 —10¢
(0.8) fio) & a)—1gox 22210

Yol

99) B0 £ ()4 g(s) 13 AL

(s— B ) vou '

‘where both in. (9.8) and (9.9) the upper signs or the lower ones are meant.
Let uy assume that we have for all z e I' -

8¢ a
9.10 Agw) <138} @
(010 () ( 10)|eollﬂgw
or
il
(9.11) Ay(@) > w(l_ﬁ)__f”_""___
[golloga-
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Then these inequalities also hold in

II! dEI

(9.12) [4,Bl<T'.

But if e.g. (9.11) were satisfied, then we should have for all # e I _

(913)  II(a)—lgo = dy(e)+0(1) > '(1 3"’) o
e : 4 [ |eolloge
(1—15¢) i 1—108 2"
> —(1—188) —————— > — (1—104'
yo(l—3e)p _ Yol
from which for z eI’
| . -
(9.14) f(@) = H(m) —lgz-+{1—108) 2= > 0

Yot

would follow, i.e. f{z) would not change its sign in the interval I*. From
this we get & contradiction, which proves Theorem 1.

10. By partial integration one can easily prove the formmla

(10.1) _ f F(@)— (e~*log ) dw — H(s)

valid for o> 1.
Further we shall use the formula (4 > 0, B arbitrary complex)

2
1 P B2 1 f (V.As+ 71)
— e ds — e | e ds
(10.2) Py fe“ ds = exp ( i
(&) (2)
o +o0

B-) 1
f e drwexp — s

4.4
(au+ %)

— ex ( B") 1

P\7 ) o
Replacing s by s+4p, in (10.1), multiplying both sides by gla’+ua
and integrating with respect to ¢ along the line o = 2 _and changing the
order of integrations we get

1
(103) O fﬂ'(s+,éy1.)6ksﬂ+#8ds
2mi 3

Wiﬁﬂllfﬂ )

(r~ =" log we™"+ #) d ds
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I

fla) E;i {w‘”‘?llogm- _.__21 - f gles™+{n=1og T)"ds} dx
i T
@

1 df . (logw —u)*\) .
== e [ f(@) —— {m*‘hlogwexp ( A 1.
2Vnlk Jj da Ak

IS (N
_gmlf - {( iy Jogae 14

-1 ) logw —
_[_Iogw M) m"‘"’?lexp ( ( Og g w)_._)} ﬁm.

28 4k

11. The basic idea of the proof i that supposing that f(x) does not
change its sign. in I’ one can deduce an upper bound for the absolute
value of the right side of (10.3): on the other hand one can give a lower
estimate for the absolute value of the left side of (10.3} by suitable choice
of I satigfying (9.4), and these two estimations will contradict each other.

12. First we split the integral U on the right side of (10.3) iuto 3 parts,

(12‘1) U = U1+ Ua‘"l“' Uﬁ .
where
) B oo
(12.2) U=, Oi= [, U= [.
1 A F:4
Congidering

400 1\° 1
Yo > o= =] = h—
& & &
-and. our notations in (9.3), (

(12.3)

JS‘
|f (s \10,9,3" ( 1 g —Jog x| (logaw — u)*
Ul € e | 2D _ ‘- xp | — ez L
10:l= ZI/nTﬂ f Part loga + 2k ) oxp ( 45 )dw

|f(mm(1+&s) ¢ 8kA\ {  (logx—u)
f (”0 - 166'+Tzi[)m‘ ("m )““F

9.5)-(9.7) we have

21/1170
B

(1+58)/wcf |f{z}]
= 2]/7rlr, : 93

[ (ogm—p)*\
GXP( i w)d"’

logw — u)?
( YT )dm‘

A
B

(1-+-be") pyy ff
2Vrk
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On the other hand we can trivially estimate

ae| [ fiw) (loga — )"
(12.4) (U, < ﬂf_m exp( =@
3 (logw—pm®\ .~ F _yz)
s;feép( i )dm~ fexp(;@—[-y T dy

3ha

< f exp(p-+y —2y — 2k A2 dy <J- e Vay = ¢™* = o(l) .
0

3k2

and analogously

: A g
Uyl = U. ﬂTw)exp(—w——————(logzk #) )dm

- gk2A2 2
gfeXp( i ) T =o).

Naturally, mutatis mutandis, we have

(12.5)

(12.6) U, =0(1) and Uy =o(l).
Thus, using (12.3)-(12.6), we can change the intervals in the left

and right side of (12.3) from [4, B] to [1, o] and so with the notation

Ff (logz — ‘u))

[y Brd . = e d
(12.7) 5y ;._J' ( % @
wa gel
(12.8) [T} = | Tal 40 (1) < (14 B&") oy K| +0(1).

13. Now we shall estimate |K| from above. For o> 1 one gets easily
the formula

P, L[ 2 } _(1—10e7)

{13.1) 1{ JICER diw __S-{zf(c (z)—i—f(n«)) dothy = (8 — Bl o
al (8):‘;"]”::}9_5"_—
v (S—ﬁl)ﬂ'yo

where h ig a constant.
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e . 1 |
Multiplying both sides by T ¢™+#8 and intograting along o = 2

we have
— ! s 2 1.
(13.9) K = 4 > 10 1. f Lxp (Fes® - us) s
wye  2mi §—py
@
b [ Jes?
= p(s)exp (ks? - pus)ds
1—-10¢
d=er i £ Kl _I—Kﬂ‘
Ko

Shifting the line of integration to o == 0 we get

00 2
1 G—t o patd
- {13.3) K, = ¥ A —
2 = exp (kb - i e
— oxp (K- ufy) + O(1).

We define the broken line I for t=0hy

I : o =058/4 fort> A, :
I BB o<Bid for b= i,
(18.4) Iyt o = f+1j20  for 14 <t< 2
. I 1A o<y +H1/A8 for & =14,
L e=1/4 for 0<i< 14

and for ¢ < 0 by reflexion on the real axis. Since by the choice of g, in ('9.2)
() is regular on the right of I, we have ' '

(13.5)

K, = — f .y
T @ (s) exp (ks? - pus) ds

We shall use the fact, that if £(s) has no zero in the domain

(13.6) oxf, [<T+1

then for '

(13.7) o= fta, H<T

one has ‘

(13.8) Ii(z)t - o(lOgT).
g a?

(This is a somewhat modified form of Theorem 20 in Ingham [3])

iom
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Further we ugse the classical estimate

(13.9) @) =00%) for  o=4, =10,

From (13.8) and (13.9) we get by easy computa,tibns for the inte-~
grals #; on the interval I, (i =1,2,...,5) the estimates (considering
=122 = I{e)* and %, g - )

(13.10}
1| = O (exp(h-§ — B2+ {u)] < espp),
|75 = O(3*loghexp (k-5 — A2 +5u)) < 763D (34)
(3] = O(Mlogexp( —194K -+ (B, 1)) < et exp (uhy —192K),
|, &= 0 (exp( —194k+ p (B, +1/23)]) < fpexp (s fy —192%),
13 = Olexp(3E-+h) < devp ()
and analogously for the integrals in the domain < 0.

Then, taking into account (6.3) and (9.4), we have:

(1311)  min(ePrid, gt = 2% > 2 g% > 2RV
) 1
> ok (He I4)5.5 = 27‘7'}13’2 .,},g' ~ 2]‘;7,3]2 . 8—’3"

1 1,
LY}
8:5 %8' 1”")’1;

From (13.10) and (13.11) we get:

1 : ; e exp{kfi+
K| g\?ma’x_(ﬁ#ﬁl—mk, 8y < p{kpi + uf) .

13.12)
( ) 2 Yo

This together with the estimate of K, in (13.3) gives for K in (13.2)
the upper bound :

1—9¢&

exp (kf1+ ubi) -

(13.13) K <

“Yo _
Now, replacing in (12.8) K by this upper estimate, we get for U
the inequality

(13.14) |T| < (L—4e'Yexp (kp: -+ uh1)

and so we have an upper estimate for U.

14, In order to get a lower bound for U we shall estimate the ab-
solute value of the integral U on the left side of (10.3) by suitable choice.
of %, furnished by a powersum theorem. Shifting the line of integration
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o 0 = —4 we get

(41 U= Zoxp{k_[(e — iy + Ao —ip) ]}
[

(1—10¢")8; d 5"
T o o (exp (Rb‘—i—,ﬂés))awﬂl—m +

1 v
-+ pye jl H (s --3y,)oxp (hie® -} us)ds.
(~3)
Eagy computation shows that the integral ig (1) for g — co. Turther
the gecond regiduurm is in absclute value less than

B (2K18, — iy - ) g
! oxp (B (1 — 1) + uf) < —- oxp(l S} + upy).
#¥0 ' 2
_ Now, uging that for T > T, the number of zeros in T <t <L T+1
is (with the usual notation)

(14.2)

(14.3) N(T+1)—~N(T) < 18log T

(sce‘e.g. W.J. Ellison-M.Mendes France [2], p. 165), we get for the contri-
bution of ¢ = f--4p’s with y —y, = 21 the upper bound

(14.4) _{lﬁlog(yl—i—t)exp(k(l—(t-~1)2)+22k) = o(1)

and amalogously for the zeros with y—p 5 —24.

" 31;5. So the nmmber of remaining zeros with |y —y,| < 24 is owing to

{15.1) N(y1+22) —N{p, —22) < 60 Llog (3, - 2) < 90 Alogy, =-?-?—10ng.
8
Thus we can apply the powersum thebrem of Montgomenr
! . Theore Lontgomery (goo the
Ap_pendlx, Theoreri 1) for the numbers g. A
(15.2) 5 = exp {3(e")log H [(0; — yy)* + 22( gy — i) I}
with the property
(15.3) O ewml< 2
where the number of terms iz by (15.1)

90
{15'4) 1-<-.'?’b<-—,—10gy0.
&
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Thus we get the existenee of a », for which

30
n < ——1ogy,

5. < vy € s
(15.5) 1wy 5 e
and
7
(15.6) | S| > (1—8s)max ) > (186 el

= Clef€n

hold, i.e. choosing

(15.7) 1 3e2log H -9,
we geb '
- (183) WL 3 expklle—ir)t+i(e—in)])

lp—pyl<2d
> (1 —3¢)exp (b + ufy)
where % satisfies the inequality
(15.9) 0 3(e")2logH < k < 90log Hlogy,

reguired in (9.4).

And thus from (14.1), (14.2), {14.4) and (15.8) we have the inequality
(U] > | W] —¢'exp(kfi+up) > (L—de)exp(bfi+-pb)
which contradicts (13.14) and thus proves the theorem. -

16. Now we shall skefch what changes are necessary in the proof
of Theorem 1 to get a proof for Theorem 2 {in the case i =2
_ First let o] == §,-+iy] be a {-zero with the maximal real part B among
those satistying

(16.1) 0 < 71 < Yo
Lot o) be the zero with the maximal real part B, satisfying
. ." I ! ' ]‘
(16.2} MLy <y Hlogye, b= A TogH

if such a zero exists, and let g, be the zero with the maximal real part
gatistying :

‘. , ’ |
(16.3) ¥4 < 7 < v+ max(logyy, 10g70)s  Fuss 2 Fat Toogg

if such a zero exists. ‘ : .

logH : R " ,
Thus we get after no more than [—-i——] +1-steps a zero oy = Byt

+ivy = o = ftin for which y, < ) -+log?H < y,-+logtH. Further
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the regions

(16.4) O<ltl <y, o>8
and

1
{16.5) Y1 < Bl < yi+max{logyy, logye), o2 B+ TosH

are zerofree,

Now we have to distinguish two cases.
Case A: :

/3
yg.'.'soo(: vy < ?D-HOQZH

and
Cage B:
L A
the 1{;{1 1{211(13;86 A for y, ., = v, and for any # in I given by (8.3) we have
d + logm ,
Prt1 P Toalt A
(17.1) w,l'ﬁ_s > 2 6 T > el
Yarr - (2p,) e £ {y e

and for p,., <y, the trivial inéqua.l_ity

’

B,
z rtt 2

e > o
(?’n—f-l)“a ?é+

So if we work With' 01 == fy-+iyy instead of g, = B+ iy, then as
one can easily see (8.2) (if we replace 107 by 8-10% say, in the exponent)
remains true; thus we shall prove the estimate (8.4} in the form

_mn et
' loga, yiloga,

(17.2)

N (17.3) Ay (]) > e

The necessary changoes in the choice of our parameter
: _ ho rameters (see (9.8)-(9.
and notations are the following ! ot ') o)

(>

1
17.4 — ) < b ‘ et
(17.4) (E,)zlogﬂ(l |—4a)€,7ns;logﬂ(lw}-63)-w,
. . Gl ﬁ
(17.5) Fo) 2 1) ~1go 2 20
R S
(17.6) - H(s)‘ﬁ‘ﬂ(s)ﬂ‘(s)—lr@uﬁn———
: _ ¢ ' (s —F)2mon
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 Further ingtead of y, in the course of the proof of Theorem 1 we
always write y,.
The first part of the proof runs completely analogously to that of
Theorem 1 and thus we get:

kA3 -+ py
3¢ !
7.7 | < o
(17.7) R
and from this as in (13.14)
461=ﬂ§+nﬂ1
{17.8) |U| < ——

71

18. With the npper estim&tidn of U the integral in (14.1) is also o(1);
the residuum is now
o ekﬁiwﬂl

18.1 . < £
( ) 2 "

and the contribution of zeros with |y —y| = 21 to the infinite powersum
ig again o(1) as in (14.4). '

However, the remaining finitely many zeros we divide into two
clagees, defined as follows: : '

Oy & fo; Iy —val < ('), 18— Bl < (')},

Ca {05 Iy —yil <24, 0 ¢ 00},

For the zeros of 0,

(18.2)

2 40 1 < lo
(18.3) by —yal < 24 =7 =T<-;2—\ 0 Ya
and so by (16.4) and (16.5)
1 < pot 2
(18.4) B< bit g <Pt

Thus we get for a g0,

. 5 ' _

(185)  exp{k(rtr— ) ) < exp b (4 — %) 4 2]
and the number of zeros ¢ e C, is, a8 in (15.4),

90
< -;;-* ]-Og')’l .
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Hence the contribution of the zeros o e 0, is

90 ‘ , :
(18.6) < e log yexp (1 + ufy —T(e")* +- 7) << pifoxp (B3 ey — (e

_ rlexp(bfi+ufy) _ yi oxp (hBi-- uhy)

oxp (&) mﬁ"m ) pot

o DA+ uhy)

'

On the other hand AL U\ 9 of .
the chois nd, we can apply Theorem- 3 of the Appendix with

(18.7) A Taw Yy,  fEw 2([5’)41'5

and thusjwe get for the number n of zeros g e ¢, the estimate

(18.8) 1<n < 2(elogy,.

Now we can apply the continuocus.f
& GOl 18-form of the second main theorer
of the powersum theory (see the Appendix, Theorem 2): 191“:

! %

e S -
{18.9) max ..J.é':},_m_’_d < _W._ﬂ" "
. acigara Max ¢4 = | e

Clsian 86 (l + E) 1

for the numbers
(18.10) 4 = (=) + Mgy —iys) (g e )
and chooging ‘ :

[y

1
(18.11) @ =-———logH(l--4¢'), 4 = -%,-Iogﬂ‘ -
. L B

(e)®

we get the existence of o k'sautisfying (17.4) fox ‘which

(18.12) . |W| = ZGXIJ {]{"E(Q;f""i:yl)ﬁ,.ﬁ._ (g, ~dy) 1}

gECy
l4-reale R g 2 :
LA 6" Ga v
20\ 5610y, = T 1_ T e G
e g U A/ - :
N e’) exp (dlog = 2(s" ”]o,@,yl) "

Thus we get from (18.1), (18.6) and (18.12) fox U the lower bound

_ _ BB iy L
(18.13) > -2 e

. Y1 "
which contradicts to (17.8). '
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19, Tn Case B in the definition of (17.5) and (17.6) in the lagt term

instead of yIT° we write y;*¢, and in contrast to Case A the proof we

leave v, where it was in the proof of Theorem 1.

Thus we get the formulae {17.7}, (17.8) and (18.1), further (18.6)
with the only change that y, iz replaced by .

But perhaps y; is not large enough (compared to &) and thus Theorem 3
of the Appendix is not applicable and that is why the distinetion of Case A
and B was needful. However it does not make any difficulty, as here,
using (14.3) for the number » of zeros ¢ € (), we have the estimate:

1563 10g v,

500 - \
as in {18.8) and so we get in Cage B also & contradiction in the same way
ag in Case A. S

(19.1) n < 15logy, < < 2(s"**logy,

20. Now, as already mentioned, it would be necessary to prove the
case i = 4 00, as we cannot infer this from the case i =2.

The proof runs naturally along the same lines, it is even gimpler.
One must, namely, deal instead of f(z) and H{(s) in (17.5), (17.6) with the
funetions

. N 2 gf1
(20.1) - fl@) =vp.(;q)—w:1:*y—fm;r
and ' .
(20.2 1—’{()—5 5 —— T 28
(20.2) H) =T W53 T gt

which are connected by the relation

oo . d ) . o ‘
(20.3) | f fia) = (@ da = A (s)

which re‘places' both (10.1) and (13.1).
The cases 4 = 1 and 4 = 3 can be inferred from the above immedia-

tely owing to (8.2) ag it was done in ease of Theorem 1 (see (7.1)~(7.4}).
Appendix

The following theorem is the slightly modified form of a special
case of & powersum theorem due to . L. Montgomery [13]

Tueorem 1 (Montgomery). For arbitrary complexr numbers
(3 =1,2,...,n) and for any e, 0 < g1, ons hus
n ,
| 245
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We give here a very short proof. The following lemma embodies

J. P’intz

the basic idea in Montpomery's original theorem.
Levora 1 (Montgomery). Lef

N

: ¥
P = E L — ’
(r, 8) (:I N+1)? cosrl.

Then P(r, 6)= —1/2 for all 6 and 0<r<1, further P(1,0) = N /2.
Proof. Let z = r¢". Then P(r, §) is a harmonic function of 2 and

because of the properties of the Fejér kernel, which proves the first ag-

pa=l

4P, 6 =0

sertion. The second assertion is trivial,

For the proof of the theorem we may suppose max llzj| = || =2 =1.
<<

Let 2; = r;6% where now 0 < r; < 1. Thus using Lemma 1 we have

N
¥
| [PORA
le( N-l—l)Re

prase

~and thas

n n

NDW'GhOOEingN = [ﬁ] = ﬁ. -1 %
. € E

‘max Re
1gvgN

j=1

which proves the theorem.

The following theorem is a special case of the go-called gecond main

n—1

(Zz;);"-l—_——"N'—-—> l—e

theorem of the powersum theory developed by Turim.

TerorEM 2 (T. Bés—Turin). For arbitrary complew numbers #;

3

XA

f)

may i=1 > 1

mvsmtn TAX Joy)" m

: 1<in 8é|— 41
n

w

14
v
1) 7y o v 0,

- We get from this
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For the proof see T. S6s-Turdn [15].

@

. e S “a .
Now, choosing m = a— 2 =6 ™ =¢ ", we get fror this
' a
n
| 567"
max | [2]" > al "
, IMaX |2
Poorcards jmien Ra (E +1)

and go we get the continuons form of it as

i
{
!j’;ﬁ V| 1 n
max — - Gl = .
<tsatd .
aisa-+ r<isn 8e (E _|_1)

and thiz naturally remsains true if we replace max e by le%| with
) ‘ 1j<n

arbitrary fixed j. _ :
Further we shall use the fact that in small squares “affixed from the

- left to big zero-free parallelograms” the number of ZEroR is not too largo.

Namely Turén [19] proved the following
TrmorEM 3 (Turan). Let
lca<l, O0<y<gla—

and suppose [(s) does not vamish in the paraliclogram

_ aso<l, [té—t}glogt. .
Denoting by M(z, a,n) the number of zeros in the parallelogram _
a—n<o<a, KE-w<n2

we have for
logloglogr

loglog=

n=bh

the estimation

Mz, s, n) < nloge.
For the proof see the Appendix of Turan [19].

Note (added 18 November 1977). I mn indebted tio Professox Szalay for calling
my attention o the poworsum theorem of J. W. 8. Casszels (On the sums of powers
of complen numbers, Acta Math. Acad. Scl. Hungar. 7 (3-4) (1958), pp. 283-290) ac-
cording to which fox arbitrary eomplex numbers 2;, ..., &n the ineguality

k13
L.
A
=1
M et 7
1pgan—1 MAxX |gl
Legdgn

holds.
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i is 4 instead of the The 1 of the Appendix we get Theorem 1
with Tﬁ.{sﬂ%}igﬁ:eﬂlet?rie;nteﬁfafa e erem e P 8 [18] P.Turén, Bineneue Methode in dor Analysis und deven Anwendungen, Akadémiai

Kiadd, Budapest 1953.
[19] — On tke so-called density-hypothesis in the theory of eeta-function of Riemann,

log g

Iy =[H,H* J Acta Arith. 4 (1958), pp. 31-56.
instead of I in (6.4). With some other simple modifications of the proof of Theorem 1 BOTVOE LORAND UNIVERSITY
it is possible even to prove it with the interval DEPARTMENT OF ALGEBRA AND NUMBRER THEORY

PBudapest, Hungary
I, = [H, HlDD]DETUJ. -
Becetved on 7. 9. 1977
and in revised form on 28. 11, 1977 {981)
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