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in (9.23) each smmmand by (@—1)/2 it follows

@1 — -
(9.24) me(mz ,q-*)z (5+21) —“153- = 321 (m—~1).

33. Uging now (9.8) and summing over r we obtain from (9.22) and
(9.24) the same cxpression as in (9.21). It follows finally

(9.25)

sG{w) = {s* L+o

3 )m-—t (L—1j/s<m<1+1fs).

Since obviouwsly
sg(w) —sei2 = t{x—1),

we see that g(x) in (1—1/s, 1-41/s)> is always different from «/2 save
for # = 1. The assertion of Section 25 is proved.
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On two definitions of the integral of a p-adic funetion
by
Korr Manrer (Canherra)

In memory of Paul Turdn

In his basie paper on functions of o p-adic variable Diendonné [1],
introdunced a special kind of integral (primitive) of a continmous funetion.
A completely different definition of such an integral was more recently
given by M. van der Put (see A. 0. M. van Rooij and W. H. Sehikhof [2]).
The aim of this note is to show that these two definitions lead to the same
regult. This is rather surprising becanse there is a large set of non-constant
p-adie funections of derivative 0.

Sinee it simplifies the diseussion, we sball study the two kinds of
integrals for the class of functions f: J — @, where p is any positive rational
prime, §, is the field of p-adic numbers, and J = {0,1,2,...} 38 the
set of all non-negative rational integers. The set J is not closed, and its
p-adie clogure is the set I = {w € Q,; (], < 1} of all p-adic integers which
ig compact.

1. Let f: J =@, be an arbitrary function on J. The two integrals
of f are defined by the following constructions.
Write x eJ In the canonic form as

m = By a P et ...

where ©y, %, &y, ... ave digits 0,1, ..., p—1. At most finitely many of
these digits are distinct from 0; 8o, if & 0, leb m, 5= 0 be the non-vanishing
digit of largest suffix s. Firstly put

g(0) =0, g¢lx) =a,p* for a0
Secondly write

B = gy ap b ... P (=1,2,3,...)
80 that

") = 4™ for  m> s,
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The Dieudonnd integral of f is now defined by

D (m) == 2 (m('°+1J _ w(ﬂ))f(m(n)) .

=1

Since the terms of this series vanish for # > s, there iy no problem of
convergence. Onc can show that, whenever f is continuous at o point #,
of J, then D'(x,) = f{x), a8 required for an integral.

2. Lt m be any integer in J. With m we associate s positive integer M
where

M=1 it m=0,
while for m > 1 the integer M is chosen such that
PP m < pM -1,
Denote by S({m) the ball consisting of all £ &J for which

-
| -], < p™%,

and by X (x, m) the characterigtic function of §(m) defined by

1 i welm),

- X{w, m) = {0 otherwige.

It can be proved that every function f: J — @, has a unigue van
der Put series

fla) = Y b X(w, m)

m=0{

for all xed.

Here the coefficients b,, can be determined by the formulae

. ::{f(ww it

m=0,1,...,p—1;
flm)—flm—g(m) it

W= P
Since

X{w,m)y =0 it &<m,

the van der Put series for f(m) breaks off afber finitely many terms, and
there i3 again no problem of convergence.
In the special case when f(x) is the function », we obtain the series

& = Zq(fm}}f(m, m).

W= ()

Once the van der Put series for J(w) i3 known, its van der Puot integral
ig defined by the development

Pz} = jme(m, m){@—m).

=0
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Also this integral satbisfies the relation P’ () = f(#,) ab every point x, € J
at which the function f is continuons, as it should be.

3. Without any restrictions on f we can now prove the following
result.

TarorEM 1. For every funclion f: J - @,
Dz =Plz) for all 2cd.

Proof. The van der Put series for f(#) shows that it suffices to
prove this theorem only for all the characteristic funetions

fl#) = X(z,m).

Denote therefore by D(z, m) and P(z, m) the Dieudonné and the van
der Put integrals of X (x, m); we must prove thab
Dz, m) =P, m) forall zed.

This will be done by evaluating these two integrals explicitly, and we
ghall begin with the more difficult funetion P (x, m).

Let @ be an arbitrary element of J so that also '™ eJ for all n = 1.
It X (2™, m) = 0 for all » > 1, then D(x,m) = 0; we exclude this easy
case. There is then a smallest integer N = 1 such that % e §(m). Then

™) —anl, < =™
and therefore there is a rational integer x* such that

2N g M.
Here _
p¥ < m<p" -1,

from which it follows that @* cannot be negative because then
ey \{m__-,pM < —1,

contrary to ™ e J. Therefore either

(1) o = m,

or

(2} 2™ = m+p™ = p.
Now

o = @yt mp+ ... oy PVt

<(p—1)+(p—L)p - ... —(p—1)p < p¥ -1,
Hence, in the case (2),
M LM g p¥ -1
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and therefore N > M 41. It would then follow that

o = g p g™ L oy,
and therefore

) (D) lp < p= ¥

whence algo

(M)

e i, = (@M 1) + (@t — )|, < p~H

Thus 2% e §(m), contrary o the minimum hypothesis for N.
Therefore the cage (1) holds, and

(3) 2 = m.
We agsert that moreover
(4) N=M.

For, if N > M, the proof just gwen leads to a contradiction; 1f however,
N < M, then

Oém(mmmgp‘ _1(\:23111_ 1<_,p.Ml
and this likewise ig false.

On account of (3) and {4) we can now prove that exactly
e 8(m) for all n M.
¥or if » > M 41, we have again

2™ = g -+ mﬂfpﬂr+ nee +wnw1pn_l
and therefore

-

!m(ﬂ»]mmﬂlf) |p — im(ﬂ ,

l—m, < p
a§ asserbed. ;

The integral Dz, m) can now be determined and is found to have
the valte

o

(w(n-i-l]
n=J

_,_m('“)) ®1l = a:,'——{[,'(?n) = ¥ —m if &= S(m)?

D(w, m) =
0 otherwise.

For o™ Dbeeonies equal to @ ag soon as » is suffielently large.

Qinee by definition also P(z, m) = X{w, m) (= —m), we have proved
the theoremn.

4. From any integral of the arbitrary function f(x) we obtain others
by adding any function the derivative of which vanishes identicafly.

In the present p-adic case there are very many such almogt-congstants.
For instance, as (. 8. Weisman has proved, e¢very funetion

2 ﬂ?ﬂ w ')n) H

M=
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where
lm m|f,l, = 0,

TH~»00

has everywhere the derivative 0.

fince there is then such a great choice of pogsible integrals of f(a),
the question may be asked whether the special integral D(z) = P()
has any distinguighing properties.

T obtained one such property. Write f(w)
series

and P(x) a5 interpolation

ian (W) and D) — §:A“ (i)

n=0

Then the coefficients 4, of the integral can be expressed as linear
forms

(8

n—1

2 ; carma'm

m=0
where the cocfficients e, are rational integers. This is quite different
from the position for functions of a real variable where, e.g.

[Be=6+56-%

with fractional rational coefficients. In the p-adic case the Diendonné—van

A, = (=1}

(91") -+ constant

der Put integral of (;) is a rather more complicated infinite interpolation

series
" o
il
e (7).

T shall establish and study the formulae (5) elsewhere.
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