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On the remainder term of the prime mumber formula 1
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To the memory of Poul Turdn

1. In this paper we shall investigate the connection between the
zerofree region of {(s) and the remainder term of the prime number formula,.

The fact that the complex zeros of £({s) “have an influence” on the
distribution of primes was discovered by Riemann in 1859. However
it was nearly 40 years labter that Hadamard’s deep funection-theoretic
work concerning the analytical properties of {{s) made it possible in
1866 to prove the prime number theorem.

Wiener showed that only one property of &£(s) is esgentbial, namely
{1.1) fsy =0 for o =1,

De la Vallée Poussin showed in 1899 that the domain
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containg no zeros of [{s). From this one gets for the remainder terms
the estimations:
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It turned out that larger zerofree demains of £(s) imply smaller
remainder terms. A general theorem in this direction was proved by
Tugham [8], Thoorem 22.
Tamormx. Suppose that [(s) has no zeres in the domain

{1.5) a>1—n{ft])

where n(T) is, for 1 = 0, & decreasing function, having a continuous derivative
(1) and satisfying the following conditions:

(1.6) 0 <ty <4,
(1.7) 7' () =0 as . I-> o0,
(1.8} 1 O(logt) as t-— oo,

0@
Let & be o fized number satisfying 0 <e< 1, and let

(1.9) o (@) = min (n(#)logs +logd).
i=1

Then we have

(%) 1 ,
(1.10) a 0 (e;,u—s)m(m)) (1 i< 4},
In the important special case
B X (8> 0)
(1.1 10 = oy @
Ingham’s theorem says: if
o
(1.12) £y 20 for o>1— 2

log?(|t] +2}
then ome has

4,(=)

{1.13) =0 (exp { — e, (logy=ri),

From the results of Korobov—Vinogradov we know that for § = §+e
the agsurnption (1.12) is true, and so we ged

A,
(1.14) '(,m)

=0 (exp [ — (loga)™=).

2. Concerning the theorem of Ingham in the special case (1.11)
one can ask whether finer analytic methods can lead to a hetter esbimato
for A{z) than that given by {1.13). In other words: iz it possible to
prove the comverse of the theorem of Ingham, i.e. te show that (1.13)
implies (1.12)? Amother equivalent formulation of the problem would
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be whether supposing that there are (perhaps infinitely many) zeros in the
domain given by (1.12), it is possible the estimation in (1.13) to hold
for A;{»).

In the affirmative case it would mean that the Qistribution of the
primes also has an “inflnence” on the zeros of £(s), ie. it wounld clarify
somewhat the connection between the distribution of primes and the
{-roots. Answering the other formulation of the question in the affirmative
would mean the satistactory fact, that our methods of deducing the remain-
der term of the prime number formula from zero-free regions are in some
sense optimal (i.e. at least in the special case (1.11) and apart from the
congtants).

For & long time the only possibility to prove the prime number
theorem and fo estimate the remainder term was through the zero-free
region of {(s). Considering Wiener’s theorem this sitmation was quite
understandable, as an elementary proof of the prime number theorem
is also an elementary proof for (1.1).

However, in 1948, the ingenious elementary methods of Erdés [6]
and Selberg [13] led to a proof of the prime number theorem. Later also
a remainder term of the form

() 1 ,

was proved with B ~~ 1/200 by van der Corput [4] in 1955, somewhut
later with B »s 1/10 by Kuhn [$]. In 1960 Breusch [2] proved this with
B =1[6, and in the same year Bombieri [1] with an arbitrary B. In
1970 Diamond and Steinig [5], using a refinement of a method of Wirsing
{16], proved the sharper estimate where they replaced the right side of
{2.1) by

0 (exp (— (legw)”’{loglogm)‘z)).

Now another interesting problem is whether the mentioned estimates
for the remainder ferm imply (larger and larger) zero-free regions of £(s).
The atfirmative answer would mean a new elementary method (even though
weaker than the older analytic ones) for finding zerc-free regions of £(s).

The arising questions were (partially) answered by Turédn [15] who
applying the powersum method proved in 1950 the converse of Ingham’s
theorem in the Important speclal case given by (1.11). His theorem sounds
as follows.

TEroREM (Turdn). If for a 8 with 0 < £ < 1 we have

4;(z)
@

{2.2) = 0 (exp{ — o5 (loga)*+7)) ,.
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then {{s) does ol vanish in the domwin

(2.3) [t 3 e (B

1 L
RN

A vpartial converse of Ingham’s theorem (see (1.6)-(1.10)) was’

proved by W. Stad [14] in 1961, using again Turin’s method:
ToeorEM (Stas). Lat 0<<e<1 be fived. Let n(3) b6 a continuous
decreasing funciion for t = 0 with the properties:

{2.4) <)<ty
3-103\7!
(2.5) n(t) < (é(l——a)log 1—5) , 1> eg(s).
If
2.6 2. G (logt)
(2.6) P 5
then
@.7) (- lilog == <1, )
Let us suppose that _
I A,(z)
(2.8) ™% < €108XP [ —H(1L —5) ()
where
(2.9) o () = min (5 (f)loga +logt).
i1

Then L{8) # O in the domain

I—e

T

(2,10} A7), > max (011: 812 (3))

This theorem already gives an answer to the second question, namely
that the elementary estimate (2.1) implies the non-vanishing of {(s) in
the region
cyplogt

(2.11) ~E

o>1— > 64

. 3. To prove an almost complete converse of Ingham’s theorem
it is necessary that Ingham’s theorem and also the converge be optimal.
However, a short reflection on the theorem tells us that this is not the
case. Namely, if the least upper bound of the real parts of the zeros is 8,
then one can take : : '

(3.1) () =1—8

icm
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and we geb
A (@) 1
(3.2} P O(mi(l-s)(l—ﬂ))'

Oun the other hand, it is well known (8ee e.g. Ingham [8], Theorem 30}
that (3.1} implies

(3.8) 4i(w) = O(z®+),
ie.

A, (@) 1
(3.4) s O(W),

Here the consequence (3.3) is optimal regarding the exponent as we
have by a theorem of B, Schmidt [12] for 6> 1

(8.5) Ai(@) = 2,37 (1<i<4),
and the same holds also by a theorem of Littlewood [10] for 6 = .
This suggests that Ingham’s theorem gives an error estimate which is
about the square root of the true error, i.e. one may conjecture that in
formula (1,10) the factor $(1—e) can be replaced by 1—e
Thig is really trne, namely we have the

TEroREM 1. Suppose that £(s) has no zero in the domain

(3.6) o>1-n(t) (O<n#<3

where n{l) is for 1= 0, a continuous deereasing function. Let 0 < g < 1
be fived; further, let

(3.7) (@) = min {n{t)logz+log).
=1

Then we have

1
(3.8) Ay(@) = O(W)
where
Aif) For i=3,4,
(3-9) Z1(m) = A,;(&‘?J o 1.9
afloge f LEhE

One can see that we do not make use of conditions (1.7)-(1.8) for
7 (1), and at the same time we get a better result than thatin (1.10). However
the proof is deeper. '
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4. For the proof of Theorem: 1 we first consider the case

limyt) & 4 0.

(+1) 00
Then we have
(4.2) n(t) < A+Aef3  for > t,(s)
and thus for o> @y(e) = (t,(¢)}** one gets
43)  ofn) < net®)loga +log (#4°")
< (A+ -%i)logw-i— %logm =4 (1 + %i) loge.

On the other hand, (4.1) says that the halfplane ¢ > 1 — 4. ig zero-free
and so, a8 already mentioned in {3.4), we have

.
(4.4) dym} = 0 (W)

and thus we get the assertion of the theorem using (4.3), becaunse

(4.5) (1— %) Aloga > (1—¢) (1+ %) Alogo > (1—e)w(x).

The case

(4.6) limy () = 0

i-s00

iz much deeper. Here we must use the density theorem of Carlson [37],
ie. the fact that for 0 < s < § the number of zeros with f=1—z, 0 <y <7

(4.7) N1 —s, T) < 0 T Nogt T < ¢(c) T,
further the “shortened” explicit prime number formula

e—1 2
dy(z) = — 2 mg +O(l°im).

ie? !

(4.8)

(See e.g. Ingham [8], Theorem 28.)

We note that it is enough to prove our theorem for i = 4; fori =2 it
follows from this by partisl summation, and from this it trivially follows
for the cases i =1, 3 (sinee w(z) = o(loga) < tloga).

Let & = Bs’. Then the contribution of the zeros with B<1—¢ i3

1 1 i
O logip-—-) = - = -
ofpes) 0(~) e
[} .

(49)
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owing to the well-known relation (see eg. Ingham (8], Theorem 25b)

11

410 — = O {log?
(4.10) %. or = 0(log*)

and since by (4.6)

(4.11)  o{z) < 9(@**)logw+loga™ « —;legm for 2> @y(e").

praj

Let
{4.12)

i [
uiflogﬁ, g(u)dﬁn(z), rd=ilogm;

_ further let u, = #o(r} denote the least numher % for which

F(w) = glu)r+u
is minimal for & given ». Thus

gluyr4u = g(ug)r +u, Lo @(r) = o).

{4.13)
Owing to (4.7), the total number of zeros in a domain of the type

(4.14) o>1~¢, Tle<t<T
s < ¢(¢')T*, and thus for the contribution of zeros with

{4.15) B>1—s, lpl<at

to the right side of (4.8) we get the npper hound (with the notations in
{4.12) and (4.13)):

(4.16) 0_( f Mdﬂ)

Pl -
3—a'u

2r P 2r o0
&
0 0 v

ol A\ o2
e Y IR P Cen)

which also proves the theorem in the case A — 0. }
‘Further we note that, by the density theorem of Halisz and Turin
[7] in ease 4 = 0, the number ¢ can be replaced by

a(@)\" (loge
G(Iagm) o (w(w))'

e—s"ti
—_————
et +u}(1~52) u)

i
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Finully, we note that in the case 4 = 0 we could allow even finitely
many zeros in fthe demain (3.6}, since for a small enough &' fthese zeros
are in the halfplane ¢ < 1--¢', and there we did not make use of oup
eondition (3.6).

I 4 > 0, and there are finitely many zeros within the demain (3.6}
bat these zeros are in the halfplane ¢ < 1 — 4, the statement of the theorem
and the proof obviously remains unchanged.

However, if 4 > 0, and there are finitely many zeros in the domain
(3.6) among them ab least ome zero in the halfplane ¢ 1A, then
1ot us denote by g, = ¢ ¥y, the zero in question with the maximal real
part. Then the statement of the theerem is already not true, but on
the contrary we have by Theorem 1 or Theoremn 2 of [11] (for the second
theorem see Section b)

1
g

whereag obviously for & small enough e
L—rc)o(n) >

3. Now it is possible already to prove an aimost complete converse
of Theorem 1 applying Theorem 2 of part I [11], which sounds:

THEOREM 2. Lot 0 << e 1/80 and let us assume the existence of &
0y = fo-Fiy, zero of £(8) with

Bo =14+ 8> 3+e

(4.17) di{m) =

(4.18) (1—e)Adloga > (1 —fogw.

and _
{(5.1) Vo > expexp(10v/&).

Then,y for 1 <1< 4, for svory H solisfying

(5.2) HH > max (y,, o,

‘w6 have in the interval

(8.3) I =[H, ']

an ©; and x €I for which

(6.4) Aylwy) > Wa a,(a) < ‘_W
hold.

~Using this theorem, we can show that if 2 domain (3.6) contains an
infinity of zeros, then (3.8) cannot hold if we replace 1—& by 1-+e;
even 4,(#) has large positive and negative values, which hurt (3.8).

icm
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However here we must have somewhat stronger restrictions for the
corresponding function #(%).

6. 8o we can sate
THEOREM 2. Suppose that {(s) has an infinity of zeros in the domain.

(6.1) o=1-—gloglt), 0<gu)<i
where g(u) 48 for w22 0 a continuous decreasing function,
(6.2) guw)y ~ 0 for o oo

(by which we now mean that g'(u) tends to O monotonically increasing for
> ¢ and if img(u) = 0 then g'(u) fends fo 0 siricily monotfonically in-

U—oQ
ereasing for = e).
Let ¢ be a fized real number with O < & <1, Further, lol

(6.3) w(@) = min (g(u)logm+u).
U0

Then 'we have

1
(6.4) dg(m) = 2, (W)

Firgt we remark that the relatively natnral eonditions for g(u) are
satistied in the most interesting special case where

logPu(loglogu)®

g{u) for  w> u, = u(d, B, 0)

and

g(u} = gluy) for G<Ku<yy,

where A > 0, B, € are arbitrary or 4 = 0, B < 0, { is arbitrary, or .A B
= and ¢ < 0.

This theorem gives that the elementary estimate (2.1) for the remainder
term implies the zero-free region

which is better than that given in (2.11).
For the proof we ghall consider first the case

limgf{u) = 0.

YU-r00
We shall use the notations {4.12), (4.13). Let r > ¢’ = ¢'(g). Then for
4% << e (given in (6.2))

gluyr+uz gloyr > g(¥r)r Ve (= o(n);
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thus f(u) = g(u)r+u takes his minimal value for « > e f.(%) cannot
take its minimal value at two places, becaunse by (6.2) there ix at most
one # > ¢ for which

df,. (u) o _ . 1
i h_g(u)r—}-l-—()@-r—-—m,

{6.5)

Thus (6.5) has a unique solution % = u,(r), and 80 by (6.2) to any « = ¢’
= ¢"(g) there is an # = ¥(u) given by the mecond eguality of (6.6} for
which % = wy(r) (for the definition see (4.12) and (4.13)).

Further for %> dr (@ any given positive constant) we have

{6.6) glw)r+uzdr > g(Vryr+Vr (= o(r);
thus we get
(6.7 %o(r) = o(r},
i.e.
{6.8) tim )
wsroo W

Now let us consider a number v’ with g{u') < 1. Further let
O = BpFiy, = Byt ie'n (B> %90 > 0)
be the nth zero in (6.1) satistying u, > ' ordered according te the incre-
asing u,-values.
Now we apply Theorem 2, Let us choose s small enough (e << - g{u')).

Then for n> n4(s), (5.1), 8, > -+ and using {6.8), inequality (5.2) is
satisfied with the choice

(6.10)

(6.9)

H, — ¢tun),
Thus we got the existence of an @) e [H,, H; 1, le. an =, with

{6.11)
for which, by (5.4},

{w,) < loga; < (1 +8)F(u,)

1 1
{6.12} Ay > — T .
) (wi) Yo 6(1‘_1531,)]08%{+(1+!}15n
1 . 1
. O} (2 +e)tatn) + (1 ey, R 3T

1
RO

a8, by definition (6.3), w(2) is trivially an increasing function of .

The inequality in the other direction can be proved mufatis mutandis.

icm
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In the ease imyg(#) = 4 > 0 we have 0 > 1—4 and so we get from

U—rQ

(3.5)
1 1 1
(6.13) 4i() = 2, (;W—W) =2, (gm) =Ly (;«m)’

because w{r) = ¢4, loge 41, = g(uy)loge = Alogs.

So the proof of Theorem 2 is completed,

Thus by Theorem 1 (with the remarks at the end of Section 4 con-
cerning the case of finitely many zeros in (3.6)) and Theorem 2, if we give
a domain of the type (6.1) (with a fuonetion g(%) having the propertiss
described in Thecrem 2) then the behaviour of the remainder terms is clear
in the following cases

(a) the domain is zero-free,

(b) it contains finitely many zeros,

(e) it contains infinitely many zeros.

7. Finally we ean formulate an inferesting corollary of Theorems 1
and 2. To state the corollary in a trangparent form we introduee the
following

DermrrioN. Let ¢ be the class of the real functions wix) {(z=1)
for which there exists a continuons decreasing function g(u) (u = 0) with
0 < glu)< § and with g'(u) » 0 as % — oo (see (6.2)) satisfying
{7.1) w{z) = min{g{u)logs {-u).

=211

2

With the above definition and with the notation (3.8) we have the

UOROLLARY. Let ¢ < ¢ << 1 be fiwed; w(w) e C. Ifthereisand (1 <4< 4)
for which .

1
{7.2) 4;(@) = 9(",;?—"—“}"77)?

then for all § (L <Jj<4) we have

Ai(o) = 2 (

1
{7.3) W)

The corollary states that various forms of the remainder term have
about the same oscillation.

But even more remarkable is the phenomenon eoncerning the distri-
bution of primes, asserted by the corcllary, namely the fact that the
remainder term is somewhat “symunetrical”: if i5 assumes large positive
values, then it must assume negative values with an absolute value about
the same order of magnitude,

It is interesting to note that the corollary is an assertion coneerning
exclusively prirmesy £-zeros ococour only in the proof. Therefore it would
be very interesting (but it seems to be nearly hopeless) to prove if directly,
avoiding the theory of the { funmction.
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Statistical Deuring-Heilbronn phenomenen
by

Marrr Jurma (Turku)

To the memory of Paul Turdn

1. Introduction. Let x, be a real primitive character (mod %), and
let f; = 1— 6 be a real zero of the Dirichlet T-function Li{s) = L(s’ 21
Suppose that 8, is “exceptional” in the sense that § <1 flog k. Accor’dh;g:
to a theorem of Linnik [3], the existence of an exceptional zere has a
certain effect —called by Linnik the Deuring-Heilbronn phenomenon —Tpon
the distribution of the zerog of I-functions. More exactly, there exigt
caleulable constants ¢, > 0, ¢, > 0 such that if p = f+ép is & zero of
L(s, z) (mod g) and if Slog(ghr) <e,, where 7 == max(2, |y)), then (if
the case y = x1, 0 = B, is excluded)

.6

1.1 <l—olog{l ———
(1) A 0208 (Mog(qkr)

) flog{gkr).
Linnik’s proof of this estimate was very complicated. A mueh simpler
proof, depending on Turin’s power sum method, was given by Kna-
powski [2], Recenily Motohashi [7] and the author [1] bave found new
proofs of (1.1) on the hasis of an ides of A. Selberg.

Our purpose in this paper is to investigate the Deuring—Heilbronn
phenomenon from & statistical point of view, considering the distribution
of zeros of many L-functions Lobh in the horizontal and in the vertical
direction.

Define

o{s, x) = L(s, 1) L(s, xx.);
then for o> 1

o0
(1.2) (s, 1) = 3wy (m)n e,
where "
(1.3) a = ¥ (d).



