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Statistical Deuring-Heilbronn phenomenen
by

Marrr Jurma (Turku)

To the memory of Paul Turdn

1. Introduction. Let x, be a real primitive character (mod %), and
let f; = 1— 6 be a real zero of the Dirichlet T-function Li{s) = L(s’ 21
Suppose that 8, is “exceptional” in the sense that § <1 flog k. Accor’dh;g:
to a theorem of Linnik [3], the existence of an exceptional zere has a
certain effect —called by Linnik the Deuring-Heilbronn phenomenon —Tpon
the distribution of the zerog of I-functions. More exactly, there exigt
caleulable constants ¢, > 0, ¢, > 0 such that if p = f+ép is & zero of
L(s, z) (mod g) and if Slog(ghr) <e,, where 7 == max(2, |y)), then (if
the case y = x1, 0 = B, is excluded)

.6

1.1 <l—olog{l ———
(1) A 0208 (Mog(qkr)

) flog{gkr).
Linnik’s proof of this estimate was very complicated. A mueh simpler
proof, depending on Turin’s power sum method, was given by Kna-
powski [2], Recenily Motohashi [7] and the author [1] bave found new
proofs of (1.1) on the hasis of an ides of A. Selberg.

Our purpose in this paper is to investigate the Deuring—Heilbronn
phenomenon from & statistical point of view, considering the distribution
of zeros of many L-functions Lobh in the horizontal and in the vertical
direction.

Define

o{s, x) = L(s, 1) L(s, xx.);
then for o> 1

o0
(1.2) (s, 1) = 3wy (m)n e,
where "
(1.3) a = ¥ (d).
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Denote by E(Q) the set of all primifive characters y such that yy, is ale

primitive and the conductor of y lies in the interval [§, 2Q1.
THroOREM. There exist positive coloulable consianis a, b and e such

that if L exceeds a certain caloulable bowund, then for

(1.4} Eloslozk 0 L exp (679

(we suppose that

(1.5) 8 < (logkloglogh)~te

in order that the intervel (1.4) be non-empty) all funciions (s, y) with y ¢ K (Q)
encept possibly Q*8° functions af mosi, satisfy the following conditions

(i} If o = f+1y is a (non-lrivial) 2ero of g(s, x) with |y] << 67, then o
is stmple and § = 3.

(i) If g; = &+iy; are two distinel zeros of w(s, x} with lpsl << 676

j=1,%2, then
2mm logk
LY £ RS Y Rl hid
e (1 (log@))’

where m i8 & non-zero infeger.

The assumption that yy, be primitive for y € K (Q) was made merely
in order to simplify the proof; the theorem holds also if we assume just
the primitivity of the character y itself.

A perhaps interesting feature of the theorem is that already the
relatively weak inequality (1.8) for ¢ implies very restrictive econditions
on the zeros of a large number of L-functions. The equation (1.6) RAYS
that the ordinates of the zeros of p(s, y) lic approximately in an arithmetic
progresgion, and recalling the Riemann—von Mangoldt formula we see
that the distanee between two adjacent zeros of p(s, %) in the strip [f| < 677
is almost always approximately 2= /log(Q%*%). Thiz well-distribution of the
zeroy has arithraetic consequences' which might be tested against our
existing knowledge. Another possibility, which has also been pointed
out by Montgomery and Weinberger (see [5], [6]}), is to examine the
statistics of the differences of the zeros of L-functions, hoping to find
a contradiction with (1.6).

In the proof of the theorem we use techniques that are famniliar
from zero-density problems. For instance, mean value estimates for
Diricklet polynomials and the funectional equation of Z-functions play
Important roles in our argument. The key result is the approximate fone-
tlonal equation for ¢(s, y), which we derive in Lemmas 4 and 4.

(1.6} Y1—Vy =

2. Preliminary lemmas. The first lemma is the hybrid large sieve
inequality (see [4], Theorem 7.5).

icm
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LeMmA 1. Let for each primitive characier 5 of modulus <@ a setof
poinis

s(n) = o () +i4(x), F=1,...,7

kA
with

glz)= e,  lh{x)l<T—4/2,

(x) =t =4 for £k

be given. Let a(n), n =1,..., N, be any complew numbers.
Then

Tx N

2 2 ‘Za(ﬂ)x(%)n“’ﬂxl {2

g<i) ymodg j=1 n=1

N
< (@ T+ N (47" +log N)loglog(3X) Z la{n)|2n="
=1
where E* denoles o sum over primitive characiers.
For the next lemma, let 1 be a constant such that

(2.1) L{i+it) < Ky,

where 7 = max (2, [1]). By a deep theorem of Burgess, we could choose
A = 3/16 +-¢& for any £ > 0. Actually we need muech less, say that A < 1/3.
The numbers a,, in the following lemma were defined in (1.3}.

Limawa 2. For @ > B, y > 25, we have

(2.2) D) e < (L()log(y o) + a7 R logty,

z<n<y
and for =2

(2.3) 2 g™ < B (L(L) + o) logta,

nEy

Proof, We have

o
amt <€ ¥ anTHeTMY — gnimy
413 1

NSy n=1

1 . g 3
% )f Cls+1) L(s+1) (4° — o I'(s) ds

1
— f(...).
{—1)

= L(1}log(y/x)+
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Tstimating the last contour integral by (21), we geb

(2.4) D) ap™t < T(1)log(yfo) + a7 H

TENEY

Let M > 1. Since 0 < a,, < 7(n), the contribution to (2.2) of the numbers n
such that z(n) < M i3 by (2.4)

< M (L(1)log (y fo) + o~ 1),
On the ofher hand, the numbers for which v(n) > M contribute at most

Mt 2 3 {n)n"}

TERKY

< M 'log%,

where we uged the estimate
{2.5) M) <, oflogap,
BT
Choosing A{ optimsally, we get (2.2). The proof of (2.3) is simdlar,
Define
(2.8) by = D) pid)u(nfd) 1:(a),
din

where g(n} is the Mobius fnnction. For o> 1 we have

= Z by (myn~2,
n=1

Define further
{2.7) (s, 1) = Zanx (nyn=*,
(2.8) Ms,z) = 2 Byz(m)n ",
n=1
(2.9) His, ) = M(s, DF(s, g) = D dug(n)n;
n=1
here dy =1, d, =0 for m =2,..., &, and for # = k+1,..., B
{2.16) = 2 Uyaby = = D b
n!k<d<k max(gm,'dbk

- LEMMA 3. We have b, = 0 unless n = 0in,, where {n,, n,) =1, ju(n,)|
== |u(m}| = 1, in which cyse '

iy by = 7a() ),
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or

Further,

12.12) Z dn~t < (L{1)logk+ K 2)Magy,

n=k+1

Proof. The first assertions follow essily from (2.6).
For the proof of (2.12) we use the second part of (2.10), which gives

{2.13) lda] < 4_, Upyalbal + Zaﬂbnmi = 8, fys
g7 8

sy, Since e, < r#(n), we havo

) & < Pn) 3 by

dln
ad>k

Hence by (2.5) and Schwarz’s inequality

kz kﬁ
(2.14) D dntg Bald™ > 2 (dmym!
Re=febl d=lif1 ?n<k21(i
%2
<log®h D) bl (d)a
d=f+1
jal
< logk( > rd )"
d=l+1

Here only the numbers d = did, with (d,, d.) = 1 contribute something,
and by (2.11) (5] < 4g,. Hence by Lemma 2 the last d-sum in (2.14) is

< D 4 (@)

Redidyh®

k& U
< Q) adried e 3 ada

ﬂz'#l . (lgm‘k'l"l
< (L{1)logT+ K1) 10gk.
Together with (2.14), this implies that
o < (D()logk+ &R gty
n=ki1

The same estimate is obtained (in a simpler way) for the sum where f,
stands instead of ¢, Hence (2.12) follows by (2.13).

18 — Acta Arithmetica RXXXVII
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3. Formulas for ¢(s, y). The functioval equation of L-functions
iniplies 2 functional equation for ¢(s, y) if both y and yy, are primitive:

pis, 7) = y(8, zle(L—3,7),
where

2 )’w r—s+a)I{f(l—s-+a") &%),

(3’1) "P(S;I) _(T (%(S+Cb)} (—%(3-}-&’:”))

le(y) =1, and &, a” =0 or 1,

In the next lemm(n the function ¢(s, x) 18 explessed by a formula .

- which plays the role of the appreximate functional equafnon the under-
lying ides is due to Bamachandra {8].

Lmmaa 4. If y and yy, are primitive non-principal echaracters and
Y =1, then we have for 0 <o <3[4

(3.2) pls, 1) = D, Guglmbe ™ ™ L y(s, NF(L—s,7) +Li(s, 2) +1o(s, 2);

=1
where
1 [ _— S4-ui— ur
(3.3)  I,(s, 1) = ”z—m(ﬂf)”’(“’w’ 2 (ga,ﬂ(n)n + 1)y T(w)dw,
l e 10
(3.4) I8, %) = ~— w(s+w, ) (L —s—w, %) XTI (w)dw

2
(4/8~u}

Proof. Applying a Mellin transform in the Dirichlet series (1.2),

we geb
3 —~nf{¥,,—& 1 ’ -t
E apmye MrnT = — f¢(s+w,x))? ) dw .
Dred
=1 (2)
Here we move the integration to the line Rew = ~-¢ {the pole of the

integrand at+o = 0 pives the residue (g, ), use the funetional equation,
cut the Dirichlet geries of g{l —s—w,¥) into two parts, corresponding
to #< %k and %>k, and finally move the inbegral involving the sum
F{l—g—aw, %} to the line Rew = 4/F —¢ {the pole w =0 gives this
time the residue wi{s, ) F{1—s, 7).

In order to simplify the formulations of the next few lemmas, let ug
infrodnce two eonventions, The phrage “almost all y € K (@) means:
all y e K(0), save at most < Q*® characters, where b > 0 is a constant.
" Also, we do not repeat the asgumption that the numbers a, b and ¢ be
sufficiently small, but the asdertions should be understond in thiy sense.
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We fix
(3.5) Y =¢,

and derive & more practical version of (3.2).
Lemva 5. Throughout the reclangle

(3.6) 3—loglogQflogd <o <34, [ <d°
we have, for almost all y e K{Q),

(3.7 el 2) = F(s, 2)+ols, D F1—s,7)+Els, 1)
wilh

(3.8} B(s, z) < 8"[logq,

where n > 0 48 a numerical constant.
Proof. By (3.2) and (3.7)

Bis, ) = Zanx (m) (e F —1)n~+ D@ (n)e™F a1 1i(s, 1) +Za(s, 1) -
nxk

By (3.5) the first sum on the right is trivially < @7, say.

The series above can be cut at 2¥ log ¥ with a negligible error.
Consider now the truncated sum. If for each y & K(Q) a point g, in the
rectangle (3.6) is given, then by Lemmas 1 and 2 (taking 2 = 1/4) we
haive

2 Z tny ()6~ Fn% "

AEK(Q) h<n<2¥iog T

< G5+ logPieg™Qlog logQr Z azn?

& Q2(5—0+10gg)10g10Q (L(Z)log@—f—k"’lf4}m.

Since Z~'* < 6" and L(1) < dlog’, the last expression in < Qgb+ia+en
where > 0 is a numerical constant (if o, b and ¢ are sufficiently small).
This proves that the modulus of the sum under consideration ean execed
#"flog@ in the rectangle (3.5) for at most < Q°8° characters in K ().
In 3 similar way we estimate the sums
2 (sl 4=1,18.
K@)
We will make use of the known estimate

8.9 (@B < ly(s, i < (@R, —1j2< o< B4,
which follows from (3.1) in view of the estimate

(3.10) eXP(-*-;iltl) I ¢ |T(s)] <exp(—§stl)r“-”2, 1i<o<e.
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Let us consider the sum §, fivst. By the Pdlya—Vinogradov character
gum estimate it is easily seen that for y e K (@)

_§ auy(n) < 2P(Qk)*logQ,

so that by partial summation for o =1

Z ay{nyn~? < [s|E*G log Q.

n>Q2
This shows that we may cub the series in fhe infegrand of I,(s,, y} at ¢*
with a negligible error. Further, by Lemmas 1 and 2, for Rew = —Res,

ai
n

*E(Q) pengg?

< QU I(1) + B P log Qloglk.

TUsing also (3.5), (3.9) and {3.10), we get for §; an estimate showing that
for almost all y we have |T,(s, ¥)| << §"/log@ in the rectangle (3.6).
The sum 8, can be estimnated similarly. So the proof of Lemma b
iz eomplete. '
For the next lemma, define

(3.1%) (s, ) = M(s, F(1—s3,7).

Tmvma 6. For almost all y e K(Q) the following estimates hold: for
0o, f#< 20

{3.12) G(s, 1) < (Klog’k)" "3
Jor lo—4| << Aflog@, |# << 67° (whore A > 0 is any fived number)
(3.13) 12 < |6(s, x)| < 3/2,
(3.14) G'(s, x) <logk,
(3.18) o H'(s;x) <1,
' d
(3.16) i 086, 2 <1,
and for 1/2 < o <3[4, 1< 6
(3.17) H(s, x)| = 2/3,
(3.18) M (s, y) (s, x) < 1flogQ.

Prooi. The estimates (3.15) and (3.17) follow from {2.9) by Lommas
1 and 3. Next note that for o = % the funetions G (s, y) and H(s, y) have
the same modulus, so that as above we have for almost all %

B19)  3A<IBE+E HI<E4 o <36,
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In view of the trivial estimate
G{s, x) < klog?h for o=0orl
we thus get (3.12) by convexity. Now (3.14) follows from (3.12) by Cauchy’s

formuia, and (3.14) together with (3.19} implies (3.13).
Finally, sinee we may assume that

Ms,y) €677 for oz i-—loglogQflog@, [ <267¢,
we geb (3.16) and (3.18) by (3.8) and Csnchy’s formmula.
4, Hortzontal distribution of the zeros. It is convenient to egtablish
the following preliminary assertion firgt.
LEnMA 7. There evists a constont 4 > 0 such that for almost all y e X {(Q)
the function @(s, x) has no zero in the region
(£.1) oz t+Afog, << 87"

Proof. By known zero-density estimates we may omit the characters
sach that @ (s, ¥) has a zero in theregion v > 3/4, [i] < §7°% Let g = §+iy
be a zero of p(s, ¥} in the region (4.1). Multiply both sides of the equation
{(3.7) by M (s, %) and put ¢ = g. By (2.9) and. {3.11) the resulting equation
is
(4.2) 0 = H{g, x)+G(e, x)ple, 1)+ Mg, x) E(e, ).

By (3.17), (3.18) and (3.9) this implies thab

G e, x)| & lple, )™ » @Y,
which is impossible for almost all y e (@) by (3.12) and (1.4) if 4 i
sutliciently large.
We are now in a position to prove the main result of this section.

Lmxmva 8, For almost all y € H(Q) the function ¢(s, y)} has no zero in
the region

(43) s> 1, <&

Proof. Liet o = §-+4iy he a zero of ¢(s, x) in the region (4.5). Then
also 1 —g ==1—p-}-4y is & zero of ¢(s, ). By Lemma 7 we may agsume
that g —4% < A/log@. We apply (£.2) to ¢ and 1—3, and subtract one
eguation from the other. By (3.15), (3.16) and (3.14)

Hg, x)~H(1—~7, 1) €281,
Mg, ) E(g, 2) = MI—~g, ) E(1-0,x) <281,

Gley 2) —G(L—7, 2} < (2f—1)logk,
whereas by (3.1)

lple, x) —v(1—2, x)| » (28 —1)log@.
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Hence, noting also (3.13), we get the inequality
28 —1
> lp(e, )G(e, 1) —p(1—e) )GF(L~0, 7)|
= lple, ) —v(L— g, 2N IGL—7, )| —lw{e, DG (0, 2) —G(L—7g, )]
> (26—1) (log@ + O (logk)},
2 contradietion,

5. Vertical distribution of the zeros. Let o; = ¥+4y, J =1,2, with

Iyl << 87° be two zeros of g(s, ). We may suppose that i —vai <1,
for otherwise the assertion (1.6} to be proved is trivial.

Again we use the equation (4.2), and get after a rearrangement

81y Qo nvlen) = —Hly, 1) —Mle;, ) Bley 2), J§=1,2.

Gmftsider the change of the argument of both sides of this equation when

¢, i8 replaced by ¢;. The change of Argy(s, ) is easy to estimate,
Imvwa 9. For y e K(Q) and [t —1,] < 1, ST (2 2), we have

Argp(d+ity, g)—Argv(d+ ity 2) = (fa—1) log Q%)+ O (logT)) (mod 2n).

Proof. This follows immediately from (3.1) and the formula
I i
—(8) =logs-+ O(ls|™),

valid in the angle —n-Lg << Args < m—e for any fixed > 0,
Beturning to the equation (5.1), we see by Lemma 9 and {3.13)
{3.14) that the argument change on the left hand side ig

(5.2} (y2— 1) (log (Q*k) - O (log k)) (mod 2=).

?i?ha acrgt_lment change on the right hand side can be estimated by consider-
ing the mtej.gral of the modulug of the derivative; by (3.15) and (3.16)
the resulb is < |y, —9,!. Comparing this with (D.2), we get

7

(va— 1) (log (@) + O (logk)} = 27m+0 (I, —p,]),

Where_m is an integer (clearly m = 0), This proves (1.6).
Finally consider the multiplicity of the zerog of (s, x). If the zero
¢ = -4y i8 not simple, then

vles x) =90, 2) =0,
and consequently

a,
25 (208, )8 (8, D)ame = 0.

icm

Lo
5
=
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On the other hand, this derivative Is equal fo

d .
H'(gy 1) +6"(es ) vles 1) FE (e, 0¥ (g; 1)+ = (M (83 B (5, 25—

It follows by the estimates of Lemma 6 that (for almost all y)

(e, z)v'(e, x)] <logk;

this is impossible since (again for almost all ) the left hand side i3 » log@.
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