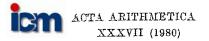
References

- [1] E. Bombieri, Sulle formule di A. Selberg generalizzate per classi di funzioni aritmetiche e le applicazioni al problema del resto nel "Primzahlsatz", Riv. Mat. Univ. Parma 3 (1962), pp. 393-440.
- [2] R. Breusch, An elementary proof of the prime number theorem with remainder term, Pacific J. Math. 10 (1960), pp. 487-497.
- [3] F. Carslon, Über die Nulstellen der Dirichletschen Reihen und der Riemannschen . Funktion, Arkiv f. Mat., Astr. och Fys. 15, Nr. 20 (1920).
- [4] J. G. van der Corput, Sur le reste dans la démonstration élémentaire du théorème des nombres premiers, Colloque sur la Théorie des Nombres, Bruxelles (1955), pp. 163-182.
- [5] H. Diamond and J. Steinig, An elementary proof of the prime number theorem with a remainder term, Invent. Math. 11 (1970), pp. 199-258.
- [6] P. Erdös, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Sci. USA 35 (1949), pp. 374-384.
- [7] G. Halász and P. Turán, On the distribution of roots of Riemann zeta and allied functions, I, Journ. Number Theory 1 (1969), pp. 121-137.
- [8] A. E. Ingham, The distribution of prime numbers, Cambridge University Press, 1932.
- [9] P. Kuhn, Eine Verbesserung des Restglieds beim elementaren Beweis des Primzahlsatzes, Math. Scand. 3 (1955), pp. 75-99.
- [10] J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris 158 (1914), pp. 1869-1872.
- [11] J. Pintz, On the remainder term of the prime number formula I. On a problem of Littlewood, Acta Arith. 36 (1980), pp. 341-365.
- [12] E. Schmidt, Über die Anzahl der Primzahlen unter gegebener Grenze, Math. Ann. 57 (1903), pp. 195-204.
- [13] A. Selberg, An elementary proof of the prime number theorem, Ann. of Math. 50 (1949), pp. 305-313.
- [14] W. Staś, Über die Umkehrung eines Satzes von Ingham, Acta Arith. 6 (1961), pp. 435-446.
- [15] P. Turán, On the remainder-term of the prime-number formula, II, Acta Math. Acad. Sci. Hungar. 1 (1950), pp. 155-166.
- [16] E. Wirsing, Elementare Beweise des Primzahlsatzes mit Restglied II, J. Reine Angew. Math. 214/215 (1964), pp. 1-18.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF ALGEBRA AND NUMBER THEORY Budapest, Hungary

Received on 7. 9. 1977 (982).



Statistical Deuring-Heilbronn phenomenon

by

MATTI JUTILA (Turku)

To the memory of Paul Turán

1. Introduction. Let χ_1 be a real primitive character (mod k), and let $\beta_1 = 1 - \delta$ be a real zero of the Dirichlet L-function $L(s) = L(s, \chi_1)$. Suppose that β_1 is "exceptional" in the sense that $\delta \leqslant 1/\log k$. According to a theorem of Linnik [3], the existence of an exceptional zero has a certain effect—called by Linnik the Deuring-Heilbronn phenomenon—upon the distribution of the zeros of L-functions. More exactly, there exist calculable constants $c_1 > 0$, $c_2 > 0$ such that if $\varrho = \beta + i\gamma$ is a zero of $L(s,\chi)$ (mod ϱ) and if $\delta \log(\varrho k\tau) \leqslant c_1$, where $\tau = \max(2,|\gamma|)$, then (if the case $\chi = \chi_1$, $\varrho = \beta_1$ is excluded)

$$\beta \leqslant 1 - c_2 \log \left(\frac{c_1 e}{\delta \log(qk\tau)} \right) / \log(qk\tau).$$

Linnik's proof of this estimate was very complicated. A much simpler proof, depending on Turán's power sum method, was given by Knapowski [2]. Recently Motohashi [7] and the author [1] have found new proofs of (1.1) on the basis of an idea of A. Selberg.

Our purpose in this paper is to investigate the Deuring-Heilbronn phenomenon from a statistical point of view, considering the distribution of zeros of many *L*-functions both in the horizontal and in the vertical direction.

Define

$$\varphi(s,\chi) = L(s,\chi)L(s,\chi\chi_1);$$

then for $\sigma > 1$

(1.2)
$$\varphi(s,\chi) = \sum_{n=1}^{\infty} a_n \chi(n) n^{-s},$$

where

$$a_n = \sum_{d|n} \chi_1(d).$$

Denote by K(Q) the set of all primitive characters χ such that $\chi\chi_1$ is also primitive and the conductor of χ lies in the interval [Q, 2Q].

Theorem. There exist positive calculable constants a, b and c such that if k exceeds a certain calculable bound, then for

$$(1.4) k^{\log \log k} \leqslant Q \leqslant \exp\left(\delta^{-a}\right)$$

(we suppose that

$$(1.5) \delta \leqslant (\log k \log \log k)^{-1/a}$$

in order that the interval (1.4) be non-empty) all functions $\varphi(s, \chi)$ with $\chi \in K(Q)$ except possibly $Q^2 \delta^b$ functions at most, satisfy the following conditions:

- (i) If $\varrho = \beta + i\gamma$ is a (non-trivial) zero of $\varphi(s, \chi)$ with $|\gamma| \leqslant \delta^{-c}$, then ϱ is simple and $\beta = \frac{1}{2}$.
- (ii) If $\varrho_j = \frac{1}{2} + i\gamma_j$ are two distinct zeros of $\varphi(s, \chi)$ with $|\gamma_j| \leq \delta^{-c}$, j = 1, 2, then

$$\gamma_1 - \gamma_2 = \frac{2\pi m}{\log(Q^2 k)} \left(1 + O\left(\frac{\log k}{\log Q}\right) \right),$$

where m is a non-zero integer.

The assumption that $\chi\chi_1$ be primitive for $\chi \in K(Q)$ was made merely in order to simplify the proof; the theorem holds also if we assume just the primitivity of the character χ itself.

A perhaps interesting feature of the theorem is that already the relatively weak inequality (1.5) for δ implies very restrictive conditions on the zeros of a large number of L-functions. The equation (1.6) says that the ordinates of the zeros of $\varphi(s,\chi)$ lie approximately in an arithmetic progression, and recalling the Riemann-von Mangoldt formula we see that the distance between two adjacent zeros of $\varphi(s,\chi)$ in the strip $|t| \leq \delta^{-\sigma}$ is almost always approximately $2\pi/\log(Q^2k)$. This well-distribution of the zeros has arithmetic consequences which might be tested against our existing knowledge. Another possibility, which has also been pointed out by Montgomery and Weinberger (see [5], [6]), is to examine the statistics of the differences of the zeros of L-functions, hoping to find a contradiction with (1.6).

In the proof of the theorem we use techniques that are familiar from zero-density problems. For instance, mean value estimates for Dirichlet polynomials and the functional equation of L-functions play important roles in our argument. The key result is the approximate functional equation for $\varphi(s,\chi)$, which we derive in Lemmas 4 and 5.

2. Preliminary lemmas. The first lemma is the hybrid large sieve inequality (see [4], Theorem 7.5).

Lemma 1. Let for each primitive character χ of modulus $\leqslant Q$ a set of points

$$s_j(\chi) = \sigma_j(\chi) + it_j(\chi), \quad j = 1, \ldots, r_{\chi}$$

with

icm

$$\sigma_j(\chi) \geqslant \alpha, \quad |t_j(\chi)| \leqslant T - \Delta/2,$$

$$|t_j(\chi) - t_k(\chi)| \geqslant \Delta \quad \text{for} \quad j \neq k$$

be given. Let a(n), n = 1, ..., N, be any complex numbers.

Then

$$\begin{split} \sum_{q \leqslant Q} \sum_{\chi \bmod q}^* \sum_{j=1}^{r_\chi} \Big| \sum_{n=1}^N a(n) \chi(n) n^{-s_j(\chi)} \Big|^2 \\ & \leqslant (Q^2 T + N) (\Delta^{-1} + \log N) \log \log (3N) \sum_{n=1}^N |a(n)|^2 n^{-2\alpha} \end{split}$$

where \sum^* denotes a sum over primitive characters.

For the next lemma, let λ be a constant such that

$$(2.1) L(\frac{1}{2}+it) \leqslant k^{\lambda}\tau,$$

where $\tau = \max(2, |t|)$. By a deep theorem of Burgess, we could choose $\lambda = 3/16 + \varepsilon$ for any $\varepsilon > 0$. Actually we need much less, say that $\lambda < 1/3$. The numbers a_n in the following lemma were defined in (1.3).

LEMMA 2. For $x \ge k^{2\lambda}$, $y \ge 2x$, we have

(2.2)
$$\sum_{x \leqslant n \leqslant y} a_n^2 n^{-1} \leqslant \left(L(1) \log (y/x) + x^{-1/2} k^4 \right)^{1/2} \log^4 y,$$

and for $x \ge 2$

(2.3)
$$\sum_{n \leqslant x} a_n^2 n^{-1/2} \leqslant x^{1/2} \left(L(1) + x^{-1/2} k^{\lambda} \right)^{1/2} \log^4 x.$$

Proof. We have

$$\begin{split} \sum_{x \leqslant n \leqslant y} a_n n^{-1} & \leqslant \sum_{n=1}^{\infty} a_n n^{-1} (e^{-n/y} - e^{-n/x}) \\ & = \frac{1}{2\pi i} \int\limits_{(1)} \zeta(s+1) L(s+1) (y^s - x_0^s) \Gamma(s) ds \\ & = L(1) \log(y/x) + \frac{1}{2\pi i} \int\limits_{(-1)} (\ldots). \end{split}$$

Estimating the last contour integral by (2.1), we get

(2.4)
$$\sum_{x \le n \le y} a_n n^{-1} \ll L(1) \log(y/x) + x^{-1/2} k^{\lambda}.$$

Let M > 1. Since $0 \le a_n \le \tau(n)$, the contribution to (2.2) of the numbers n such that $\tau(n) \le M$ is by (2.4)

$$\leq M(L(1)\log(y/x) + x^{-1/2}k^{\lambda}).$$

On the other hand, the numbers for which $\tau(n) > M$ contribute at most

$$M^{-1} \sum_{x \leqslant n \leqslant y} \tau^{3}(n) n^{-1} \ll M^{-1} \log^{8} y,$$

where we used the estimate

$$(2.5) \qquad \sum_{n \leq x} \tau^h(n) \ll_h x (\log x)^{2^h - 1}.$$

Choosing M optimally, we get (2.2). The proof of (2.3) is similar. Define

(2.6)
$$b_n = \sum_{d|n} \mu(d) \, \mu(n/d) \, \chi_1(d),$$

where $\mu(n)$ is the Möbius function. For $\sigma > 1$ we have

$$\frac{1}{\varphi(s,\chi)} = \sum_{n=1}^{\infty} b_n \chi(n) n^{-s}.$$

Define further

(2.7)
$$F(s,\chi) = \sum_{n=1}^{k} a_n \chi(n) n^{-s},$$

(2.8)
$$M(s,\chi) = \sum_{n=1}^{k} b_n \chi(n) n^{-s},$$

(2.9)
$$H(s,\chi) = M(s,\chi)F(s,\chi) = \sum_{n=1}^{k^2} d_n \chi(n) n^{-s};$$

here $d_1 = 1$, $d_n = 0$ for n = 2, ..., k, and for $n = k+1, ..., k^2$

$$(2.10) d_n = \sum_{\substack{d \mid n \\ n/k \leqslant d \leqslant k}} a_{n/d} b_d = - \sum_{\substack{d \mid n \\ \max(d, n/d) > k}} a_{n/d} b_d.$$

LEMMA 3. We have $b_n = 0$ unless $n = n_1^2 n_2$, where $(n_1, n_2) = 1$, $|\mu(n_1)| = |\mu(n_2)| = 1$, in which case

$$(2.11) b_n = \chi_1(n_1) \mu(n_2) a_{n_2}.$$

Further,

(2.12)
$$\sum_{n=k+1}^{k^2} d_n^2 n^{-1} \ll (L(1)\log k + k^{\lambda - 1/2})^{1/4} \log^{42} k.$$

Proof. The first assertions follow easily from (2.6). For the proof of (2.12) we use the second part of (2.10), which gives

$$|d_n| \leqslant \sum_{\substack{d \mid n \\ d > k}} a_{n/d} |b_d| + \sum_{\substack{d \mid n \\ d > k}} a_d |b_{n/d}| \, = \, e_n + f_n \, ,$$

say. Since $e_n \leqslant \tau^2(n)$, we have

$$e_n^2 \leqslant \tau^3(n) \sum_{\substack{d \mid n \\ d > k}} |b_d|.$$

Hence by (2.5) and Schwarz's inequality

$$(2.14) \sum_{n=k+1}^{k^2} e_n^2 n^{-1} \leq \sum_{d=k+1}^{k^2} |b_d| d^{-1} \sum_{m \leq k^2/d} \tau^3(dm) m^{-1}$$

$$\leq \log^8 k \sum_{d=k+1}^{k^2} |b_d| \tau^3(d) d^{-1}$$

$$\leq \log^{40} k \left(\sum_{d=k+1}^{k^2} |b_d|^2 d^{-1} \right)^{1/2}.$$

Here only the numbers $d = d_1^2 d_2$ with $(d_1, d_2) = 1$ contribute something, and by (2.11) $|b_d| \leq a_{d_2}$. Hence by Lemma 2 the last d-sum in (2.14) is

$$\begin{split} &\leqslant \sum_{k < d_1^2 d_2 \leqslant k^2} a_{d_2}^2 (d_1^2 d_2)^{-1} \\ &\leqslant \sum_{d_2 = 1}^k a_{d_2}^2 d_2^{-1} (k d_2^{-1})^{-1/2} + \sum_{d_2 = k+1}^{k^2} a_{d_2}^2 d_2^{-1} \\ &\leqslant (L(1) \log k + k^{\lambda - 1/2})^{1/2} \log^4 k \,. \end{split}$$

Together with (2.14), this implies that

$$\sum_{n=k+1}^{k^2} e_n^2 n^{-1} \ll (L(1)\log k + k^{\lambda-1/2})^{1/4} \log^{42} k.$$

The same estimate is obtained (in a simpler way) for the sum where f_n stands instead of e_n . Hence (2.12) follows by (2.13).

^{15 -} Acta Arithmetica XXXVII

3. Formulas for $\varphi(s,\chi)$. The functional equation of L-functions implies a functional equation for $\varphi(s,\chi)$ if both χ and $\chi\chi_1$ are primitive:

$$\varphi(s,\chi)=\psi(s,\chi)\varphi(1-s,\overline{\chi}),$$

where

(3.1)
$$\psi(s,\chi) = \left(\frac{\pi^2}{kq^2}\right)^{s-1/2} \frac{\Gamma(\frac{1}{2}(1-s+a'))\Gamma(\frac{1}{2}(1-s+a''))}{\Gamma(\frac{1}{2}(s+a'))\Gamma(\frac{1}{2}(s+a''))} \varepsilon(\chi),$$

 $|\varepsilon(\chi)| = 1$, and a', a'' = 0 or 1.

In the next lemma the function $\varphi(s,\chi)$ is expressed by a formula which plays the role of the approximate functional equation; the underlying idea is due to Ramachandra [8].

LEMMA 4. If χ and $\chi\chi_1$ are primitive non-principal characters and $Y \geqslant 1$, then we have for $0 < \sigma \leqslant 3/4$

$$(3.2) \ \varphi(s, \chi) = \sum_{n=1}^{\infty} a_n \chi(n) e^{-n/Y} n^{-s} + \psi(s, \chi) F(1-s, \overline{\chi}) + I_1(s, \chi) + I_2(s, \chi),$$

where

$$(3.3) I_1(s,\chi) = -\frac{1}{2\pi i} \int_{(-\sigma)} \psi(s+w,\chi) \left(\sum_{n>k} a_n \overline{\chi}(n) n^{s+w-1} \right) Y^w \Gamma(w) dw,$$

(3.4)
$$I_{2}(s,\chi) = -\frac{1}{2\pi i} \int_{(4/5-\sigma)} \psi(s+w,\chi) F(1-s-w,\overline{\chi}) Y^{w} \Gamma(w) dw.$$

Proof. Applying a Mellin transform in the Dirichlet series (1.2), we get

$$\sum_{n=1}^{\infty} a_n \chi(n) e^{-n/Y} n^{-s} = \frac{1}{2\pi i} \int_{(2)} \varphi(s+w, \chi) Y^w \Gamma(w) dw.$$

Here we move the integration to the line $\text{Re}w = -\sigma$ (the pole of the integrand at w = 0 gives the residue $\varphi(s, \chi)$), use the functional equation, cut the Dirichlet series of $\varphi(1-s-w, \overline{\chi})$ into two parts, corresponding to $n \leq k$ and n > k, and finally move the integral involving the sum $F(1-s-w, \overline{\chi})$ to the line $\text{Re}w = 4/5-\sigma$ (the pole w = 0 gives this time the residue $\psi(s, \chi)F(1-s, \overline{\chi})$).

In order to simplify the formulations of the next few lemmas, let us introduce two conventions. The phrase "almost all $\chi \in K(Q)$ " means: all $\chi \in K(Q)$, save at most $\leqslant Q^2 \delta^b$ characters, where b>0 is a constant. Also, we do not repeat the assumption that the numbers a, b and c be sufficiently small, but the assertions should be understood in this sense.

We fix

$$(3.5) Y = Q^2,$$

and derive a more practical version of (3.2).

LEMMA 5. Throughout the rectangle

(3.6)
$$\frac{1}{2} - \log \log Q / \log Q \leqslant \sigma \leqslant 3/4, \quad |t| \leqslant \delta^{-\sigma}$$

we have, for almost all $\chi \in K(Q)$,

(3.7)
$$\varphi(s,\chi) = F(s,\chi) + \psi(s,\chi)F(1-s,\overline{\chi}) + E(s,\chi)$$

with

$$(3.8) E(s,\chi) \ll \delta^{\eta}/\log Q,$$

where $\eta > 0$ is a numerical constant.

Proof. By (3.2) and (3.7)

$$E(s,\chi) = \sum_{n=1}^{k} a_n \chi(n) (e^{-n/Y} - 1) n^{-s} + \sum_{n>k} a_n \chi(n) e^{-n/Y} n^{-s} + I_1(s,\chi) + I_2(s,\chi).$$

By (3.5) the first sum on the right is trivially $\leq Q^{-1}$, say.

The series above can be cut at $2Y \log Y$ with a negligible error. Consider now the truncated sum. If for each $\chi \in K(Q)$ a point s_{χ} in the rectangle (3.6) is given, then by Lemmas 1 and 2 (taking $\lambda = 1/4$) we have

$$\begin{split} \sum_{\chi \in K(Q)} \Big| \sum_{k < n \leq 2 Y \log Y} a_n \chi(n) \, e^{-n/Y} n^{-s_\chi} \Big|^2 \\ & \leq Q^2 (\delta^{-c} + \log Q) \log^5 Q \log \log Q \sum_n^{c = \infty} a_n^2 n^{-1} \\ & \leq Q^2 (\delta^{-c} + \log Q) \log^{10} Q \, (L(1) \log Q + k^{-1/4})^{1/2}. \end{split}$$

Since $k^{-1/4} \ll \delta^{1/2}$ and $L(1) \ll \delta \log^2 k$, the last expression is $\ll Q^2 \delta^{b+2a+2\eta}$, where $\eta > 0$ is a numerical constant (if a, b and c are sufficiently small). This proves that the modulus of the sum under consideration can exceed $\delta^{\eta}/\log Q$ in the rectangle (3.6) for at most $\ll Q^2 \delta^b$ characters in K(Q).

In a similar way we estimate the sums

$$S_j = \sum_{\chi \in K(Q)} |I_j(s_\chi, \chi)|, \quad j = 1, 2.$$

We will make use of the known estimate

$$(3.9) (q^2k\tau^2)^{1/2-\sigma} \leqslant |\psi(s,\chi)| \leqslant (q^2k\tau^2)^{1/2-\sigma}, -1/2 \leqslant \sigma \leqslant 3/4,$$

which follows from (3.1) in view of the estimate

$$(3.10) \quad \exp\left(-\frac{\pi}{2}|t|\right)\tau^{\sigma-1/2} \ll |\Gamma(s)| \ll \exp\left(-\frac{\pi}{2}|t|\right)\tau^{\sigma-1/2}, \quad 1/4 \leqslant \sigma \leqslant 2.$$

Let us consider the sum S_1 first. By the Pólya–Vinogradov character sum estimate it is easily seen that for $\chi \in K(Q)$

$$\sum_{n\leqslant x}a_n\chi(n)\ \leqslant\ x^{1/2}(Qk)^{1/2}{\rm log}\,Q\,,$$

so that by partial summation for $\sigma = 1$

$$\sum_{n>Q^2} a_n \chi(n) \, n^{-s} \, \ll \, |s| \, k^{1/2} Q^{-1/2} {\rm log} \, Q \, .$$

This shows that we may cut the series in the integrand of $I_1(s_{\chi}, \chi)$ at Q^2 with a negligible error. Further, by Lemmas 1 and 2, for $\text{Re } w = -\text{Re } s_{\chi}$

$$\begin{split} \sum_{\chi \in \overline{K}(Q)} \Big| \sum_{k < n \leqslant Q^2} a_n \overline{\chi}(n) \, n^{s_\chi + w - 1} \Big|^2 & \ll Q^2 \, \delta^{-c} \! \log Q \! \log \log Q \, \sum_n a_n^2 n^{-2} \\ & \ll Q^2 \, \delta^{-c} k^{-1} \big(L(1) + k^{-1/4} \big)^{1/2} \! \log Q \! \log^5 \! k. \end{split}$$

Using also (3.5), (3.9) and (3.10), we get for S_1 an estimate showing that for almost all χ we have $|I_1(s,\chi)| \leq \delta^{\eta}/\log Q$ in the rectangle (3.6).

The sum S_2 can be estimated similarly. So the proof of Lemma 5 is complete.

For the next lemma, define

(3.11)
$$G(s,\chi) = M(s,\chi)F(1-s,\overline{\chi}).$$

LEMMA 6. For almost all $\chi \in K(Q)$ the following estimates hold: for $0 \le \sigma \le 1$, $|t| \le 2\delta^{-c}$

(3.12)
$$G(s, \chi) \leq (k \log^3 k)^{2|\sigma-1/2|};$$

for $|\sigma - \frac{1}{2}| \leq A \lceil \log Q, |t| \leq \delta^{-c}$ (where A > 0 is any fixed number)

$$(3.13) 1/2 \le |G(s, \chi)| \le 3/2,$$

$$(3.14) G'(s, \chi) \leq \log k,$$

$$(3.15) H'(s,\chi) \leqslant 1,$$

$$(3.16) \frac{d}{ds} \Big\{ M(s, \chi) E(s, \chi) \Big\} \ll 1,$$

and for $1/2 \leqslant \sigma \leqslant 3/4$, $|t| \leqslant \delta^{-c}$

$$(3.17) |H(s,\chi)| \geqslant 2/3,$$

$$(3.18) M(s,\chi)E(s,\chi) \ll 1/\log Q.$$

Proof. The estimates (3.15) and (3.17) follow from (2.9) by Lemmas 1 and 3. Next note that for $\sigma = \frac{1}{2}$ the functions $G(s, \chi)$ and $H(s, \chi)$ have the same modulus, so that as above we have for almost all χ

(3.19)
$$3/4 \leq |G(\frac{1}{2} + it, \chi)| \leq 5/4$$
 for $|t| \leq 3\delta^{-c}$.

In view of the trivial estimate

$$G(s, \chi) \leqslant k \log^3 k$$
 for $\sigma = 0$ or 1

we thus get (3.12) by convexity. Now (3.14) follows from (3.12) by Cauchy's formula, and (3.14) together with (3.19) implies (3.13).

Finally, since we may assume that

$$M(s,\chi) \ll \delta^{-\eta}$$
 for $\sigma \geqslant \frac{1}{2} - \log \log Q / \log Q$, $|t| \leqslant 2\delta^{-c}$,

we get (3.16) and (3.18) by (3.8) and Cauchy's formula.

4. Horizontal distribution of the zeros. It is convenient to establish the following preliminary assertion first.

LEMMA 7. There exists a constant A > 0 such that for almost all $\chi \in K(Q)$ the function $\varphi(s, \chi)$ has no zero in the region

(4.1)
$$\sigma \geqslant \frac{1}{2} + A / \log Q, \quad |t| \leqslant \delta^{-c}.$$

Proof. By known zero-density estimates we may omit the characters such that $\varphi(s,\chi)$ has a zero in the region $\sigma > 3/4$, $|t| \leq \delta^{-c}$. Let $\varrho = \beta + i\gamma$ be a zero of $\varphi(s,\chi)$ in the region (4.1). Multiply both sides of the equation (3.7) by $M(s,\chi)$ and put $s=\varrho$. By (2.9) and (3.11) the resulting equation is

$$(4.2) 0 = H(\varrho, \chi) + G(\varrho, \chi) \psi(\varrho, \chi) + M(\varrho, \chi) E(\varrho, \chi).$$

By (3.17), (3.18) and (3.9) this implies that

$$|G(\varrho,\chi)| \gg |\psi(\varrho,\chi)|^{-1} \gg Q^{2\beta-1},$$

which is impossible for almost all $\chi \in K(Q)$ by (3.12) and (1.4) if A is sufficiently large.

We are now in a position to prove the main result of this section. Lemma 8. For almost all $\chi \in K(Q)$ the function $\varphi(s,\chi)$ has no zero in the region

$$(4.3) \sigma > \frac{1}{2}, |t| \leqslant \delta^{-c}.$$

Proof. Let $\varrho = \beta + i\gamma$ be a zero of $\varphi(s, \chi)$ in the region (4.3). Then also $1 - \bar{\varrho} = 1 - \beta + i\gamma$ is a zero of $\varphi(s, \chi)$. By Lemma 7 we may assume that $\beta - \frac{1}{2} \leq A / \log Q$. We apply (4.2) to ϱ and $1 - \bar{\varrho}$, and subtract one equation from the other. By (3.15), (3.16) and (3.14)

$$H(\varrho, \chi) - H(1 - \overline{\varrho}, \chi) \leqslant 2\beta - 1,$$

$$M(\varrho,\chi)E(\varrho,\chi)-M(1-\overline{\varrho},\chi)E(1-\overline{\varrho},\chi) \ll 2\beta-1,$$

$$G(\varrho, \chi) - G(1 - \overline{\varrho}, \chi) \leqslant (2\beta - 1) \log k,$$

whereas by (3.1)

$$|\psi(\varrho,\chi)-\psi(1-\overline{\varrho},\chi)| \gg (2\beta-1)\log Q$$
.

Hence, noting also (3.13), we get the inequality

$$2\beta-1$$

$$\gg |\psi(\varrho,\chi)G(\varrho,\chi)-\psi(1-\bar{\varrho},\chi)G(1-\bar{\varrho},\chi)|$$

$$\geqslant |\psi(\varrho,\chi)-\psi(1-\bar{\varrho},\chi)|\,|G(1-\bar{\varrho},\chi)|-|\psi(\varrho,\chi)|\,|G(\varrho,\chi)-G(1-\bar{\varrho},\chi)|$$

$$\gg (2\beta-1)(\log Q + O(\log k)),$$

a contradiction.

5. Vertical distribution of the zeros. Let $\varrho_j = \frac{1}{2} + i\gamma_j$, j = 1, 2, with $|\gamma_j| \leq \delta^{-c}$ be two zeros of $\varphi(s, \chi)$. We may suppose that $|\gamma_1 - \gamma_2| \leq 1$, for otherwise the assertion (1.6) to be proved is trivial.

Again we use the equation (4.2), and get after a rearrangement

(5.1)
$$G(\varrho_j, \chi)\psi(\varrho_j, \chi) = -H(\varrho_j, \chi) - M(\varrho_j, \chi)E(\varrho_j, \chi), \quad j = 1, 2.$$

Consider the change of the argument of both sides of this equation when ϱ_1 is replaced by ϱ_2 . The change of $\operatorname{Arg} \psi(s, \chi)$ is easy to estimate.

LEMMA 9. For $\chi \in K(Q)$ and $|t_1 - t_2| \leq 1$, $|t_j| \leq T$ (≥ 2), we have

$$\operatorname{Arg} \psi(\frac{1}{2} + it_1, \chi) - \operatorname{Arg} \psi(\frac{1}{2} + it_2, \chi) \equiv (t_2 - t_1) \left(\log(Q^2 k) + O(\log T) \right) \pmod{2\pi}.$$

Proof. This follows immediately from (3.1) and the formula

$$\frac{I''}{I'}(s) = \log s + O(|s|^{-1}),$$

valid in the angle $-\pi + \varepsilon < \operatorname{Arg} s < \pi - \varepsilon$ for any fixed $\varepsilon > 0$.

Returning to the equation (5.1), we see by Lemma 9 and (3.13), (3.14) that the argument change on the left hand side is

(5.2)
$$(\gamma_2 - \gamma_1) (\log(Q^2 k) + O(\log k)) \pmod{2\pi}.$$

The argument change on the right hand side can be estimated by considering the integral of the modulus of the derivative; by (3.15) and (3.16) the result is $\langle |\gamma_2 - \gamma_1|$. Comparing this with (5.2), we get

$$(\gamma_2 - \gamma_1) (\log(Q^2 k) + O(\log k)) = 2\pi m + O(|\gamma_2 - \gamma_1|),$$

where m is an integer (clearly $m \neq 0$). This proves (1.6).

Finally consider the multiplicity of the zeros of $\varphi(s, \chi)$. If the zero $\varrho = \frac{1}{2} + i\gamma$ is not simple, then

$$\varphi(\varrho,\chi)=\varphi'(\varrho,\chi)=0,$$

and consequently

$$\frac{d}{ds} \langle M(s,\chi)\varphi(s,\chi)\rangle_{s=\varrho} = 0.$$

On the other hand, this derivative is equal to

$$H'(\varrho,\chi)+G'(\varrho,\chi)\psi(\varrho,\chi)+G(\varrho,\chi)\psi'(\varrho,\chi)+\frac{d}{ds}\left(M(s,\chi)E(s,\chi)\right)_{s=\varrho}.$$

It follows by the estimates of Lemma 6 that (for almost all χ)

$$|G(\varrho,\chi)\psi'(\varrho,\chi)| \leq \log k;$$

this is impossible since (again for almost all χ) the left hand side is $\gg \log Q$.

References

- [1] M. Jutila, On Linnik's constant, Math. Scand. 41 (1977), pp. 45-62.
- [2] S. Knapowski, On Linnik's theorem concerning exceptional L-zeros, Publ. Math. Debrecen 9 (1962), pp. 168-178.
- [3] Yu. V. Linnik, On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon, Mat. Sb. 15 (1944), pp. 347-368.
- [4] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math. 227, Berlin, Heidelberg, New York 1971.
- [5] The pair correlation of zeros of the zeta function, Proc. Symposia Pure Math. 24 (1972), pp. 190-202.
- [6] and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), pp. 529-542.
- [7] Y. Motohashi, On the Deuring-Heilbronn phenomenon I, Proc. Japan Acad. 53 Ser. A No 1 (1977), pp. 1-2; II, ibid. pp. 25-27.
- [8] K. Ramachandra, A simple proof of the mean fourth power estimate for $\zeta(\frac{1}{2}+it)$ and $L(\frac{1}{2}+it,\chi)$, Ann. Scuola Norm. Sup. Pisa 1 (1973), pp. 81-97.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TURKU Turku, Finland INSTITUT MITTAG-LEFFLER S-182 62 Djursholm, Sweden

Received on 13, 10, 1977

(989)