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XXXVII (1980)

On Waring’s problem
by

K. THANIGABALAM (Monaca, Pa.)

L. Introduction. Among the various estimates known for G(%) in
Waring’s problem, the wmost significant (for large &) are the following:

(1) G(k) << k(2logk--4loglogk--2logloglogk +13)  for %= 170000
and :
{2) G(k) < k(3loghk--5.2) for k=15,

Thege are due to Vinogradov [12] and Chen [1] respectively. Although (1)
is better than (2) for suificiently large %, for a large number of values of %,
(2) I8 a better estimato than (1).

In this paper, we improve on. (2) and prove the following:

Tunorom L, F(k) = k(8logk+logl08) < k(3logk+ 4£.7). (The improve-
ment being by essentially %j2.)

For gpecial (sinall) values of & Theorem 1 can be improved by mod-
ifying the method. For k « 10, H. Davenport [3], [4] and V. Narasimha-
wurti [10] obtained improvements on the estimates given by T. Estermann
[7]. R. J. Cook [2] later showed that

(3) FO) <9 and  G(10) <121,

Theorem 2 is an huprovement on (3). The paper of R. 0. Vaughan [11]
contuining the following reguliy appeared since the regults of this paper
were obbained. A briel comparison of the methods is made towards the
ond of the paper.

(4)  G(9) = 01, G(10) =107, G(11) <122, G(12) <137, G(18) < 153,

G(L4) =5 168,  G(16) <184, G(18)< 200, G(17) < 216.

In this paper, we prove the following:
TimoruM 2. ¢(9) < 90, G(10) < 106,
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THROREM 3. G(11)<< 121, G(12)
G(15) < 183, G(16) < 199, G(17) < 215, G(18) = 231, G(19
< 264,

Only the new and necessary arguments reguired in the proofs are
given and standard details are avoided.

<186, G(13) < 152, G(14) < 167,
} << 248, G(20)

2. Notation and estimate of a certain trigonometric swan. & Positivo
nombers 2y, ..., 4, ave called admissible oxponents for kbh powors in aceord-
ance with the definition in [6). Lot U, (k; &, ¥) denote the number
of integers » with X < » <7 ¥ that are represcotable oy o swn of 8 non-negu.-
tive kth powers.

Let N be a large positive integer, & o small poritive covstant and e
a sufficiently small positive number, Writo

(5) OP = NUE P, s VP, 7o PEFU
| e .
(6) yim(1~~5) (i =1,2,...}.

It is lmown that 1, g, e, ovy fhyey (82 2) are wdmisgible expononts,
and that

{7) : U,fh; P, 5 (2P 3 PRt 3 7=
whero
(8) P == '}’(s)(k) — 1‘{— f""l"l"’Mg“F Cen ~~i~- I‘!’H-.-:_]:”.

I
From (7) (it y < 1), U,(Je; PE~?, 525 PI7% » P~ 5 plv=? Tlance,
for large N, there exists a set % = {uy, ..., s,y Where each e, is of the form

3
2 af and satisfying
i=1

{9) Pyt <y 2R (6 ==, ..., U))
with
(10) U, » Pivs,
Let » run through the primes with
. : 1
(11) _ 5 PL g g phi

and denote the set of these primes by #. The number of cloments V in 2
satisfies

(12) ' . 1% > 1.‘){1'-"#,’2—3» .P%'_#,

icm
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Write

(13) Qa) = D' 3e(aviu).

v wuedl

The next levama follows by the same arguments ag in eage IT of Lemma 2
in Ch. IV (pp. 66-67) of [13] (on replacing the inequality X < P* by

X < Py,
Lumma 1. Let o == ajg--p with P < qg< P 181 <
Qo) < (-an"l +1)g"{Uymin(P,, q)PEP™.

< <Py I8l < ¢ P, then

g P;*. Then

-~ Z{l—-.k{l—y)}-[nd

Q(a) < @(0)P
0), (12) and (13),
Qa) < (U LT < (VU V1T plEei+on
< Q(0) Py iHipl-ivian pliisit o g0y P;%““’“(‘“ﬂ}“'{

The result now follows frow (5).

‘We modify the proof given for case I of the conespondmg lemma in
Vinogradov [13], and prove the following

Luvma 8. If a = a/g-+f with g< Py, ¢7' P75 < |8 < g PF%,
then

Proof. By Lemma 1, (1

<Q P 4{1 ic(l—v)]+k6

Proof, Uorresponding to the inequalitiex in the proofs of lemmas
10b and 10¢ of [13], Ch. I (pp. 29-31) we have (taking n(y) = 1, and
noting that ¢ (a) replaces §),
1

- .)Ic._“d ....1 [ SRS U
< Uy(P5°) llp(wy) — g (va) 12

! Z min {(P’,{“")E,
Ve vyad
whove @(p) = (a0 - gBv*) [q.
Now instomd of using Lomma 9 in Ch. T of [13], we argue as follows.
Lt 1 (a) denoto the doable sur on the right-hand side of the inegquality (14).
Gaso (). It v, = v, (the number of such pogsibilities being V), the
contribution to ' of the covvesponding terms is

(13 g VP,
Case (b). Liet v, = o, but of = of(modg), so that
—~g{og)] = [ (v} —v5).

(14)  Qa)l*

lp {w4)
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Now .
]'U’f—’v]ﬂ = |0y "Uz!ﬂl-l > P(()k—l)(l— ) 1’)3’ (l].).
Algo, by hypothesis, '
|ﬁ| > q—IP"’H’l“5 3 g—lPﬁ{—Ic-l-l—-ﬁ) ((‘«f- (5))‘
Hence
Bof =)l » ¢RI,
Furthermore,
(16) Bk —ol) < g PTRRRIR,
80 that
Blvt —of) = o(l).
Thus
(17 180} — o)l » g~ Py,

Now (since the number of divisors of g is < ¢°) it can be proved in a stan-
dard way that for a given v,, the number of v,’s satisfying vf == of (modyg),
and (11} is

1—d/e —Pl-j-s
< (1+ - ) §* € =
q q

(since g =sP,).

It now follows from (17) that the sum of the corresponding teruas in T ig

142
(18) < v( P ;

) qz_Pg(k-—l-J-lcrY)
<€ VR0 (uging ¢ < P,).

Case (c). Let o} s of(modg) (¢> 2). Then, since (@, q) =1,

a(vi—vf) =t(modq) with 1<t< q.
By (16), '
af(v}—of) <« Py¥2, 5o that B (v —v3) = o(1).
H_ence
t4-0{l
(v~ plog] = l -iéf—l“ (with > ¢3>1)
> 1/g.

(This does not lead to a good ostimate for large g, but we are only con-
sidering ¢ < P,.) Hence, the sum of the corresponding terms in. T is

(19) ' < Vig* < VPP, < VP! (ch (11)). -
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Tt now follows from (14), (15), (18) and (19) that
Q(a)|2 < TP ypiteeis o (U V)2(T, 7)1 phtiesa)s
Hence, since UyV = (0), we have from (10) and (12),
[Q(a}|2 < (Q(0))2Pa—fcv+ﬁpa-1+apg,+(2k+z)a,
go that
Q (a) < Q(O)P— %{1“']-7(1—?’)}+2k{5
P, )
The lemma now follows since from (8), P < P, < P2,

3. Foxther notation. With g, defined by (6), leb

T == fila) = e(ax®), fe=fla) = Z e{ax®),
Pllegpgopti Pgap
@
1 1
Slayg) = Dlewt), T(X,¥;p = ¥ e (gy),
. k, %
el Xy P

Iy = Ji{B) = T(PH, 2P 8y, 7 =J(p) = J(P,2P; B),

b o 0 4-8) = 800, 008), 9 - 0|2 +6) = 819, 0719

Hinco (L —7—) I an inereasing funetion of &, it is a numerical verifi-
0

cation that
1V 1 1
=\l—=] >—+— (k>
(20) mo=(1-3) >3+ Bz
With »*) (&) given by (8) let the integers 8, 8, be chosen to satisfy
(k) -1 1
9@ (39) (Fp) b Lo T 1
(21) ) (I} -} i -+ i >
with minimal g - 24,.
Liet
82:"1
(22) o) = flay{ [T ey}, v s pimins,
gl
anid
1zt
(23) PN) = [ Pa)@(a)e(—Na)da,
)

whaore @ (a) is delined by {(18) with s == s, (s0 that every u in the definition
of @(a) is & s of 8, non-negative kth powers).
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The interval
(24) Tl < a< 4t
is divided as follows. For 0 < g < Py, let m, , denote the interval consisting

of those o with

(25) a=»§~+ﬁ, <, (a,¢) =1, |pl<q e

and m, ; the complement of m, , in (24).
The m,,'¢ are digjoint, and their union is denoted by nu. The comp-
lement of m in (24) is denoted by m; so that by (23),

(26)  r(X) = [F()@(a)e(~Nea)da+ [F(a)Q(a)e(~Na)la.

4. Integral over m.
Levwma 4. If ¢ em,

s
0a) < Q(O)P—%{l—k(l-—y(ﬁl)(k))}+k:3 € QT oo L,

Proof. Every real number a can be represented in tho form
&
a=_+h 0<g<PhBI<aEE

Thus, if a € m, it must satisty the hypothesis of either Lonma 2 or Lemma 8
(since m, s are defined by (25) with g < Py).
Hence result follows from these two lemmas and (5).

Lenvma 5.
1
[ 1F(a)fda < Pree o tragmrbe g FoAke o (g),
1]
Proof. The proof follows from (8) with s = s, since 1, py, ..., Hyy--1

are admissible exponents for kth powers, and the integral is the number
of solutions of

g1 a1
A D) af) = yh (Y ok
|2 #) = v+ o
with
P<a<2P Ph g < BPH) _
P<y<2P Py <o U=k damly
LevMa 6. '

J P (@)@ (a)e( ~Na)da < N-"1%(0)@(0).

m
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Proof. The integral is

1

<< {I“‘t]XIQ(a)]}f |F(C)|21a
acnl h
.N ﬂl)(k] %-l- - (:‘ﬂ@_ 24

< I(0)g(0)

by Lemunas 4 and 5. Resnlt now follows from (21).

27)
and

(28)

5. Integral over m.
LisvmA 7. I 18] < &, then

v ﬁ) < ¢ min(P", P

o5 +8) < g minge, P,

Proof, Lemma 5 of [3].
The next lemmas i the main theorem in [97].

LieMma 8,
1 B _
o, (aa®) — Sla ) < g

lsggmesd?

Livma 9.
. a 1ot Ky
fi(w& o ‘3) —g; (E + ﬁ) <q max{l, P g},

Proof. The proof follows by f partial summation with Lemma 8

(with P* in place of P).

(29)
and
(30)

Lomma 10, On my, (¢<Py),
Simge < g 1<i<E)

f-g < g
Proof. (30) is Lemma 8 of [3]. Since |§} < ¢ 1 P~F179,

_'P’iF‘i |r3| & l)k(lw.lji.:}g—-lup—kvl‘-l—-ﬁ <1 (’b > 1).

Hence (29) follows from Lemuna 9.

(81)

Lovma 11, On m, , (¢<P), _ _
max{|f, lg) < @S (1<i<R)
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and
(32) max(|f], [g]) < q‘”’“ min {P, P"EIBY (k4.

Proof. By (20),for1 i<k,

g—llia_P;x,, 5 q—liLP1I4+1/27r+d 1)-"1/161)1/2 +1/kA-6 _P(l)/2-| & 3 q.1,'2+n_

Hence (31) follows from (27) and (29). Similarly, (32) follows {rown (28)
and (30) (since |f|™! » ¢P* 19,

Limvma 12, On m, g,

33) fz__gz < gslrt-r-u{q—lﬁa min(l”, 1)1—1’-?[[)"“1)}

and

)

1
(B4) S i o g g i p o ]
Proof. f2—¢* < [f—gi|f+gl, 50 that (33) follows from (30) and (32)
Now

(35) fifs-.fi—Gigs.. 02
fo—2

={(fi—affi.. fit { 2 Fige oo 01 (fiy — i) f)%} +

i=1
G e Gt (S 00)
and for 1 <i< U,
Fi—93 < |f;—gil{max(If}, l9:)}
< giteg U pr (g (29) and (31)).

Thus, estimating the abgsolute value of each term on the right-hand side
of (35) by using Lemma 11, the result follows since

1 1
;> — + == (I 1 k).
oy > 1 | o (for 17 k)
Lmmora 13,
I f \PFife - fi— G gigh .. gl da < PROHAE e = hise)
g<Py a my,

Proof. By Lemmag 11 and 12,
f2f1f2 —g”q§g§ . O
= f"-g)ff RO R G N O R
< q”“*’g‘”’“{min(l’, pr-t |ﬁ|—1)} q—z_pﬂ(ul-i---- 1) e

11
g {min (P?, PO~} !ﬁ{-Z)}q1f2+aq—(Zk-l)/i'ﬁl)z(”_l'F st g b1
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Now (with a = a/q- 8),
J min(®, PFBY R < PR ang

I“G‘.,q

fmin(Pﬂ,PZ”"’“i |ﬁ{—2)dﬁ < Pk,

ma_q
Henee, the inﬁegr&l of the Jemma ig
3_
- + 2Lt gy o Fpgi— R
< 2‘ Z{Q P2(1+u1+ » )1 Ic+e+g, Tk P i zk}
by ®
Also
S S S U S
Z Zq ik @POSM < P and qu 2k <P5/2 < P,
Py =Py a

The lemma now follows.
Lmvma 14.

2 3| W il ¢ Pt ke

gaPy 6 Mg
Proof. Using the estimates

g <gHEPTEBY, g < VPR (1KEH)

(from. Lemia 7),

-

_f |Q'29’§ gﬁlda < Pt up) P2(1—-Ic)q—2(k+1)]k f ﬁ"zdﬁ,

—lp—-

ma, a
and

o0

f ﬂ-—-zdﬂ < qr < q_Pk—l-i-d.

Hence, the integral of the lemma i

42
2.4 Zq ( 1;,2(11«:114- - i) prk—148
GGP{) o
Reguit now follows gince

- ()
2 q k < Pﬂ < pr2 .
pely &

Using the twivial estimnates fy(a) < f;(0) for k+1< i< s, —1, and
Qa) < Q(0} (and noting P+ ¢ ¥7'7%), Lemmas 13 and 14 respect-

6 — Acln Arlthmetica XXXVIIL z.2
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ively give

36) 3 [ fimggh e gl fhn - o] 1Q(0) e
9Py a My,
< N7 (0)@(0),
and
81) 2 [ 196t Gl lfhis - Frpal (@)l e < NTOHR(0)Q(0)

G Py o My,
(since PRO+A+- +m) < f2(0)f1(0) ... £2(0)).
It A(n,q) Z{Q"lﬂ a, q)} "+ e,( —an}, the singular
, ¢). It can be proved in a standard way

perics  that

we have to consider is _Z'A (n
q=1
that this iz absolutely convergent (see for example, Lemuna 11 in Oh, IX

of [18]), and that 2‘ A(n, q) < N~ (for n < N). Algo, the positiveness of

the singunlar series depends on the solublllty of the uyual p-adic condition
to be satisfied by n. (Here the »'s will be of the form ¥ —X — ¥ — oy
{w a8 in the definition of ¢ («) cf. (13)), and each of X, ¥ i3 of the form

2g~1

D af with P a, < 2P%.)

1=k4l

+If I'(k) < 2k+2, this is satigfied by every n. If 2k+42 < (k) < 4k
(it is known that I'(k) < 4%), ag in [1], we need to impose certain congru-
ence conditions (mod4k) on the #’s in the definitions of fi(a) for %<4
< 8,—1. These conditions will not affect the bounds for 4@ (k) in (8) by
maore than N7% so that the lemmay proved for integrals over m and
m still remain valid. (This problem does arise in the cage %= 16 gince I'(16)
= 64, but not for the other values of % in 9 < ¥ < 20 since from [8], I'(9)
=13, I'(10) = 12, I'(11) == 11, I'(12) = 18, I'(13) == 6, I'(14) = 14, I'(15)
=15, I(17) = 6, I'(18) = 27, I"(19) = 4, I'{20) = 25.)

It now follows in a standard way from (26), (86), (37), Lemma 6 and

the positiveness and convergence of the singular series that

(38) r(n) > NFH(0)Q(0).

8
6. Proof of Theorem 1. Since ™(f) = 1 - (1-— —:;'—) * and @0 (k)
o

145 .
=1— (1 - f) » Choosing sy, 8, (as in [1]) with

log 6k
39) s = [—-——_——-"g 1], &=
1 ;

. log3k

— 22" 4,
iy .

_log 1 -~
°g(1 fo) ] |

icm
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we gee that the condition (21) is satistied. Tt is verified from (39) that
(40) 283 +8; <k {8logk +log108}.

gince r(NV) does not execeed the number of representations of N as sums
of 28, + ¢, positive kth powers, it now follows from (38) and (40) that

G (k) < k{3loghk--logl08},

proving Theorem 1.

(The 1mprnvem@mnt in thig paper over [1] depends on the removal
of » factorlike | ¥ e(aw®)®) which was introduced in [1].)

Po<nag 2Py

7. Forther lexnmas for Theorems 2 and 3. The next two lemmas cor-
regpond to Theorem 1 and its corollary in [6].

Levya 16. If 0 =1k YA =1, 4 =0, 4 = of! (2<Li
with 0 << o<1, ko—(k—1) << 08" then A, Ay, ...,

§—1)
Ay are admissible

eaPONENES.
Leyva 16. In addition to the hypothesis of Lemma 1, let
(41) = (k—1)[{k—06°7%),
and
8—1 ]
htd 2 (1_%) (1‘I)
(42) o = oI(h) w DDA Ty .
k 1 1 ( 1\
BV k
Then,
(43) U, (k; P, s28P%) » Pka-r,

LeMmA 17. With a given by (42), let

_ 1 (2t — )( DR+ |
Then,
(45) U,palle; PX, (8 +1)25P%) » PH-e,

Procef. This is essentially Thecrem 2 of [5] {since 1/k < o < 1).

The next lemma can be proved by the same method ag in Theorems 1
and 2 of [8], but needs some modifications which are cmelal to the proofs
of Theorems 2 and 3 in this paper.

LEnia 18, With Agy Ay ooy Apy anil o 08 in Lemmas 15 cmd 16, lei
Lemma 17 be applied r times maossswely to give

(46) U, ,ai; P, {r +8)20PF) 3 PFr=",
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Then, there ewist numbers Ay, Xy, ..., Aoy forming admissible eaponents with

(47) A =1, 0<Z$< Ay (i=1,..,r+s-1).
Furthermore,
R S oy L)
(48) p' = T and ;> (1 P
(i=1,...,r+8~1).

(The A"s are compuiable.)

Proof. It is sufficient to congider » = 1, for then the lemmsa would
follow inductively for » > 2. It is important to make the following change
in the proof of Theorem 1 of [57. In place of equation (1) in. [5] (with the
game A) we start with

(49) '+ =y,
where w; = #f+ ... Fakg, uw =yh+ +'ys__1, subject to
Pgag2P, Priga<aPh,
(1=0,1,...,8—1).
P<y<2P, PHigy < 2P

Note that the s or u,’s (unlike in [5]) need not all be distinet, but from
Lemma 17, the number of solutions of (49) with @ =y (and hence with
u = ;) i§

(50) < Pltitlgtipt . Higu)ts ,

which replaces the correzponding estimate PU in [5]. However,
U » Pttt +h-d- apd hence the estimate (50) is weaker by
only P*, The arguments for the case » = y will be the same as in [B],
but here again the egtimate will be weaker by only P* for some congtant 1.
We take A; = A4, Since 1> 1—1/k and o>21-—1/k (from (41)), (48)
follows.

In the rest of the paper, we abbreviate for U,(%; PE, s25P%) by T, (k).
For the values of k under congideration, up to o certain value of s, the
bounds for U, (k) given by (42) are better than those given by (44). Thore-
after (for largers), (44) gives better bounds. However, for 13 < k< 20,
these improvements do not seem to be sufficient to get better estimotoes
tor & (k). Hence, for the sake of computational convenience, we use only (42)
for these values of k. We choose two integers s, = 8,(k), 8, = 8,(k) With

(51) U, (%) » N7,

as follows:
(a) k =19, With % =9,

Uy (k) » H7e

s =17, (42) gives a = al’(9) > 0.591135.

On Waring's problem 1563

Also (44) with & = 9 gives (by taking b = 5, 6 and 7 respectively)

314255
52 >
63512«
p e
and
' 127 +1025¢
2 e
(54) P (127 L a)

Using (82) once; and then (53) thrice; and then (54) 15 and 21, times res-
pectively we get

Uy(9) » W70, Uy(9) » Nme
(with s; = 26, s, = 82; y; = 0.961709, y, = 0.981956).

Taking h =k—2 (for % = 10,11 and 12), we have

-~ 25623056 ¢ _
(65) g=- 1M (£ = 10),
5110121«
- G A e
(56) P> TGt o = 31),
57 8> 1023 411265 ¢ (% =12).

121023 -~ a)

(b) Taking % =10, s =14 in (42), we get a'™¥ > 0.70074, Then,
we uge {b6) 20 and 22 timer to get vy, v, (with ¢, = 34, s, = 36).

(¢) & =11, 8 = 20 in (42) gives ¢ > 0.863996. Then (56) iz used 17
and 22 times to geb yy, vy (with 8, = 87, s, = 42).

(d) With & == 12, 8 = 26 in (42), a*® > 0.904366, (57) is now used 14
and 21 times (with. 8, == 40, 8, = 47) to got »,, ¥,.

(e} For 13 < & < 20, (42) is used with tho valucs of 8, s, given in the
tables to get y,, y, satiglying (51).

8. Proofs of Theorems 2 and 3. Although the proofs of Theorems 2
and 3 are cssentially the same as that of Theorem 1, it is necessary to make
a glight chamge. In place of y; defined by (6), we have 4, from Lemma 16
or A; from Lemma 18 (i > 1). In either case, we have py > 1 —1/k and
(1 —L[kY < pg <1~—1[k Hence, in place of (29) (for ¢ = 1}, we uge f,—g,
< ¢**t*  (which is Lemma 8 of [3]). From this also, it iz an easy deduc—
tion that on wm, , (<P,
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k 8 " 8y Ya 2898y
9 26 0.961709 32 0.981956 90
10 34 0.976306 36 0.980953 106
11 37 0.973909 42 0.983953 191
12 10 0.972075 48 0.986185 136
13 48 0.980299 52 0.985704 152
14 51 0.978882 58 0.987439 | 167
15 57 0.981779 63 0.98796 | 183
16 61 0.981765 69 0.989125 199
17 65 0.981754 75 0.990054 | 215
18 71 0.983719 80 0.990271 231
19 78 0.986067 86 0.99046 248
20 80 0.984209 92 0.991603 | 264

ot 1 1
T A 2k
Php ,
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[

max(|fyl, lgsl) < P and  fy—g, < ¢

as required in the proof of Lemmas 12 and 13.

We also note that the set corresponding to % in §2 is constructed
In a slightly different way. However, this does not affect the method
since we use only the estimate for ¥,, the number of elaments in %. The
rest of the arguments remain valid. Thus, if the integers 8,, s, are such
that (corresponding to (21))

. -1 1
58 " —
(68) Yat+ 1 -+ i >1,
then G{k) < 25,3, _

(68) is satisfied by the values given in the tables, and the theorems
£ollow.‘ It is estimated (by comparing (8) and (42)) that tho estimate for
G (k) given by Theorem 1 can be improved by about 10 for further values
of k.

Bemark. The use of a factor like 3 s(apple*) in [11] (s0e (2.1))

., . . . . . X ».’pﬂv’”
is digpensed with in this paper. While (21.20) of [11] gives slightly better
bounds (for eertain values of & and s) for U, (k) than the corallary to The-

orem 1 in [6], the improvements do not seem to be sutficient to obbain.
better bounds for @(%) (in this paper).
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