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To finish, T state a few facts about Turin. He himself probably
considered his “new method” to be his most important contribution.
Once, several years before his death, I found him af his desk deeply ab-
sorbed in work. I asked him: “What are you working on?” He answered
smiling “I am building my pyramxd” Perhaps I should explain the
meaning of this to the non-Hungarian reader. They refer to a play of
a fagnous Hungarian writer Maddch (the play, “The tragedy of Man”,
was translated into many langnages, bub is probably not very well
known abroad). In one of the scenes, enacted in ancient Egypt, the Pha-
raoh te accomplish an immortal achievement is building his pyramid.
Thus “building my pyramid” would mean: trying to acecomplish an im-
mortal achievement, which will ive for ever, In fact, he was writing his book.

Several years later, in July 1976, at the meeting on combinatories
at Orsay in Paris, V. T. S6s (Mrs. Turdn) gave me the terrible news
(which she had known for 6 years) that Paul had leukemia. 8he told
me that I should visit him ag soon as possible and that I should be careful
in talking to him beeause he did not know the frue nature of his illness.
My first reaction was to say that perhaps he should have been told s6 that

he could “finish his pyramid”. She said she felt that Paul loved life too.

much and with the death sentence hanging over him would not be able
to live and work very well. (In fact, he could work very well underad-
verse conditions. For example, the theory of extremal graphs was started in
a labour camp in 1940 in the nazi-faseist era.) Nevertheless, 1 am now
fairly sure that her decizion was right, since he clearly never tried to find
out the frue nature of his illness. In fact, a few days before his death,
V., T, 8ds and thefr son George (also mathematician) tried fo persuade
him to dietate some parts of his book to Haldsz or Pintz. He refused
saying “T will write it when I feel better and stronger”. Unfortunately
he never had the chance. Fortunately his book was finished by his stndents
. Haldsz and J. Pintz and will soon appear.

It is always sad when a great man dies while still mentally in his prime.
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The mumber-theoretic work of Paul Turin
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G. Harlsz* (Budapest)

Paul Turdn made important confributions to many parts of math-
ematies bub it was nmmber theory that eaptivated his interest
unabatedly throughout hig life.

The power sum method. Turén made several attempis to solve the
deepest problems of aralytic number theory, first and foremost among
them being the over 100 year old conjecture of Riemann on the zeros
of the zeta function. The following has proved to be the most suceessful
{not exactly for the purpose for which it was originally intended).

For s, on the vertical line Res = oy > 1 let r(s,) denote the radins
of the largest zero-free disc around s, of the zeta function {(¢); Riemann’s
hypothegis is then equivalent to r(sy) = 0y~1/2. In other words, r(s;)

is the radius of regularity for -%(s) around &, (provided that Ims, is

guffieiently Iarge, so that the pole at ¢ =1 does not come into play)
and by Cauchy’s elementary formula
r(éu) )

r [
Bim sup g/v—* (—( )
r=eca 3-:!0
e

By differentiating a classical approximation to —? (#), the quantity under

1

the »th root can be replaced by

' 1
Z (so— )™’

the summation being extended over a finite number of zeros g of (s}
in the “vicinity” of s,, and attempts to replace the limsup, impossible
to calculate, by finite explicit estimations lead to general inequalities
for sumsz of powers of complex numbers.

b}

* | am grateful to Dr. J. Pintz and Dr. M. Szalay for their valuable help.
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Out of this “primitive” idea rose an important new theory with
applications fo many branches of mathematics. (See his book [66]
in Hungarian, its translation into German [67] or an enlarged Chinese
version [92]; a completely rewritten and essentially expanded English
edition [241] will appenr in the not too distant future.)

The above purpose is served by what he calls his second main

theorem:
1
S S
i=1

for complex numbers b, z; with 1 lz,] and m > O; (for
thiz form see [116]).

Some of the mogt important applicafions of this and its one-sided
version (see [123])

max
mEl<rm+n

( 86(/)11, "Lﬂ') ) 1=1,...,n

=iz

max Re Z [ Y

mA-lsr<m+tn(3+r/s) p—
H
1 n in v
‘ min |Re )
- 2n+1(24e“(m+n(3+7c/x))) Tolyan] el
for O0<eClargsi<m, ¥ =|x>=...2 %) will briefly be discussed
below. ‘

His firet unsucecessful efforts to obtain such deep estimations,
the proofs of which are bhased on interpolation theory, contour inte-
gration and a very skilful manipulation with polynomials led him to a
better inequality, his first main theorem (166], [67])

i;bfzzt = (”e(m—rn )

under the stricter condition l#;] 2 1; he later found numerous applications
of this theorem to gap power series, quasi analytic funciions, differential
equations, value disfribution of certain entire funetions, and via the latter,
indirectly, to number theory: improving his results, Tijdeman learned
thatthis was exactly what was needed to coinplete certain deep investiga-
tons of Gelfond on transcendental numbers. Ineidentally, Turdn considered
his whole theory of power sum inequalities, to which besides his basic
work many other mathematicians have now contributed, as part of number
theory, namely as & new chapter on diophantine approximation where
weakness of approximation is compensated by strong localization of the
parameter .

Aypplications to zero free regions. The ided outlined above
leads directly to the following theorem in [31].

max
M-l esmtn

icm
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Suppose that with positive numbers a, b, ¢ we have for a ¢ large
enongh the inequality
U : | Nlog"¥
a}; A (,n}e%f logn! < “__I_ﬂb_
N<aN* v
3
whenever [B° << N < N <L 2N. Then {(o-if) # 0 for o> 1~o'—z-7~; with
an absolute constant ¢'.

(Here /() is the von Mangoldt symbol: logp if = is a power of the
prime p and ¢ otherwise.)

Unfortunately the methods for estimating {rigonometric sums are
not sufficiently strong fo verify the assumption. Surprisingly enough,
using Vinogradov’s estimation, he proved it even with b = 1/2 for
logm replaced in the exponent by log™n with any § <y < % exeept ¢ =1
{[34]), and econnecting exponential sums like this with zeros as in the
above theorem, he found that in order to have similar conclusions one
would need exactly b > 1/2 ([66], [67]).

Although the power sum method has thus failed to produce zero-free
regions unconditionally, the above result is of theoretic interest. Inm
another vergion [187 Jthe assumpfion is only needed for ¥ < [|% providing
the first step towards the problem of Landan who, on the basis of an exact
prime number formula in ferms of zeros, supposed that there was & direct
connection bebtween certain zeros and cerfain primes. Still another version
[43] anawers a question of Littlewood, who asked how a single zero atfects
the remainder

Fod
2 (@) — Lo = 21- d
J logu

P

of the prime number theorem on 5 finite range, pointing out that no
method existed to tackle such problems. (This research has been extended
by Stad and more recently Pintz has given very precise answers to Lititle-
wood's gquestion.) The same can be said about Ingham’s problemn as to
whether our present bound Ofwexp(—log®)] known to hold for any
o << 1/{1+4v) for the remainder of the prime number theorem iz the moss
that can be deduneed from a  zero-free region o> I —eclog™¥{|t]--2)
{the hest value of » known foday being 2/3 +¢). He was able to give the
reassuring answer: denoting by e, the supremum of the a’s and by y,
the infimom of the s, we have o, = 1j(14+0){[50]). This again has
been extended by Stas end recently Pintz has proved precise results
for general zero-free domains.)

Applications to density theorems. This is the name given
to estimates of I (e, 1), the number of zeros of {{s) in the rectangle
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Res > o, [Ims| < T for o> 1/2, and here the method has produced not
only results of theoretical interest.
Ingham deduced the “density hypothesis”

(s, T) = O(ZM=)  (¢>1/2),

which sometimes can serve as a substitute for Riemann’s hypothesis
from Lindeléf’s hypothesis

c@j2-+i) = 0.

Turéin replaced this by a much weaker hypothesis ([94]), showed
also without any unproved agsumption that the density hypothesis holds
in a sense asymptotically as o —1—0 ([54]), and stated as a conjeeturs
in [77] that Lindeléf’'s hypothesis implies even

N{o,T) = O{T%) (o>1/2).

He and Balész have, in faet, proved this for ¢ > 3/4 and unconditionally
demonstrated the truth of the density hypothesis and even muech more
for 0, < o <1 with a numerical s, <1 ([181]). By a different method
but nob independently of Turdn’s innovating work in this field, Montgomery
and others have improved these results numerically.

Before the discovery of his power sum methed, Tnrén deduced
the upper bound %° with a universal constant ¢ for the least prime in any
residue class 7 with (I, k) == 1 from an unproved hypothesis ([19]) and
in an attempt to get rid of this assumption he was among the first to
recognize the importance of density theorems for Dirichlet’s I-functions
L{s, %, k) belonging to a varying modulus % ([19], [26]). Linnik proved
the above result in a very complicated way without hypothesis, one of
his two main lemmas being in fact a density estimation. By his power
sum method Turdn later gave a much simpler proof for the latter ([121])
and Knapowski for the other main lemma. Jutila used this new proof
to improve Linnik’s constant ¢. Fogels and Gallagher extended the validity
of the density regult in T and &, respectively.

Application to the comparative theory of primes. This
is joint work with Enspowski ([131], [132], {1331, [i36], [137}
[1383, [140], [141], [1456], [148], [149], [151], [163], [156], [157},
[1621, [164], {1807, [209], [226], [229], [235], [241]). It was they who
made a systematic study of discrepancies in the distribution of primes
in different arithmetic progressions, although sporadic special results
had been known in the literature.

A commen premise in all the results is the knowledge of a D = D (k)
guch that no I-funetion belonging to the modulus % vanishes for 0 < o < 1,
[t} << .D {corresponding to the argument condition in the one-sided power-
sum inequality). A special feature ig the explicitness and numerical effec-
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tiveness of their estimations in terms of only % and this I). No other method
has sinee been able $o produee such results, even though the non-existence
of positive zeros {which is verified so far only for & finite nnmber of %)
oceunrs naturally in all theorems of this kind.

A typical example is the following:

Each function wlw, &, ;) —wiz, k, 1) (& £ 1, (mod %)) where

ploy b, i) = Y Am) (5B =1)
n=itmed &)
changes sign in every interval [m, XD (21/ ;)] provided
w >> max (exp k%, exp(2/D))

{[1407). The universal censtant ¢ can be calculated numerically.
The case of

mla, by ) —alz, by L) = > 1= 3 1 (I, k) =, k) =1)
PEE DL
prl(modik) p=lymed k)

is much deeper. Turdn and Kuapowski exhibited similar loealized sign
changes, even large positive and large negative values if I, and I, are both
quadratic residues or non-residues, assuming algo a weaker version of the
generalized Riemann hypothesis for Z-functions mod % ([140]). Espec-
ially difficult is to show the preponderance of a quadratic over a non-
gquadratic residue class. They have results of the above type only for
7, =1 (mod k) ([132], [133]). (For some lucky moduli % Grosswald was
able to handle all the cases and Stark did it for the least modulns & =5
left open by Turdn and Enapowski, Eéfal improved some aspects of
certain cases of the results of Turan and Enapowski. All these other
anthors uge different methods with concessions in the way of effee-
tiveness.)
Tehebycheff asserted

ST oo (> +0),

>3 . .
which, if interprefed as meaning that there are more primes =3 (mod 4)
than primes =1 (mod 4), would explain the above difficulty. In an
atbempt to generalize the result of Hardy and Littlewood and for Landan,
according to which Tchebycheft's assertion is equivalent to the non-
vanishing, for Res > 1/2, of the non-principal L-function mod4, Turin
and Knapowski found it more appropriate to consider instead

Z logpe™® togdpz Z logpg—“logzim‘

=l (mod k) p=ly(mod k) .

((Z’U k) = (127 k) =12 +0). 3
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When i, =1 and 1, is a guadratic non-residue, this tends to —co if and
only if ZL(s, x, k) # 0 whenever x(I,) # 1 and Res> 1/2 ([148]), but
the general problem remains unsolved except for some small values of .

Ag fo the comparison with the main term of the prime number theorem
{with the restriction te the case & == 1), Littlewood proved the infiniteness
of sign changes of m(#)—Lix, and only much later was Skewes able to
give a numerical bound for the first sign change. Knapowski observed
that Turédn’s method can also yield such effective bounds, even effective
lower hounds for the number of sign changes up to z. They improved
his bound to cloglogioge ([229]) and recently Pintz obtained

¢V log xf loglogas.

These are not all the questions Turin and Knapowski were able
to tackle but many more still remain-intact. A favourite problem of
Turin’s was the simultaneous comparison of more than two residue classes;
he made nosuecessful attempts in thiz direetion. A general gquestion is
whether there exist arbitrarily large values of » with

w(@y Koy ) > w(w, By ls) > .. > wle, &, 1)

where {I}}., (2 = @(k)) form in an arbitrary order :3 representative system
of the rednced residue classes mod k.

Other attempts for the zeta functien. There is an extensive literature
on inequalities in ferms of the coefficients for the smallest and largest
modulus of zeros of power polynomials; therole of the modulug is motiv-
ated by the faet that level sets of powers 2* are civeles aronnd the origin.
This gave Turdn the idea of considering, with a view to applying it to
the zeta function where read parts of zeros feature, expansion in terms of
Hermite pelynomials having “flat” level sefs. This has led to interesting
resnlts on strips containing the zeros of polynomials ([647, [72], [104],
[143], the latter jointly with Makai) but not, so far, to number theory.

He found a surprising conmection hetween Riemsnn’s hypothesis

N
and zeros of the partial sums > 1/m® ([33], [1127], [115], [139]). In the
il

simplest case, Riemann’s hypothesis is true if there iz ne zero in the half
plane Res>1+4-¢ f]/l‘wf. Bateman and Chowla, Wiener and Wintner,
Haselgrove, Levinson, Voronin, Montgomery and others have extended
Turén’s results andjor examined the hypotheses. Even thongh the latter
hawve all now been disproved, especially by Montgomery, who has exhibited
zeros much further to the right, comsidering the investigations it has
ingpired, the ides hag certainly proved.fruitful.

Turdn related power sums to the zeta function in the reverse direetion
to that discussed previcusly. A slightly better lower bound than that
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due to Tijdeman for

n n
gax | Y| >0, Fb =1, bl =1, B>1)
would disprove the Riemann hypothesis. Examples by Erdds and Rényi,
Tijdeman, Montgomery leave, however, very little hope.

A little remark, a reformulation of a theorem of Trdés on additive
functions, which nevertheless shows the subject in a different light, is the
following characterization of the zete function ([1121, [160]).

Let, formally,

with an Euoler preoduct
a, @2
fls) = Z l(1+-%+ 2+ )
o P P

and with monotone coefficients «,. Then f(s) = {(¢-}¢) where ¢ is a real
constant.

The point Is that in contrast to other characterizations the funetional
equation ean here be dispensed with. Both the Euler product represen-
tation and the monotoneness of the coefficients are actually used in the
standard proofs for zero-free regions. )

The twin prime and the Goldbach problem. Turén uged the following
approzch, which had apparently not been applied before to twin primes.
It also applies to other additive problems. ([154], [158], [167], [170],
[173], [175].)

Consider

Dl A(m) A(n+2),
nay

the main contribution coming (ag econjectured) from terms where » and
#+2 are both primes. Using the sleve formula

An+2) = — 2 uld)logd,
. : dln-+2
one gets
D) wldlogd D' A(n).
dgx+2 nz—&mud d}

Expressing the inner sum by contour integration in terms of Z-functions,
one obtaing the same heuristic main term as had been obtained by Hardy
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and Litflewood in their classical investigations and the connection with
zeros of L-functions discovered by Hardy and Littlewood in a roundabout
way is brought 6o light here by an explicit formula. Turdn observed
the surprising fact that the problem only depends on zeros up to a fixed
height. The Goldbach problem, which has always been thought of as
being almost equivalent, is different: it depends also on higher zeros
corresponding to a narrow interval of large moduli

Ingerting appropriate kernels in the above formula, as proved go
successiul in his investigations discussed: above, one is led to a new
type of power sum situation, for which no theorem is available at present.

Probabilistic theory of additive fuwmctions. The first achievement
which made Turin famous was a very simple proof of the theorem of
Hardy and Ramannjan to the effect that »(n), the number of prime div-
isors of wis usually close to loglogn ([3], [£]). As we zay it today using the
termg of probability, he caleulated the variance

-1*2 (v(n) —~logloga}* < loglogw

r ns
and applied Tchebychetft’s inequality. He generalized this to a wide class
of additive functions in place of »(n), extended further by Kubilius to
a general inequality, ealled the Turdn-Kubilius inegnality, which is a nseful
tool for additive and multiplicative functions, and the idea itself has
been used by meany authors, incloding Turin himself (see the next section),
for different questions in number theory. Bub its true significance lies
in the fact that this was the starting point of probabilistic number theory,
a major part of which consists in applying results and principles of prob-
ability to arithmetic funections.

The Erdts-Kae theorem, which iz the cenfral limit theorem for

¥(n), states e.g. that

v

% 2 i- ]/% [ e auoq)

n<z
#n)—loglog =
Vioglog =

<y

wniformly in y. In a joint paper with Rényi [95] Turédn lafer
gave O{1 v loglogz) for o(1) as the precise uniform error estimation
improving the earlier results of Le Vegue and Kubilins. (This also follows
from a result by A. Selberg, published earlier.) The proof i3 an analytic
version of 'a method from Turin’s dissertation {31 on the theorem of Hardy
and Ramannjan, The result has been generalized by a great many authors,

Statistical theory of groups and partitions. A systematic theory is
mainly the creation of Turdn and BErdds ([155], [168], [171], [174], [176],

iom
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[184], [189], [196], [198], [205], [208], [217], [218], [222], [232], [233],
[234], [236] including some papers written jointly with Dénes and Szalay).
The group they were mostly concerned with is §,, the symmetric
group of order » in which every finite group of # elements can be embedded.
They showed that the order O(P) of almost all, i.e. all but o(nl},
elements P e 8, satisfies

log O (P)— tlog®n| < w(n)log®n
whenever w{n) - oo ([155]). (Compare with

?leogO(P) = (1+e(1)}y/ nlogn

according to Landan.) This is sharp: logO{P) even has a Gaussian limit
distribution with expectation (1/2)log®. and variance (1/y/3)log"n.
They also examined the order, depending only on the conjugate classes,
for almost all conjngate classes ([208]). They found this to be much higher,
which made them investigate the number of elements in almost all eonju-
gate classes, showing by precise formulae that the majority of conjugate
classes cover only a small part of §,,.

The number-theoretic properties of O(P) are often more important
than ity magnitude, Starting: from a question by Schinzel, Torin and
Erdos discovered the strange fact that, for almost all Pe 8, O(P) is
divisible by every prime power not exceeding '

logn (
loglogn

logloglogn  w(n)
loglogn —Iogn

whenever e{n) = oo and w(n) cannot be replaced by —w(n) ([171])
They also found the magnitude of the maximal prime divisor of O(P)
([171]} and corregponding but different results for comjugate classes
([196]).

A special estimation of theirs has been used by Dixon for proving
an old conjecture: pairs, chogen at random, of elements in 8, generate
§, with probability 3 /4.

The theory of S, is closely related to pertitions ofmas n =n, + ..
oo + my with, integers as summands. Generalizing a result of Brdos and
Lehner on the number of terms & in almost all partitions, Turdn and Frdos
extended this to sequences of real numbers other than the integers (the most
important case of applications to 8, being the sequence of prime powers)
([198]) and for the case of the integers, with a view to applyingit to the theory
of representations of §, Turin and Szalay gave an almost complete deserip-
tion not only of the number of terms but also of the distribution of their
magnitude for almost all partitions ([232], [283], [234]).

Another strange phenomenon Turén encountered -in- answering a
special case of a question by Dénes %haﬁ asymptotically at least half

B
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of the ferms coincide in almost all pairs of partitions, generally (1/k)th
of the terms for % tuples ([217], [218]).

Uniform d&istribution. This is another probabilistic theory wheze
Turén in collaboration with Erdés did some basic work. They had the
following quantitative form of Weyl’s criterion for uniform distribution,
improving earler results by van der Corput and Koksma, unsuitable
for their purpose:

For an arbitrary sebt of N real numbers 2,

+Z Iskl)

Fomml

1— ﬁ_a

a< gy, <A(mod 2}

by ‘ <o (
where

N N
8, = ) & n
v gj
and e iz an absolute constant ([38]).

This it a discrete version of the Barry—Esseen inequality of probability
(obtained independently). It has been generalized for higher dimension
and distributions other than uniform by Koksma, Sziisz, Elliott, Fainleib,
Wiederreiter and Philips and others.

The inequality, which has many applications, was originally devised
for investigating the distribution of zeros of polynomials ([20], [38], [45]),
a problem Turan was again led to by the zeta function. Turin and Erdds
proved, among other things the rather preecise general inequality

1—ﬁ_anl }/%log M
a<iTET; <8 ® la “a"l
where
M = max |f(z)|
al=1

for any polynomial
7
fl2) = @2 + ... + 4, = aﬂH{zmzi)
=1

([387). Many other investigators have joined in this research.

Combinaterics. We briefly include here Turdn’s classical graph
theorem ({247], [707), which, sirietly speaking, does not belong to number
theory.

The special graph econsisting of the first a integers as vertices, two
joined by an edge if and only if they are incongruent mod (& —1), contains
no complete subgraph of & vertices. The theorem states that this is the
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unique graph of # vertices with this properfty having the maximal number
of edges.

The theorem had great intlvence and ecrested a rich theory on
extremal graphs. Turdn later found beautiful applications to discrete
geometry and potential theory partly in joint work with Erdds, Meir
and Vera T. S6s ([188], [194], [1973, [198], [204], [206], [207]).

It ig, perhaps, not Drrvelevant to conclude this review, which is far
from complete, with the following conjecture Turin and Erdds made
a long time ago: Every sequence of integers with positive upper density
contains arbitrarily long arithmetic progressions ([9]). After the first
result by Roth on progressions of three termes, the full conjeciure hag
been proved reeently by Szemerédi. This iz the most celebrated resnlt
of combinatorial number theory. Firstenberg, led by it to deep ergodic
investigations, has given a proof by means of ergodic theory.

Reeceived on 2.2. 1878 (1039)



