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The metrical theory of continued fractions
to the nearer integer
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Let I be [—4%, 4] and let 2, € I be nonzero. Let a, = ay{#,) be the
sign of 2, and let &, = b, (z,) be [a,/z,] if {a/e} < % and [a,/e,]+1 other-
wise. Then 2, = (a,/#,) — b, i in I. This process may now be applied to 2,
to yield @y, by, and 2, e I. It is clear that for any irrational 2y €I this
process may be continned indefinitely and thus a unique sequence of
digits a,,, b, is formed for each such z,. The resulting expression

I S Ln

By = b, 4 7. +...+bn +...

will be called the (semiregular) continued fraction to the nearer integer
for 2. The by, by, ... are the partial denominators and the ay, dg, ... are
the partial numerators. If this continued fraction is terminated at the nth
term (n 2> 1), the resulting rational number, the n-th convergeni, may be
expregsed in the form

: W

I T ST
B, b b b,

where the 4, and B, satisfy the recursion formulas
'A'n = bﬂAw,—l"f‘ a’ﬂ."’in—zg By = by By g+ Byy

and where 4., =1, 4, =0, B_, =0, and B, = 1.
Liet IV (m) be the nearcr integer function given by N () = [z]if {#} <
and [e]-+1 if {x} > 4 Then the transformation T: I-1T given by

Te == sign (w) (—% - N (—;L-;)) generates the continned fraction to the nearer

integer algorithm in the sense that 7™z = 2z, for # > 0 where T° is the
identity transformation of I and T is the n-fold composition of 7 with
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itgelf for » > 1. That T iy indecomposable with respect to the Lebesgue

measure follows by translating Knopp’s Theorem ([2]) for regular con-
tinued fractions. Let 4 be (1 +V5)and let p(t)be L (A +1+2)if —} <t < 0
and 1/(4+-1) if 0<<¢< . Then if % is any Lebesgue measurable get, the
Imeagure

1
y(H) = mﬂfp(t)dt

is invariant under T, as may be checked by direct calculation. These
results are included in [6] and also are announced by Rieger ([B57]).

Let & e I and let »,(2) for » > 0 denote the Lebesgne measure of the
seb of 2, & I such that — 4 < ™2, < . The estimate v}, (@) = »' (@) (1--0(g™)
where 0 << ¢ < } is a constant, follows from the gencral

TEmorzn. Let f(w) be amy twice differentiable function on I such that

Jo(—23) =0 and fo(3) = 1. Let the sequence of fumetions fy(x), fi(a), ...
be defined recursively by

»

(=]

215 = b)) =) 3

Rea=3

if —i<o<0;

fonte) = [b=ho{55) +af375) (- b+

and let g, () for n > 0 be defined by f,(w) = g, (2)v, (@), If gy( —3) = go($)
and gy (@)l < M, on I for some posilive constamt My then |g,,, ()| < M, q

on I where M, is the mamimum, of 0 (@} on I and 0 < ¢ < % i8 a conslant
independent of n.

This result is proven in [6] uging the methods of Sziisz ([7 1) and
several numerical estimations are required. Using thizy Gauss-Kuzmin
type theorem, I ghow in the following sections the results for continued
fractions to the nearer integer corresponding to Khintchine’s Theorem (§ 1)
and Levy’s Theorem (§ 2) for regular eontinued fractions. I will use these
resulfs to calculate the relative frequency of digits in the contipued frac-
tion to the nearer integer expansion of almogt all numbers and will ealen-
late the geometric mean of the partial denominators. Tn the course of
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these demonstrations, I will indieate how to extend these resulis to include
central limit theorems and the law of the iterated logarithom.

I would like to express my thanks to Professor Peter Sziisz for his
ingpiration and guidance throughout the preparation of this paper and
my thesis ([6]).

} a ay
i, Let t = b_l —}-—l-)—“- -+ ... be the continued fraction to the nearer
1 2

infieger representation of the number . Let E (¢: P) be the set of numbers
t « I with the property P and let m{¥E) be the Lebesgue measure of the
set H. The phrase “almost all” will mean “excopt for a set of Lebesgne
INCANTIre Zero,”

TemoreM 1. Let f(k) be any number theoretic funciion such that F(k)y
= O(k**) for some &> 0. Then

L, 1 5A+3
tim %—I%f(bk) = Togd /Mg o

I Nl [AG=D+1 (AL1)E+EH -1
" loga gﬂ"”"g(mw)ﬂ ErDE 1)

Jor almost oIl L.
This follows directly from the next two lemmas.

LA 1.1,
e n
-y P 5418
D) )t = o fimlog Lo +
—1/2 kel
n ol [AGE—HF1 (A+1)(@‘+%)—1)
A £ . - 4 O(1).
*logd ﬁf(” Og(A(i—i—%)—l—l (A+1)(Ei—PH—1
Proot,
—1f(2-F) 12 .
: 1 . BA+4S .
mBl b)) = [t [ =l 0,
—~1f2 1{2+1)
and for i > 3,
= 1f{E-+ %) (i)
m (B by = i)} = v+ f v,

—1{i—-1) {44

1 Al —3)+1 (zi+l)(i+%)wl) (g"_)

== 1o ( T - . ‘I“O .
logA AG+H+1 (A+Li—$H—1

22
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Thus
/2 n n _f(Z) o 5.A+3 +O( L)) N
[ Zf(bk)daiz;(lw 1rs +0l
~12 E=1 =

v f6) A(@'—%)+1,<A+1)(fz+g~)——1) O(_qj))
+];m(logAlog(A(i%-%)+l (A+1)(4—~§) —1 FO%
and the result follows.

Levya 1.2, Let I, denote the integral of Lemma 1.1. Then
”
m (E(t: ’Zf(bk) ——En] > d%))< afdn
kie=1

where ¢ 18 a constant and 8 > 0.
Proof. This follows from Chebyshev's Incquality provided that

12 N

J (Zf(bk) — I, @t = O(n).

—Ijs k=1

But the integral is just

12 =n 0o oo n n
[ > rewya—m+ D1 ) o) fs) ZZm(E(t: by =, by s 8)).
—1f Rl r=2 B=5 kMIit:??f
Since

(¥)  m(E: b, =r, b, =s)
= m(B{t: b, = r))m(B{: b = s)) (L+0(g* 1),
this lagt sum is B+ O (n) and the whole expression becomes

o oo 22

ki
log A

rivion [AGHHL (A+TE+HH -1\
+2f (7:)10%(44(,?;_%%)“}_1 (A1) E—) 1 )) FO(n).

i=3

Application of the condition f(k) = O (k¥ to the ahove expresgion gives
the degired regult.

CororrAwy 1 (Frequency of digits). Let 4 3+ 2 be an indeger then
1 DA43
S arad 1] S
Lo log 4 5A 43
lim — > 1 =
mo l ! 1og(~4“—%)+.1 AL -1
logd C\AG++1 A+ H=1

if i=2,

if i3

Jor almost all 1.
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This follows from the theorem by letting f(k) be 1 if % =4 and 0
otherwise. Letting f(k) = logk gives :

CorOLLARY 2 (Geometric mean of partial denominators). For almost
ali t the limit as #~ oo of Vb, ... b, is

log2 0 ogk

logk
BA+3\Tood ;= (A(b—3)+1 (A+1)(h+3) —1 \osd
aza] ™ [ - )

54 +2 AG+3H+1 A+)(E—$)—1)
UomoLLARY 3 (Frequency of plus signs). For almost all t,
1 1 1
lim — = 1 —].
,,,Enwn 21 log A Og(1+2A)

lesin
ap=1

Proof.

12

m(B{t: a, = 1)) =f = — _Jog ATE

log A &~ A

The remainder of the proof proceeds as in Liemmas 1.1 and 1.2,

The eritical step in all these results iz (+) in the proof of Liemma 1.2,
In the language of probability, this is the statement that the b,’s determineg
& mixing sequence of random variables. Thus the results of Ybragimov [1]
and of Reznik [4] together with the Jorollaries to Theorem 1 give the
obvious central limit theorems and law of iterated logarithm immediately
(see also Philipp [3]).

+0(g".

2. THEOREM 2 (Denominator of nth eonvergent). For almost all ¢

n___ 1/2
the limii as n-+ oo of VB, is exp () where K= [ log|l/tidy(t).
=2
Proof. Let { — -+ % be the continued fraction to the
by + by +
nearer integer expansion of 1. Let
1) @
= b Al A
o By + By
go that
F1 1
= and =,
Pn "L P P41 o

Recall that B, = b,R,_,+a,B,_, and go

a,,.. B
B + n+2 H) 2
By 1Pnss 0By ( e T = Prpgs
B,y + 1By a "
nPut1 T Oy Baoy Bﬂ(bn+1+¢”+2)+%+13n-z
n+2
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Since B_, =0 and B, =1,
1

- (B 2 By)
‘ Po e oz Bogrt B, ( nt1Pnie T Fnp2n
and so
By, 14 Srste )
Pr e Popr = Ppa 9%+2~Bn+1 ]
or
1 B
2 e
- logh log {1+
n-+1 ]21?' toe? n-+1 ( 08 Buya 08 P B
Now, /% 1/2 1
i
j log gy ¢ == f log —;L (L 0(g") dv(2)
-1z —1/2
so that
1/2 .
[ logguy,di = K+ 0(g").
—1f2
/
Let B, = }2 ( ﬁjlogcpk) dt. From the above, H, ., = (r-+-1)E+0(1).
~1j2 k=1
2 n+l .
I it can be shownthat | { 3 logepy, —8,,,) dtis O(n +1), then Chebyshov’s
~1f8 k=1 . . . L. )
Tnequality will give the required result. But the integral in question i just
1/2. n+1 12 n4l ntl

f (Zlogz%) dt— By, + f (2 Z 10%’9’;;103’%) at

— 1z =1 —1f2 k=1 :;lla
so it suffices to show that the last integral is Hi,, + O(n-+1). Bach term
Yﬂ logp loge dt iz fwlogmlog'ydﬁ’(m, v) where the function F(m,y) is
—1f2 2 o ] )
F(z,y) =m(B(t: Lp, <o and Lip < y)). If it is true that
F'(w,y) =m' (B{t: Ljp, < o))’ (B g, <y))1+0(g")
then the proof will be done. Suppose that % < 4. Then
B %
=b, -—= .. —
P _}a+ by + +
go that the desired resultis not immediate. Howoever, lot

P = b %1 Gpy v
’ bt b+ + bun

for some N, then , and @; have the relation required for ¢, and ¢;, But

@r—wsl < efor any e > 0 provided N is large and go the proof is complete.
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Again, thig observation shows that the central limit theorem and the law
of the iterated logarithm mentioned at the end of §1 carry over to the
denominator of the nth convergent.
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