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X. The aim of this paper is to establish a relation between the conjec-
ture ¥ on simultaneous representation of primes by several irreducible
polynomials (see [12] and [5]) and a conjecture on Diophantine equations
with paramebers that wo shall denote by C. Both conjectures involve the
notion of the fixed divisor of a polynomial, i.e. the greatest common
divigor of all values the polynomial takes for integral values of the argu-
ments. The eonjectures run as follows,

. Let fi(»), ..., fu{®) be drveducible polynomials with integral coef-
ke

fiotents and the leading coefficients positive such that [ f;(x) has the fived
j=1

‘divisor 1. Then there ewist infinitely many posilive integers © such thal
all numbers f(z) are primes.

. Let B(w,y) e Z{w,y] be a form such that
(1) Fo,y) = Fy(an+by,cot-dy) for any F,eZ[z,y] dnd any

ayb,0,deZ implies

a b

) e dl = £

If flt,, ..., 4) e L[4, ..., 1] hos the fimed. divisor ‘equal to its conlent and
the egualion

(2) ‘ —F(w;y)mf(tla"‘:ir)

is soluble in integers @, y for all integral vectors [ty ..., %] then there ewist
polynomials X, Y e Z[t, ..., ] such thot identically :

3 FIX Gy ooy )y Xl ooy 8)) == flly - 8.

A conjecture similar o O has been proposed by Chowla [3]. He hag
made no assumption (1) but requived F and f to be irreducible and have
the fixed divisor 1. The following example shows that this iy nob enough:

Flo, ) =a® 3", [l ) = #-+tty 41

Tn- this example tho set of values of F(z,y) and of f(4, 1;) is the same,
but F and f are not oquivalent by unimodular transformation, which
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answers in the negative a question of Chowla (ibid., p. 73) repeated in [91].

The condition imposed in C on the fixed divisor of f is essential, as the
following example shows '

Tz, y) = 20%°, 1) = £+ 1)

Here the solutions of the equations (2) are given by

2 =218 y =t if

m=3(+1) y =2t if

b == 0mod?2,
1= 1mod2,

but there are no integer-valued polynomials X(1); ¥ (t) satisfying (3).
Another example with F primitive is given at the end of Seotion 2.

One special case of C corresponding to F = w* y® hag boen proved
in [3] and [4]. Chowla has algo indicated how his conjecture for F(w, y)
quadratic should follow from the special case & = 1 of EL. We shall extend
these results in the following two theorems.

TamorEM 1. © holds if Flw, y) = 2"y (k> 1,12 1) or if F is quad-
ratic and equivalent (properly or improperly) to every form in its genus. For
such and for no other quadratic F C extends to all polynomials f e Z[t,, ..., 1]

TunoreM 2. H implies C if ¥ is a guadratic form or a reducible cubic
Jorm. _

We shall see (Corollary to Lemma 3) that C implies the following,
less precise but more general assertion,

D. Let Bz, y) e Z[x, y] be any form -and FeZlt, .., 4] any poly-
nomial. If the equation (2) s soluble in integers @,y for all integral veclors
[ty ..., 8] then there exist polynomials X, Y e Q[t,, ..., 1.) satisfying (3).

D has been proved for F = »" and any v in [7] and [11] also for any
irreducible quadratic ¥ and » = 1, in [4]; »>1 in [14]; for reducible
quadratic ' it follows casily. We shall show :

TuROREM 3. H implies D if I factorizes into fwo relatively prime factors
i an imaginery quadratic field. :

In virtue of Theorem 3 H implies D for I = g®-|.¢", By a wmodifi-
cation of the proof of that theorem in this special case wo shall show yet

TrmoREM 4. H implies C if F(a VY) =y (52 2). Forn o= 2 and
- Jor mo other w im question O extends 1o all polynomials fe Z[t,, ..., 45

At the cost of considerable technical complications indicated hriefly
later one can extend Theorem 2 to all forms F splitting completely over
a cyclie field except those with all zeros conjugate and real. The gquanti-
tative version of H formulated by Bateman and Iiorn [1] (sce also [B])
implies O in the exceptional case at leagt for ¢ — 1. Similarly Theorem 3
can be extended to all forms I that factorize mto two (listine complex
conjugate factors over an imaginary cyclic fiald,
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2. In the sequel we ghall wse the vector notation and write ¢ instead
of [ty, ..., ], ¥ instead of [, ..., t,], [t] for max [{]. We shall denote

1=ssily
the content of a polynomial f by C(f), its total degree by [f] and call
a form F satislying (1) primary. The letters N, Z, O denote the set of
Iiositivu integers, the ring of integers and the rational field, reispec‘.‘mvely.
Tor a tixed field K N denotes the norm from K to Q@ or from K(E) to Q(F).

- The eemtont of aupolynomial over K is an ideal of K but if K = Q it is often

identificd with the positive gencrator of this ideal.

Tamvma 1. Let P eZ[t], p be a prime dividing neither the leading
coefficient wor the diseriminant of P. If i,eZ, P(l) = Omodp then
either P (4,) o 0modp? or P(t,+2p) & O0modp* o

Proof., Denoting the leading coefficient of P by a, the discriminant;
of P by D and its derivative by P’ we have

POYUE+PHTV(R) =ab, .
where U, V e Z[t]. Setting ¢ =1, we Infer from P(t.[,) = 0modyp, oD
= 0modp that P'(4,) % 0modp. Now from the expansion
Plto-p) = P +E g + gL it .
we get Pt -+ p) —P{t) 5 0modp®, whenee the assertion.
“ LavMmA 2. If a quadratic form B is primary then

B o= AG (2, y), whee  AdeZ, G, y)eZ[z, 4],

. 4
A s square-free, the diseriminant 4 of @ is either 1. or fundamentol and (5)

== —1 for every prime factor p of A. _
Proof. Tf & is reducible, & = (az+by)(a'z+b'y) we have
Fla,y) = (dax+ Aby) (o'z +b"y)

b]

a b

and. by (L) _
. a’ b

Al
a‘ I) . - . b S'S
T ¢ iy irreduciblo, lob G == aw? - bay -+ oy?, and let o, @, be & basi

= :h 1, . .A, = '_'_L’ 1 %nd A == =1.

of fhe ideal a == (a, fijﬂ) Then we have for suitable integers

9
hy, g, By,
17 Yas My Ve b =ty - G 0n,
-«Z-)_j:,..'_/.:./l, . blwl -)._ bzwz;
o )
Let K oo Q(]/./i() and let us set
' Fy(, y) = Aa N (2w, -+ yoy).
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Since Na = |a| and (w,, w,) == 0moda we have
CBy(@,y) e Zlx, y).
On the other hand

b+V4a
-+ +2 ¥ == (@ + by y) o3 + (228 + by9) w,,
hence
Bz, y) = Fylogz+byy, a,0+b,9)
and by (1)
ay by _
as by| +1.
b
It follows that [a,, zﬂ] i itself a bagis for a and by a well known
result ' N
b4V 4
1 2
|G/] = ——ahs .
Vid . b—V4
2

where d is the diseriminant of K. It follows that 4 = & is a fundamental
4
discriminant. If 4 is not square-free or for some p|4d we have (E) =0

~ or 1 then for a suitable prime ideal p: Npld.
Let pa have an integral basis [2,, 2,] and let us set

Fy(w,y) = Aa” ' NpT N(aQ; +y2y).
Since N (£2,, 2,) = |a|¥Np we have

- Fl(wyy)ez[m:?f]-
On the other hand
w,-N:pF—" Gigl"i"di_gz

for suitable ¢, d, €Z, hence

(6 =1,2)

(@@ -+ sy ) NP = (6,0 -+ 00) O+ (b2 4 doy) 2,

and we getb
Pz, y) = Fy{eyz -6y, dyo-+dyy).
Now by (1) ' B
' ' C1 €y
d, 4, = Eh

hence [w;, Np, w,¥p] is a basis for ap and aNp = ap, a contradiction.
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Remark. Similarly one can show that if a primary form F(z, y)
is frreducible and F(9, 1) = 0 then [1, #] can be extended to o Dasis of
the ideal (1, ).

Proof of Theorem 1. Congider first Flx, g} = oy and let

(4) Tty = ¢ H ALK

bo the eanonieal factorization of f into primitive irreducible polynomials
with integral eoctficients. In view of the condition on the fixed divisor
of f for every prime factor p of ¢ there exigts & vector t, € Z" such that

N
[Tr,y = omoap.
pe=]

It follows from. (2} with ¢ = t, that

ord,e =ka+18,
where a = ord,w, f = oxd,y and we get
(5) ¢ = Aty Enel. ,
On the other hand we can assume that £(£) depends upon t,. Let aq(t'),
DH{E'}y be the leading coetficient and the diseriminant respectively of ]n[l F.()

with regpeet to 4. We have a,D 5= 0 and there exists a vector £, e 271
such that
ay (8) D () +# 0.

For every » < » there exists a prime p and an integer ¢, such that

(6) Folty, £) == 0modp,  cay(t)D() == Omodyp.
Put ‘ '
(7) Py = []H04,8).

vazl

Bined ay(#;) 0, the diseriminant of P(t) cqualy D(). Hence by (8)
and Lewnna 1 there exists a 1, € Z such that

P1) == 0modp,  P() s cmodp?.
We infer from (4), (5) and (6) that o
(8)  filty, &) = Omodp,  f,(4,4) s 0modp?®,  f.lt, ) % Omodp
o e ).
It follows from (2) with $ = [t,, ], (6) and (8) that

) - o = ka,+18,,

§ ~— Acla Arithmotiea XXXVITL
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where a, = ordyms, §, = ord,y. Take now
L n Tt
X, = & [J A0, L@ =a] [ 1"
=1 FELS |

It follows from (5) and {4) that
X (B Yo () = /(8.

If the sign on the right-hand side is positive we take X = _X(!, Y = Y,“
T the sign is negative and cither % or 1 is odd, we take X = L X,
Y = 4 Yn. Tf the sign is negative and %, I are both even we geti w contra-
diction. Indeed by (5) ¢ < 0, by (9) e, == 0mod2, I{enae by (-’L:) .‘f(t_) ﬁ 0.
Taking & € Z" such that f(#) # 0 we geb from (2) afyt < 0, which iy im-
Posmg?ﬁsider now the case of F quadratic. By Lemmnj 8 Fig of 1',1.1(; fOl‘.IIi
AG(z, y), where 4 is square-free, Gz, ) is a primitive form -with dis-

criminant A, (é) = —1for évery prime factor p of A and either 4 = 1
p

or 4 is fundamental. In the first ease F(x, y) is equivalgnt o oy zmd
for the latter form ome can take X (¥) == f(f), ¥ (¢) = L. In tho seeond
case it G(9, 1) =0, K = Q) and a is the ideal (1, §) we have

Ohanging if necessary the sign of 4 we can assume thatb
. Flz, ) ~—f—L——N(m—ﬂy).
(10) 3y - NC[ . J

. Nﬂ. 3 * . oy s
The solubility of the equation N(w) m_;rj(t) for adl # e Z" implicy

by Theorem 1 of [14] the existenee of a polynomial o (#) & K[E] such that

(11)

[N
tas,
=

be the factorization of ba™! in prime ideals of K. Iere p, are distinet pair-
wise non conjugate prime ideals of degree 1 in K, p; is conjugato to p;
and ¢; are prime ideals of degree 2 in K. Since AN (ba™") € Z and A has
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only prime ideal factors of degree 2 in K we get

24120 (L<i<h),
hence
(12)  max {0, &} +min{0, b} =0,  max{0, b} +min{0, a} > 0

(L=<d ),

Leb us congider the idoeal
i
¢ = ” .pipin(o,b{)—-min(n,ui)p;_m.in(o.ai)—mmm,bt)'
4=1

Sinee ¥ is equivalent to every form in its genus the same is true abont G,
thus there is only one narrow class in the genus of g or there are two such
classes represented by a and o'. In any case the principal genusg consists
only of the principal class and the class of a2 Since v; ~p;’, ¢ belongs
to the principal genus and we get ¢ ~ 1 or ¢ ~ a% In the former case let
¢ = (y1) with y, totally positive and consider the polynomial
wi(t) =y, 0(8).
We have

J g k
G(CO]) . (7’1)0(5‘3) == h = qa p7:11113:{0,(.v,q;}-|-111i11{(?,!’).5} :p;max{ﬂ,bi}{-min{o,ai} gq i
and by (12) ({ew,) = Omoda. _
It follows that all the coefficients of w, are in a and since by Lemma 2
[1; 0] is a bagis of a we get
o (t) = Xl(t) _'&:Yz(t):

where Xy, ¥ € Z[#]. It follows now from (10) and (11) that

A A
F(Xy(t), Ty (F)) == o Vi) = s N No) = Nef(t) = 7).

In the case ¢ ~a? let ca™ o’ = (p,) with p, totally positive and consider
the polynomial - o

@z (1) = ypw ().
We have

O(ws) = (1)) C(w) = ™ a'D

i - k
= Hp?ux{o,msﬁmin{o,bi} H:p;max{o, bitmin{0, oz n gg,,_-’

Fe=l e ] fa=1

and by (12) 0{w,) = 0moda’.
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Since [1, #'] is a basis of a” we infer that
wg{b) = Xy(8) — 3" X,(t),
where X, ¥, € Z[1]. Since Ny, = 1 it follows as before that
FX, (1), Yo(H) = f(B). \
Tt remaing to prove that if there ix a form inequivalent to I in the genng
of F then O does not extend to all polynomials f € Z[£]. For this purpose let
us observe that there exists then in K o class O of ideals such that ¢
is neither the principal class nor the class of a* Choose in ¢~'a prime ideal p
of degree 1 with Np = p. There exists a prime ideal q such that p*aq
ig prineipal, equal, say (a). Consider the polynomials

(13) oty = a =t ) =—-§ENm(;§).
We have
Al [Na
i) - pa—l =4|Nqe Z

Y

c Z for all £ € Z we have for all t e Z:

]1caﬁce f(#) e Z[1]. Also, since

‘mtt) ea; w(t) = —dyand
f) = F(,y)

for suitable #,y € Z. On the other hand, suppose that

{14) fioy = F(X(), Y1), X,Y¥eZ[]

and let @, y be the leading coefficients of X, ¥. Then comparing the lead-
ing coefficients on both sides of (14) we get by (15)

A Na A ‘ {x—7Dy)
E\T“E_FEF(m’Q):FEN(m_ﬁy)’ Nq=N— a -
Since q is @ prime ideal, ® —dy e a it follows that
(~—By) ,
e == (D) .
o G or g

Hence aq ~ 1 or aq™’ ~ 1. By the choice of q this gives p* ~ 1 or prat ~1
contrary to the choice of p. )

Remark. The above proof seems to suggest that if. &7 satisties (1)
and for all e Z" the equation (2) is soluble in integers x, y then there
exist integer-valued polynomials X (¥), Y (f) satistying (3) identically.
The following example shows that this is not the case. :

14V —2

Let F(z,y) = o' +oy+6y% K= Q@ —23), 0 =
F(t) = N (3w — o) +o—8).
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The discriminant of ¥ is —23 hence I is primary. Further, f(t) e Z [¢]
(2, w)
(2, o)

Moreover the equation ¥(w,y) = f(f) is soluble in inbegers =,y
for all t € Z. Indeed if 1 = 0mod2 we can take

gince (} 0* —w, o —8) = with @' conjugate to w.

e+yo =(jo'—o)i+o—8

and if 4 = 1lmod2 we can take

[(}o'—w)t?*+w—8].

The number on the right-hand side is an integer in K gince for ¢ = 1mod 2
(30* —w)t*+w—~8 = {w'—8modd (w®—20)

and we have in K the factorizations into prime ideals (2) = pp’, (») = pq,
{(—3-+V —23)/2) = p.
On the other hand, the polynomial (3 * —w)#2 4w —8§ is irreducible
_ i
over K gince N 8o 8
To*—w 381
integer-valued polynomials X {#), ¥ (1) satisfied

iz not & square in Q. Thercfore, if

F{X(), Y(0) = f(1)

identically, we wquld have either

X+ Yo =yt —o)+y(e—8)
or

T+ T(Ho' = y(to' —o)it+p(o—§)
forgome y e K with N 9 = 1. Taking ¢ =0 and 1 we would get y (3 0* —w, 0 —8)
integral, henee (y)nE;- integral and (y) = ppl HHowever the ideal on the
right-hand side is not principal.

8. LowMMA 3, Hoery form I(m, y) with et leest fwo distiinot geras con be

represended as B, (ax--by, co--dy), where Ky i primery, a,b,c;deZ

o |u b
and ¢ d’#o.

Proof. Suppose that F(z, y) = Glax+by, o+ dy), i? 3‘ 5% 0.

Let F* Dbe the produet of all distinet primitive irreducible factors of ¥
and similarly ¢* for @. It follows that

F* = 07 @ (ax + by, cv 4 dy),
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where ¢ = O(G*(av+ by, cx+dy))|C(F). Hence
[F* {17 —1)
dise F* = ("7l dige G- “‘3
and since diseF* £ 0, [F*| > 1 the absolute value of : g is bounded.

Take now a representation of F(x, y) as Gax+ by, cx+dy), where ’? 2

is maximal. ¢ must be primary, ctherwise representing it as &, (a2 by,
e - ) we wonld obtain a 1eprnsentwt10n of I as Gy{an+ By, ya-+ dy)

with
ﬁ a b| a, by a b
fxbs = aby e al’ abs o d, _zubs al
contrary to the choice of @, unless lcl (bl = (., In the latter case
1 1

however & and hence algo T would have only one zero, oontmrv to the
a&.sumptmn

-CoroLLARY. O dmplies D.

Proof. Let F{x,y) c Z[z, y] be any Iorm, f(t) e Z[1] any polynomial
and suppose that for all £ € Z" there exist #, ¥ e Z satisfying Flx, y) = f(§).
If F(w,y) = const or f(¢) = const D is trivial. If F(»,y) has only one
zero, we take withont loss of genmerality F(z, ¥) = a(bz-oy)*, where
b # 0. Applying Theorem 3 of [13] to the equation aw® = f(#) we infer
the cxistence of a polynomial U(#) € Q[F] such that a T(H™ = (1)
suffices to take X () = b 'U(#), Y (&) = 0. '

If Bz, y) has at least two distinet zeros then by Lemma 3 F(z, )

dJ #= 0. On the

other hand there exists a vector ¥, € 2" such that f{ ta) == ¢ 7= 0. Congider
now the equation

= F,(ax - by, cx+dy), where F, is prlmary and

Fl(mj y) = fet 'I‘to_)-
The polynomial on the right-hand side hag both the content and thoe fixed
divisor equal to jel, hence by C there exist polynomials X, ¥, e Z[1]
sueh that F, (X,(1), ¥ ) = f(et--£). Dretermining X (£), ¥ (#) from
- the equatbions
‘ 1
X (84T (H) = X, (H—P-),

(}
X (8 +AT () = ¥, (f{;’tﬂ)
we geb ' ' .
- X8, Y(H e @[], F(X(#), Y{F) =[5,

. thus I» holds. :

icm

On the relation belween hwo confectures on polynomiols 205

Luvwma 4. H implics the following.
Let f, e Z{t] (1 << v << m) be distinct irreducible polynomials such that
their leading forms k() all assume a positive value for a t e N" and that

b
TT £ (&) has the fiwed divisor 1. Then for any B there ewists o £ € N™ such
pe=]
that 1,(t) are distinet primes > B.
Proof. The condition that f, are irreducible and distinet hmplies

that they are prige to.cach other, Indeed, otherwise two of them wounld
differ by o constant tactor s 3% 1, The numerator and the denominator of ¢

”
would divide []f,(
w=l
condition on &,.

Let ug chooge an a e N* such that
(an) @) >0 (L sn)
and lot :

for ail § henee ¢ = —1. But this contradicts the

) ']_Ilt

= ([a] + gl +

Since

’fmzﬂﬁﬁm

p=al

has the fixed divisor 1 we infer from the Chinese Remainder Theorem the
existenee of & 7 eZ" snch that '

(16) (f(z),

Congider the polynemials f, aw-}—at—}-r} (1=<v=n)

They are irreducible as polynomials in o, £ and prime to each other.
Oonsequently the resultant E,,(f) of f.(aw--at+z) and f,(er+al+7)
is non-zero for all p << v < n. By IDilbert’s irreducibility theorem there
exists o ¥, & 27 guch that f,(aw+af,+-7) (1< » << n) are all irreducible
a8 polynomials in 2 and

(27) [ tt0) #0.

pH

a =1.

The Iending coefficionts of f, {(ax - af, 1) are positive by (15). Moreover

p () == Iﬂlﬁ,(ﬂm A oty 1)

has the fixed divisor 1. Indeed, the |plth diflerence

A p(0) == a,
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on the other hand
2(0) = flaty,-+7) = f(r)moda

and we get (7(0), 471(0)) =1 by (16).
By H there exist infinitely many # ¢ N such that f,(as-+ ab, +r)
are primes. For sufficiently large « we have aw - at, -« e N” and

H
(18) flawtatyt7)> 1B + 3R, (4).
ey

Thus the primes in question are > B. They are digtinet gince the comimon
value of f,(aw+at,++) and f,(ax 4 af,--7) would have to divide T ﬂ;,(tn)
which is impossible by (17) and (18).

Luwma 5. Let K be the vational field or a guadrotic Jield, 4 be the dis-
eriminant of K and let @, € K[1] (1 < v < n) be polynomials irreducible over
K and prime to each other, If o

n H
(19) the fized divisor of ” N, (f) equals H NO{g,)
p=1 r=1

then for every M e N, there exists a p e N prime to M with no prime idenl
Joctor of degree 1 in K and 7 € Z" with the Jollowing property, Let

) = (ut4+1)  (Lr<n).
| e N (d)

EOT any AeN t, ceZ and meN prime to Am1 MNO(’!,D,,)

H. iwmplies

()

the existence of a &, e N” such that f, = tymodm, all the ideals Jfg’f(«)—
. L'
are prime in K, distinet and do not divide A.

Moreover, either u =1, ¢ =0 have the above property (this happens
Jor K = Q) or there is a sequence of pairs {tiz, 7,0 with the above property
suoh that (u;, wy) =1 for 4 # h, and the number of distinct u, <5  is greater
than ¢ flog for a certain 6 > 0 and all > x,.

Proof. We begin with a remark coneerning the fixed divisor that
we shall use twice. It P ¢ Z[#] has the fixed divisor 4 then any fixed prime
divigor p of P (mi - @) divides dm. Indeed if ptd then there exists o u c 2"
such that P{w) # Omodp and it ptm there exists 4 » e %" wueh that
MY+ = umodp, henee P(mo+a) 5= Omodp.

Now we proceed to the proof of the lemma. Let

(b)) = a,f(8) (v k),
N(p‘l' (t) = aﬂfv(t) (k <y ':.*: ’)?;),
where f, = Z[1] are irveducible over O and
{&) =Clp) (< k), _
& = NC(p,) - (k<»<n).
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(If K = Q we take ® = 0.) Let b, be the leading form of f . We can chooge
the signs of @, g0 that for a suitable £ e N7 B {t) > 0 for all » < 5. We have

2N & n
(20) Hﬁ(g =+ [[no [] e
wa=l ¥ o) v oo 1

and (19} implies on an application of the Chinese Remainder Theorem
that for a suitable 7, ¢ Z*

(21) (4, [ T.te) = 1.

pm]] .
Lot f,(vy) = gmod 4, g, > 0 (v < k). Without Ioss of generality we may
agsunle that

(22) [£) =1 a<ri), () =1 5.

Since g, are prime to each other

(23) (fi,/) =1 umless A=v or A>k »>F% and ¢,/ ¢ K,
where ¢, is conjugate to @, over Q(f).

n

In  partieular, fi,...,f; and [] f, are prime to each other.
v==j41
n
Let & = [¢,#], ay(¥') Dbe the leading coctficient of [T 5.8, DY)
¥=l
] i 5
the diseriminant of [] f,(#) and R(¥) the resultant of [] f,(#), 1 5@
ezl v=l v=74-1.
with respect to ¢ It follows that
(24) ay DR #0.

Since f, () are irredueible over Kfor ¥ < § we infer by Hilbert’s irreducibility
theorem that there exists a ¢’ e Z™* such that 7, (t, t’) are irreducible over
K for »<j and

(25) ao(t)D{t YV R(7") 0.

Let f,(d,, ') =0 and K, = Q{8,) (»<j). We have K< K, and by
Bauer’s theorem there exist for each » < § infinitely many primes with
@ prime ideal factor of degree 1 in K, but not in K. Choose for each » < §
a diffevent prime p, with the above property and such that

{26) A May(r)D(r') B(<').
Sinee p, does not split in K we have
' 4 )
(27) | (2)= -+ o<
o

On the other hand, since p, has a prime ideal factor of degree 1 in K, by
Dedokind’s theorem there exists an integer u such that

Jolu, o) = 0modyp,.
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Thug d = p; Pz ... p;, the polynomials
(3‘1) g,,(t) =P, va(l"t+1) ("" ‘-<-.J):
Bt =L ut+e)  (j<v<a)

By (25) and (26} the dm(mnm(mt of ”fl t, ') equals D(7’) 25 0 (modyp,).
Since a,(7) 2 0mod p,, and [ ];‘ %, ‘L') = Nmodp, we infer from Lemma

1 that either

f ! filwe, 2"} 55 Omodyp] have infegral coefficients, []] 9,(f) has the fixed divisor 1 and a fortiori
e e
oT ‘ the content 1. Moreover by (23)
ﬁ.ﬁ-(?ﬂ‘l‘?n 1:’). + Omodpt. (38) g1 # ¢, unless A ==vor A> %, v>k and o e e K.
gl ) It follows that _
Therefore, there exists an integer v, such that (36) P (8) = ap,0,(f) (v <),
(28) Jlw, ) = fmodp,, wll) = a0 (j<v<h,
(29) [ e, ) % 0moazt. (37) Ny b = ag ) (k<r<n),
321 - . where hesides
Morsover, sinee by (25) and (26) the resultant of ﬁfi(t, ) and ﬁ filt, 2 (38) Cly) = (mp,) b<J), COp) =(a) F<r<h),
cequal to R(t') # 0modp, we have = i (39) NC(p,) = o) (k<rLn).

It follows that

| (30) | iﬂl‘f“ T,y T ““#"”Omodp,, | | _ ][ Ny, (£) :i:]]mf H 7,08,

. NO(p,)
Liet us choose 7 = r,medy] (1< »=<j) and set =kl

If now for a 4, & Z" we have

3 :
(31) w=[lp, =Ir71
. =1 . ' ' Nw”
By (28)-(30) we have ' ( ][ ) 1
32 : (1) = 0modyp,
(32) 1) Prs there exigts n ¢ e 27 Ha’msfying
H
(33) . I]fz(f) = Owodpl. - (40} toos Eymodm,  udy--v == ggmod 4.
B=a] : . 1 =
‘We shall show that Since " n
noo , : ey | | oul}) ==y f | ou(h)) =1
[ fut+e) = Platrn o [ otta) < [ o8]
‘ . 1=l : and by (34) and (21) ‘
hagthe fixed divisor dequal to p,p, ... p;. Indeed by (L9) and (20) the Lixed " ” ' n
divisor of P(f) equalds 1, hence d consists of prime factors of u. Towever A r Y (AL TT a0y = A )] = 1
e i e (. [ose) (o[ om) = 5
d % 0modpl (v j). _ it follows thuat
On the other hand by (31) and (32 | *
y (31) (32) I] g,(AmE+1))

f([[t—l t) Efr( ) = Olnﬂdﬂv i ] Pl
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hag the fixed divisor 1. The polynomials g, (AmiE +¥,) are irreducible and
their leading forms all take a pogitive value for a suitable £ e N7 in virtue
of the eorresponding property of f,(f). By Lemma 4 I implies the exist-
ence of an @ e N” guch that g, (4max+-L,) are primes greater than (4] and

(41) g (Amz4t,) # g,(dmaz--t)
Taking £, = Amx+t, we get from (40)
(42} 1, = &, modm,
Thus by (84)

P9 (b} =, (uts+7) = f, (7o) = g, m0d 4

¢ (t) = [ (pty+1) =7,(1) = ¢,mod 4
and we infer from (22) and (27) that

( 4 ) 1 (<k
= - < k).
gz- (tﬁ) ]
<k g,(t;) are prime in K not dividing A and in virtue of (36)

unless ¢; = g,.

wls 41 = r,mod 4.

{r< ),
(i<r< k)

Hence for » <<

&
and (38) the same applies to the ideals q, = —(%(i 2;)
P
#) are prime and do net divide 4 in virtue of (37) and (39).

. The remaining
ideals q, (v < kb
Agsuming

Ay, oy =aq,
we get by (35) and (41) for a suitable ye K

A>Tk, >k, @ =, owo=ww,  Olw) = @00,
() _ (v(&)
C(w,) Oy’

thus the ideal g, is ambiguous.
By Dedekind’s theorem o], hcnco by (37) and (39)

g, (E)1 4.

However by (34) and (42)

gw(tz) ——_'"fﬂ(lu't2+1") = u(fu)]nOd’j

and we get a contradiction with (21). The contradiction ghows that the
ideals a, are distinet and the proof of the first part of the lemma is completo.

To prove the sccond part we note that if j = 0 (31) gives g = 1.
The value of r is then irrelevant and can be taken 0. Therefore assumo
that j> 0 and that we have already defined <y, 1,0, ..., (e, Timrd
(i = 1), each g, with j prime factors. Then we replace in the above proof
M by My ... gy and define g, v; by (31). It is clear that the scquence

icm
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thus obtained satisfies (u;, #;) = 1 for 7 = h. Denote by P(K,) the set
of primes with a prime ideal factor of degreel in K,, By Bauer’s theorem
PE)NP(K) has a positive density, say, §,. Computing u; from (31)
we take p, to be the least element of P(EK)NP(K) different from
o -jli—1) +»—1 given primes, where @ is the number of prime factors
of May(7')D(z')R(z'). Hence for ¢ > 4, we have p, < 268} ji log ji and

q i
= ”Pv < (¢77ji log jiYf, ¢ == %H &7,

Pomi ] =]

Since the number of solutions of the inequality

(¢ filogjiy < o
L1/f

in positive integers 4 is for # large enough at least the number

logm—1’
of distinet g, < & i3 at leagh
o™ oxthn
R— P ) m
logz —1 "7 logw (@ > @)

which eompletes the proof.

Remark. The lemma extends to all eyelie fields.

Lrmmma 6, Let I be any field, f e K[1] a non-zero polynomial. 1f a form
F e Kz, y] has at least three distinet zevos in the algebraic closure of K then
there cwist no more than |F*3Y' pairs (X (1), Y (1)) such that X, ¥ e K(1),
X, ¥ lincarly independent over K and '

(43) F(X(¥), (L) =f(1).
Proof. Without loss of generality we may assume that K is al-
gebraically closed. By a linear transformation we can transform F to the

form _
F(w,y) ="y Gw,y), k=z=1,121, (G(m, @/):my) = 1.

Let us assign two solutions <X,, ¥,> and (X, ¥,> of (43) to the same
clags if X, = £X,, ¥, = n¥, for some &, e K {0}, The number of
classes dloes not exeeed the number of pairs of monie polynomials ¢, y e K[#]
such that

wylf(h),
which is cleaxly bounded by 371 The number of polynomials in one class
can. be estimated ag follows.
It
F(EX,,nX,) = F(Xy, Xy)

Xl J'X1 )
7 -, o —
_“F('S]_Tl"ﬂ) F(Yl,_l

then
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and since X,/¥, takes in K infinitely many values we have identically

Fléu, n) &= Plu, 1).
Hence
Fn'G(Eu, n) = Gu,1)

and the comparison of the leading coefficients and of the constant terms
on both sides gives

t_‘?k"')z EJG‘I . 1’ 5]0 i !G} = 1.
It follows that

PO plO) ) g HED g

BN g

Thus there are (@[|F| posgibilities for & and for each £ at mogt |G possi-
bilities for v, which gives at most F||¢]2 < [P|* possibilities for L&, .
The lemma follows.

Toomma 7. If Ple,y) e Z (@, %] 4s a non-singular cubic form then fow
every integer o # 0 the awumber of solutions of the eqzmtzon o, y) == a2’
©in iniegers @, y, & suchthat (@, y,2)=1 and L <2 < Z s 0((1004) ) where b
s a constant depending on F and a.

Prool. It iy enough to estimate the number of solutions with, @] << |yl
Assume that

(44) Pla,y) = oz,

If F(1,0) = 0 we have [F(x,¥)] > |y| hence h = max(lel, lyl, [#]) < 2,
where the constant in the symbol < depends on a, later also on I If
F(1,0) 0 let

3
(45) []wway

where £ iy the real zero of F nearest to «/y. Since Flz, y) = 0 we have
by Thue’s theorem -

L<e<<Z and o < |y].

o— &yl > |y
On the__other hand v — &4 & — &y| » y% Hence by (44) and (45)
h < Z°,

Bince F(x, y) = a2 represents in. projective eoordinates a curve of genus 1,
in virtue of a Eheorom of Néron (see [8], p.82) the nmber of solutions of (44)
is 0{(logZ®)?*) where g is the rank of the curve.

Remark., The lemma extends to all forms # with at least threo

digtinet zeros. If the genus of the curve I (@, y) = o'’ ig greater than 1
one needs a theorem of Mumford [10].

Levwa 8. Let- K be any fidld, U a finile subset of K and P e K[t],
P # 0. The equation P($) = 0 has no mors bha/n. [PUT Y solutions & e T,
where [U] is the number of elements of U,

la|2® = |F(z,y) » 4 and

icm
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Proof (by induction on #). For » = 1 the assertion iz obvious.
Agsume that it holds for polynomials in r—1 variables and let

P Z

The solutions of P(f) == 0 are of two kinds: satisfying Py(#) = 0 and
Py{t") 5 0. Since ¢; can take at most |U| values, by the inductive assump-
fion the nurnber of solutions of the first kind does not exceed [Py U™
Similarly since # can take at most | U™ values the number of golutions
of the second kind does not exceed p|U[". However |Py|+p < |P| and
the proof is complete.

Remark. A different proof can be obtained by an adaptation of
tho proofl given by Schmidt for the special cage K = U (see [177, p. 147,

(B,

Lemma 3A).

Tmmma 9. If F(), () s Q[EL, g(B)1F ()" and the fimed divisor of f(¥F)
equals O(f) then the fiaed divisor of g(T) equals C(g).

Proof. Let the tixed divisor of g be C{g)d, d € N and let f(#)
Clearly for all £=Z" f{£)" ix divisible by G( )dG’(h) = ch(f"
On the other hand the fixed divisor of f(t) g™ Henee d — 1.

Proof of Theorem 2. Congider flrst the, case, where F is a quadratic
form. Then by Lemmsa 2

F(e,y) =

=g (B)h(E).
= dd f)n

A(ax®bay -+ o0y?), where 4d,a,b,csZ
—4ae =1 or A is a fundamental diseriminant, Since
the fized divigor of f{f) equals C(f} we have A |C(f) and we can assume

without loss of ﬂc-nemllty that 4 = 1. Let K = Q(V4)

(46) —ﬂT%w

p=1 .
be a factorization of f(#) over Kinto medumble fa.ctom such that ¢, are
digbinet and have the coefficient of the firgt term in the antilexicographic
order equal o 1. Since the fixed divisor of f equals ¢(f) the condition (19)
is satizfied in virtue of Lemma 9. Let g, 7 be parameters whose existence
for {p,} and M = a is asserted in Lemma § and let

p, =g lpt b A<r<a).
It follows that

ki3

(47) S flatkr) = L] [ty

and, .

(48) B = U [] €)= Olf(ut+=) e N,
' el
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where an ideal in @ is identified with its positive generator. If A = 1
is equivalent to @y and Theorem. 1 applies. Assume that 4 == 1, thug
is a quadratic field. Taking m = 1 in Lemma 5 we infer that H impli

the existence of a i, EZ’I such that ﬂg%ﬁ%l are distinet prime ides
of K not dividing B. By the assumption thez}; exisgt @y, ¥, € Z such th
(49) o} + by -+ oy} = f(uty +1).
Hence, affer a transformation
(“”” 25 %) b4
N . = |f(uts 1), where q = (a,~—2 )

It follows from (47) and (48) that for an integral ideal b and some o, >

DAVA N v g [T et T i)
00 [t 2 ) =0 (”U ) -1

On the other hand ¢ jif(f) implies ¢, ||f(¥), where ¢, is conjugate to
with respect to Q(%). I ¢, ¢ O[] we have g, + ¢, and since ¢ has 1
qoe.fficient of the leading term equal to 1, by (46)

@ o=, 6, =83 oy, =1, for ald .

Thug without loss of generality we may assome that for a certai
k = nmod?2

/
B1) @=on 6 =¢, y =1y, where » =y (1

=
¥ om oy — (=LY (k< v n).
Hence by (48)

and a eompazrison with (49) gives
(52) ok, =6 (L<ygn).

Let us define now X (t), ¥ (#) by the equation

(53)  O(t) = aX(f )+‘b"”}:él/“dy(” (“”"”"""m” )J”(vq: ))
,r ’2

The polynowmials X (#), ¥ () have integral coefficionty sinoe by (5{))
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i) = (e S [T (20

" 0(#) = 0moda
and (p, ¢) ==1 fwplies C(F) = 0moda.

On the other hand, by (53), (49), (51), (52), (46) and (47)
X ), T(E) == aX (B2 b (8 T )+ o T (E)?

(£
s (0% - Dty ity + Cif3) ][( % q’,( ))) '

. ][(—;/;i_?)_)a,.m”,
st ] [5G =10

Aggmmne now that # is a reducible cubic form. T # ig singular we have
I = (g - by)* {ex-+dy), hence by the condition (1)

& b
¢ d

= :4'_'_1’

T is equivadent to 4% and Theorem. 1 applies.
If B i non-singular we have

(54) Pio, 4} = (aen-+boy) Fs (2, 9),

where ¥, is a non-singular primitive guadratic form. By Lemma 3 we have

(585) Fy(w, ) = Glaw + b1y, o+ bay),
where @ iy primary and primitive. Let us put G{w, y) = ex?-+gx v =+ hy®.
By Lienuna, 2, the discriminant 4 = g? —4eh equals 1 or i3 fundamental.

The (".on.diticm that B is primary implies that
&y Uy ty @y

(56) (d .':"";:(bu b] ; ba b ) - 1,

Otherwise, by o elagsieal rogult on infegral matrices (see [27], p. B2) the

@y Gy
b, By}

linear forms aye-- by (0 <4< 2) wonld be expressible integrally in terms

of two lincar forms with determinant 4 > 1. Let K = Q(V'A) and let the
factorization of £(2) over K be given by (46). Since the fixed divisor of f(#)

cquals ¢/(f) the condition (19) iy satistied in virtne of Lemma 9. By Lemma 6
the equation :

(57) X, T} = (8

¥ = Acly aArithmellea XKXXVIILS
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has only finitely many solutions in polynomials X (#), ¥ () e @[¥] that
are linearly independent. Let M be a positive integer such that ALX,
MY e Z[t] for all of them. We apply Lemma 5 to the sequence {p,} with
this M. Let u, = be any parameters with the property asserted in that
lemma and let w, () = ¢, (uf ). We have again the formulae {47} and (48).

We shall deduce from H the existence of polynomials @(¥), (%) = Z[1]
such that ¥ (z(f), y(¢ )] = f(ut-+r). This suliices to prove the theorem.
Indeed the polynomials

X = w(t_r), Y (#) my(i:f_)

M

satisgly (57) and on one hand
erl lﬂlk EZ[t],

on the other hand if X, ¥ are linearly independent we have by the choice
of M _
MX, MY e Z[t].
Bince (u, M) =1 we get X, ¥ e ZTT].
If X,Y¥Y are linearly dependent,
= Co(f1fo (1) C(fy) == 1 and

X({t) = 56“1f0(t), Y{t) = 775_1f0(t_), Eom,be?, (&,4,0) =1;
F(&,9) =0(f)e3,  Clph

If the above holds for all pairs {uy;, 7> of the sequence mentioned
in the last aggertion of Lenmuna 5 then using the obvious notation we infer
from {(p,;, 4} = 1 that either |{,] 5 [iy| for 4 5= h or there oxists an 4

then (X (1), lf(f)) = f(t)

with |£;] =1. In the former case since [{,] < u¢! the number of distinct
ZHfln :
6 < Z 18 .Q( 7 ) which contradicts Lemma 7. Therefore, the latter
log

case holds and X,, ¥, e Z[1].
In order to deduce the existence of z (), ¥ (%) we shall consider sueces-
sively the cages 4 =1, 4< 0, 4> 1.

If A =1 by (47), (48) and Lemma 5 II implies the existence for

cevery & e Z" and every m prime to f{ud, 1) of a €, == £ modm such that
)l o _
——— gre distinet primes not dividing B (1 = v < n).

Oy,
On the other hand since & nnimodnlar transformation of & does not
affect the condition (56} we ean wssmne G(z,y) = wy. ‘
By the assumption of C there exish integers @, ¢ such that
_ Pz, ) “‘”""f(#tz"["'z)
. and it follows from (47}, (48), (54) and (55) that for suitable integers ¢;

icm
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and nonnegative integers o, (0<i<<2, 1<y )

3

) .
(58) atby =o [ | ( "i”v(tzi) "
w1 C(w“’) .

(59) Gorty = Brgnl, ey tayta, =e,.

The set & of systems [{e;}, {o,}] sutistying (59) is finite. It follows from (58)
that

(60) [[Du

wes
where for ¢ = [{e}, {a,}]:

Do () = detfay, by (B lpozmas Vi) = ¢, ] [(

(£ )%
)
i (E)modm, D (1) = D, (¥t modm and (60) gives
]2 |

ged

Since VJM (t_z) ==

= hmodm.

The latter eongrnence holds for all m prime to f{uf, +7), hence

fut 0 [[ Dty =0 __
Loose pS

and since € is an arbitrary integral vector

Flut 1) ]Y D

ges
identically, However f(ut—+1) 0, thus Lher@ exigts an ¢ € 8 such. that
D(t) =0,

By (38) the rank of the matrix [cii, By locice 18 two, thus the system of
equations ~

oby =W (l)  (0<i<2)

ig soluble in polynomianls @,y e Q]

Moreover, by Cramer’s formulac
(o b @ b .
Pl | P lu e BIE] (0<i<i<2)
(Lj b_'i b

and again by (b6) o,y ¢ Z] t] On the other hund by (59), (48) and (A7)

11 s~ [ ( e Mk (el

Tesl

ln.l
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Tet nis consider now the case A4 1. Then by Lemma 5 and (47), (48) H

jmplies the existence for every ¢, € Z" and every f:]n prime to Af{ut, +1)

(10 ()
Clys) A

K. distinet and do not divide B. By the assumption of C there exist
’

integers @,y such that

of a #, =& modm such thab the ideals {r < m) arc prime in

Fw,y) = fpt+7)

- and it follows trom (47), (48), (1) (uul ( ")) that for suitable integral ideals
LY N

[](ziw ) ’

(61) g4V A ‘ o vg(_{_)_)ﬁ
(a(alm—i-bly)—ﬁ-l—gw—(ag-’z-+bgw))g '=1D ]]( Cion )

a, b and nonnegative integers a,, fu (

(o -+ boy)

REY
( ff—H/A)
where g = |6, 5|
(62) al¥b =(B), o+ +h = (1 s n).
We get )
it |- Dol = C‘[I . (8)™
63) d ) »
: y
elam--boay -+ d {—0 i (@it --Boyy) == B ] ]-"/’u(tﬂ)ﬂ":
- )
where .
: —a]Jowy, (B =g [[Olm
(64) [j ()™, H
and by (47) and (62)
(85) aNg = le.

ki
a | (5% lus ntegral coefficients.
¥onl
2) (jv e

Sinee a is integral ¥o(t; o, ) =
On the other hand, by (51) and (6 a, (k-=vszn) and by (65)

a £ Q, hence _
' ¥y (t; a, a,) e 4[],

n .
Similarly, sinee b is integral -f ﬂ w, (5" e g[£] and we get

g “/A (65, By

(66) ﬁnw, B = e\t £, B+

=1
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where
(5 8,8,) € Z12]

The equations (63} take the form

(67)

(i =1,2).

@@+ byy = Wolly; 2, a,),
aw+by = Yk 6, 8) (i =1,2).
[a, 8, {a}, {#}] put
Pooll) = Wy(b5 0, 0),  Vyll) = (4 8,8,) (i =1,2)

and denote by & the set of all sueh systems samsfqu (62) and (64), Tt
A < 0 the set § in finite. It follows from (87) that

EAGE

se8

For a system s =

(68)

where , .
D, (8) = det[a;, by, W, (£)

) ]0£i€2'
Since ¥i(k,) = ¥, (k)modm we infer from (68) as in the case d=1
from (60) that for a suitable s e § the system of equations

a0 - by = W ()

is goluble in polynomials =, y eZ[1]. By (54), (
(51) we get

(0<i<2)

(55), (66), (47), (65) and

| 4
P(3,y) = (ay5+byy )N(e(a1w+b1y)+ Ral (a2w+bzy)) ot

= wa(t)N(G P () + g+1/_ .a(t)) 6!
=af[w vN(ﬁ[[ w(t)ﬂv)
vel S el
e g N fo~ 1 I p, (B) Rt ] ]—] 1, (B = f{ud ).

wa=]

IE 4 > 0 the set § iv in tinibe. We can however divide it into finitely many

clagses assigning two systems fa, 8, {a,,} {,}] and [a, y, {a,}, {8,}] to the
saree clags if /g is a totally positive unit of K. Then every class contains
exactly one system satistying
(69)

where ¢> 1 is the fundamental totally positive unit. Denoting the. set
of all systems satisfying (62), (64) and (68) by 8, we infer from (67) the
i ' :

= [ < s,
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existence of a o € Z such that

[] Daostts) =0,

9E8g

where for s = [a, £, {a,}, {#,}]

aﬂ b() g’ﬂ(t;a!aﬂ)
a; by llyl(tieuﬁzﬁv)
as by Wy(t;¢78,8.)

Since D, () == D, ()modm for all s we conclude that

(70) n])w(tl) = Omodm

888y
where ¢ depends on m.
We have an identity

M) ufewn+ ! 4 Fu(t) = ot )+

where

-Das(t) =

g-+v A
2

. |
@,s(t,u)'sl[%(l——gw—)—m—l(1+i~)] W ()~ ”‘/;_ W,

_ 2 V4 Vd
' = u—%i _:.L_. g “‘1(1 .,._gﬁ_,)]t'f t
Bty 0) = e X w0+ 3 [ w1 e 1) | w0
w—ut
2w (b,
+g Vi ()

Since ¢ is conjugate to & _

4 Dty ) eQ[t] (i =1,2)
and by {(71) _
' Yt &°8, ) = Py (t, &%) - (0 =1,2).
The congrucnce (70) takes the form

(72) nE,(tl, £} == 0moglm,

. SES"
where
ay by Wy,(t)
(13} - ' Byt w) =la; by D, (¢ w)
ay by Py (F, u)|.

However wl(t, u) e Q[t, u] and hence w5 [T B(¢,, w) e Qu).
’ o #eby

(pﬂ.s(t: 'M’)’

icm
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Since the congruence (72) is soluble for all m
follows from Theorew 6 of [15] that the equation

Fluti+o) [ Bt &) =0

sES,

prime to Af{(ut, 1) it

Is soluble in integers o. Thus for every ¥, e 2" either Fluty+7) = 0 or
fluts-7) # 0 and there exist o oeZ and an s = [q, §, (), (Y] e S,
such that B, (&, &%) = 0.

In the latter case it follows from (71) and (73) that
@y b e (1)

_ g-+v4d g+va ot
‘| ey - 5 by €hy + i by & ﬁ][%(tl)ﬁ"
v=1

= ——e]/ZEs(i,, Sa)m 0

) —.V/Z T
R IO

Pe=1

g~vVa

eay + 3

n
and &8 [T w,(f)" satisties the quadratic equation

#=al N
Lot — B, (4)e~L' N g [ [, (8% <o,
) LESN ]

where ', I' are conjugate to B, L respectively
%y by

L= ~V4 ~VA
eay + g 5 L) 3b1+'g—5"“"b2!’

(74) "y Wi
g +0 g Bbl + _q_i;; bz

ea, -+

g—vA g—vd

2

by

Sinee efay, by] # 0 we have L = 0 by (36), and

g
B[] wit™
vel
where [ 1denotep the maximum modulus of the conjugates and the constant
in the symbol < depends on F, f, u, t, 5.
On the other hand, by (47), (51), (62), (65) and (69)

ﬁ. ” 1Pv(t1)ﬂ"

»=1

(75) < AL

< 17
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Since f(uk; +7) # 0 whence by (64)

(s H B (6:)")

> Ngb » 1

‘ﬁ“ (87| < (B2,
re=1

Thiy together with (75) implies

log 1L,
loge

— 2 3
alo'l m',fl« [Etlng]ﬂ’ IGI\<\_2“|fj ‘F‘Q;

where ¢ 13 a congtant dependilig on F,f, u, r but independent of s

(8, is finite).
Let us choose now a positive integer T' so large thatb

- loeT
%) 2T+1>-lfI(ISoH-1)(3IfE—9§-—|—2e+1)-

It #, runs through all integral vectors satisfying [[[f <
integers satisfying

< T o runs threugh

3 log®

lo| <= Lﬁ 10g£“ + g

The number of veetors in question ig (27 4-1),
logT
loge

the number of integers

does not exceed 3|f !

~+2p+1, hence there iz amn mteger a, that

corresponds to at least
L qar logT -t
(@I +1Y(81fi 5 +20+1
oge

ditferent vactors £, satistying |4, < T. By (76) we get more than | f1{[Sp! 4+1)x
X {204+ 1) such vectors sad)i slying the equation

Fluts+2) [ ] Bafdy, 67) = 0.

88y

Since by (62), (71) and (73) the degree ofE J(t, £°0) does not exceed |f]
the degree of the polynomial on the left-hand side does not exceed
171008,/ +1) and Lemmsa 8 ghows that

f,u,t—}—r) ”E (£, &) =0

#e8y

identically. Th_erefore, there exists an s ESO such that H.(f, &) =0

icm
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and by (56) the system of equations
a0w+bo'y = gjﬂs(t),
aw+by = P(8) (i =1,2)

is soluble in polynomials z, iy = Z[£]. By (54), (55), (71}, (66), (47}, (6
and {81) we get for these polynomials

2), (65)

Vi
Blay 1) = (ao+bon) ¥ (elra+ by + E5 0 (wo b))

g+va
2

= ‘Ifo,,(t)N(s“’ﬂe(alm 4-byy) e (a2m+b2y)) g !

g’+l/d

= Wos(t)N('egwm( )+ Tﬂs(t)) et = flut+1)

and the proof is compléte.

Remark. For the proof of a more general result mentioned in the
introduction one needs more general versions of Lemmata 2, 5 and 7 and
Theorem 7 of [16] instead of Theorem 6 of [15]. In the difficult case
of an irreducible form F with all zeros real Theoremy 7 of [18] does not
suffice, but Skolem’s conjecture on exponential congruences would -do
(see [187). One could avoid this step in the proof provided it were known
that the number of vectors # satisfying [#] < T and the conditions of
Lemma 4 grows fagter than 77 (log )\, For r =1 much more has been
conjectured by Bateman and Horn [1].

4. The next lemma is a refinement of Lemma 1 of [18].
LemmMA 10, Let P e QTE, 4] be a polymmml suoh that for no ¢ = O(t)

P{t, p(t) =
identically. Then tiw're ewists a £, € Z7 such that for any M e N there exisis
an m e N prime fo M such that for all t e Z7, 1 = t,;modm and all u e Q

_ P(t, u) 0.
Proof. Following the proof of Lemma 1 in [13] we take m = g1 .- gk,

“where in the notation of that paper the primes ¢; are chosen not to divide Jf.

Lumma 11, Let G, H € Q (@, y] be relatively prime fm'ms D, gy By e QL]
(1 L I) arbitrary ;polynommle, p #0.

If for every t, e Z" and for every integer m primeto p(t) thm'e arg an i< T,
at,e2", t, =t modm and o,y € Q satisfying '
(77) Gz, y) = glt), H(zy) = k()
then there exist 3 < I and polynomials X, ¥ e Q[E] such that

GX,¥)=g, BHI T)=Hh
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Proof. If G2, y)—g,(t), H(z,y)—0(f) had a common factor
d(w, 9y, t) # const then the leading forms of 4 with respect to «, y would
divide @G(z, ¥} and H (2, ). Thus for each ¢ < I

(@, ) —g:(8), H(n, y) —hy(t)) = 1.

Let B(t, @), S;(t, y) be the resultants of G(z, y) —g,() and H{x, y) — k(1)
with respect to y and @ respectively. It follows from the congtruetion of
resultants that the leading coefficients of B; in » and of §; in y are equal to
the resultants of G(1,2), H(l,%) and of G(z, 1), H(z, 1) respectively.
Ienee these leading cocfficients are independent of £ Let

(78) RBy(t, w) = B, (f IYTRm
(79) &wm)k&uam[]w—&an,

a=1

where By and Sy, have no factor linear in » or y respectively. TE for some
triple (i, 0, ¢) with i< [, 1< oy, 1< o<y

G(R,, Sw) =g, and H(R,, 8, =5
the lemma follows. '

Therefore, suppose that for cach triple (¢, o, ¢) in question
G(Byy, 8;0) 52 g;  or  H{(BR,, 8,) = h,.

Then .
(80) 'T'fecr = (G(R-Ecr: Sia) “"9'1)24" (H(-R;Q, 'Sia) **hfi)?’ 7/?5 0
and we get in Lermma 10
L
(81) Pﬂu%p‘”Rtuﬁo ]jngw
p=1 o=1

By that lemma with M =1 there exist an m e N and a ¢, ¢ Z" such
that if £ = ¥, modm and « ¢ Q we have

(82) : Pt u) #0.

In particular, taking ¢ == £, we get p(f;) # 0. Applying Lemma 10
again with M=9(f,) we infer the existence of an integer m with thoe
above property satistying (m, p(#,)) = 1. However now by the asswnption

there exists an 1 << I, a £, = imodm and 2, y e Q such that (77) holds.
By the fundamental property of resultants we have

and in view of (78), (79), (81) and (82) there exist g, o guch that 1 < R

1Koy

‘Qa&ﬁm.y=&ﬂﬁ
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It follows from (77} and (80) that
Ti@a(ta) = 0’

contrary to (81) and (82).

Remark. Lemma 11 extends to any system of forms &, &, ..., &,
€ Q[®y, -.., @] without a common non-trivial zero.

Proot of Theorem 3, If j‘ = (} the theorem ig trivially true. Tf f 5= 0
It f(ty) = ¢ 55 0. Weo set f,(8) = flet+E,) and find a4 in the proof of Cor-

~ ollaxy to Lemma 8 that the I:xul divisor of f,(#) equals CG(f,). (If the fixed

divisor of f cquals C(f) we can take directly ¢ = 1, ,=0.) Let K be the
least field over which F factorizes into two coprime factors and let

(83) ' foltty =1 [T ety

be a factorization of f over Kinto irreduciblefactors such that p, are distinet
and have the coefficient of the first ferm in the antilexicographic order .
equal to 1. Since the fixed divisor of fy(#) equals O(f,} the polynomials ¢,
gatisfy (19) in virtue of Temma 9. Lot 4, v be parameters whose existence

“for {g,} and pg=1 iz asserted in Lemma b and let.

P =@, (ut-F7) (L€ vsn).

It follows that

(84) Folut+r) n (£
and '
(85) -udjﬂw O(folut+7) € W,

a1
where an ideal in Q iy identitied with its positive generator. Consider first
the cage where K== Q and let :

{86) Folpt-4-1) = ¢, (8) hy(2)

he all possible tactorizations of the lefi-hand side into two. factors with
integral coofficients. IT implies that i (m, f{el,+7)) == 1 there exist
an i < I, a £, == f;modm and », y € Z such that

{87) ' F@, y) = g(ts), Hiz,y) = hy(ls).
Indeed, by (84) and (85) the condition (s, fo(u#;+7)) =1 implies

o 11*?:1,1)

(L<i<)
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and by Lemma 5 H implies the existence of a §, € Z7, 1, = ¥, mod m snch

that |Z”(( ))] (v < fn,) are distinet primes not dividing B. By the
W i
assumption of D there exist @, ¥ € Z such that

G2, y)H (s, y) = Fx,y) = foluts-l-r)

and it follows from (84) and (85} that for some a, b,q,,f, €%, ¢, =0,

8,20 we have
, (£,) o
[[(1({:(1;; )

(@, (/)r_:a]](% )
(1<<y << m).

o]

" P
gi(t) = @H (%%f;’;‘) 1
== fo(pl4-1)

we get (86) and (87). Now we apply Lemma 11 with p(f)=
and we get the oxistence of Xy, ¥, e Q] satisfying
G(Xo; Xo) =g,  H(Xy, Xo) =1y

for some j < I. Setting

ab = Bsgnl,
Talking

(88) - X(H) =X,

we gel by (86)
| for—t,) . [§—or— -
PR, i) = gy (0 (S g () <,

Uonsider now the case where K is an imaginary quadratic field with dis-
eriminant 4. Then

]
(89)  Pl,y) =~ N O, y),

where o, w e Z, (v),'w)mi, ©e Kz, y] has integral cocificients and
¥), ¥(@, ) =

(90) . (D(=,
where @' ig conju.g-ite to @ over Q(x, y). Let

(91) Zflptn) = n (il (<)

be all the factorizations of the left-hand. side into two conjugate poly- -

nomials with integral coefficients in K. Since K has finitely many units
the number of such factorizations is finite. ¥ implies that if (m, 4 f,(u; +1))

icm
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= 1 there exist an ¢ < I, a ¥, =, modm and @, y € Z such that

(92) D@, y) = n;(L,).
Indeed, by (84) and (85) we have
w (N T ()
(53) (5 fotut ) = (2 B)HT(?JS”
(&)

Since by Lemma & H oo 0, has the fixed divigor 1, H »,{t)% hag the

TN ) p=1

ﬁxed divisor [ j O{w,)*. On the other hand, for every te Z"

pexl

w
;;fo(nt+r)mN¢(w, y)eZ

(94) fi;iA cZ.
y (84) and (85) the condition (m, Afy{ut,+1))
o[ I F500) -
NC‘(%
and by Lemma 5 H implies the exmtence of a £, = &, modm such that

(%(tz))
Cly,)
zussumptjon of D there exist u,, y, € Z such that

=1 implies

(v s w) are digtinet prime 1dea.ls not dmdmg wB. By the

(95) N D (@, yy) = _F(mu: Yo) = ';l‘)‘“f(#tz'i"f)

and it follows from (93) and (94) that f01 an integral ideal b and some

integers a,z 0
,(ty " (1, (£a) |
” o (“’!](3&»))=1-

On the other hand in fu.ll analogy with (51) we can assume that for a cer-
tain & = nimod2

( (@q) o))

(96) ), = py ey (08 k), ¥ oey— (=17 (x> k).

Hence
‘ LB L(E oy g * W {Ta)
woto =0 [ [ (o [ [ -
E v) . . Yol Y

Vam |

61, -] 6,,4,
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and a comparison with (93) gives

(97)
Now let us put

au+ oy = &

n

(@0, o) T (w. )

=1

(98) n{t) =

The polynomnial #(f) has integral coefflcmnts in K sinece

n.

O(n) == ("p(mo; '!/u)) n ’(1};@);: == [

"=

Moreover, by (95), (96), (97) and (84)

(t) )5‘::
wv (ta)

folpaty +-2) H(””“) =2 fu(ui-+e).

n{t) for an i< I znnd (92) follows immediautely from (98).

oo ]2

wmr ]

ol

o mmwu,uo)”(

Hence o (t)

Kow we apply Lemma 11 with p(t) = Af,(ut-}1)

Gz, 9) = O, 9)+0'(@,9), Hla,y) = (@(m, Y) =9 (@, y)) VA4
and we gel the exigtence of X, ¥, e Q[¥] satistying ‘
(99) (X, ¥y) =m;,  P(Xy, ¥,) =15
for a 3 < 1. Tsing again the transformation (88) we get by (89) and (90)

F(x(t),Y(t))::;m( _Z;_to)’?5'_( MZL_to)"i (t o

Levma 12. Let & e N be odd, a,(t) e Z[t] (0 <
cQ[t) If .
Rk N
(100) 2 (H l)a(f)L( et _ g
them w(t) e Z [11. _ : .
Proof. Suppose that ¢/(») ¢ Z. Then for some prime »
0rd, 0(s) = —c< —1.

. The ﬁmeﬁion ordﬁ(f (15) is & valuation of the ring Q] {sce [6], p. 171).
In virtue of the properties of valuations (100} implies

t) - stt).

W €
i k), ag(t) = 1, o)

ordp(m(w)k_l) > min ord, (( ke ) C’(a't)cl(m)k—l—-i)’

n<i<h i1

iom
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hence Lor a positive ¢ < &

ordyk —(k—1)e > ord, (m. ILI) —(k—1—4)o
andl

(101) ord, % > ord, (m’ﬁ 1) 4.

( p ) b fn—1
Gy A ( g )
thus (101) implics

ordy, (4--1) =14,

ITowever

i+l 1’1.5 p=2,
which is impossible since then the left-hand side of {101) is 0.

Proot of Theorem 4. Let # = 2°k, k odd. In order to prove the
first part of the theorem let us agsume Lhwt the fixed diviger of f equals

C(f) and take in the proof of Theorem 8 fy=f. If & > 1 we take further

K=0Q,p=1,1=0,
G(o,9) =

L

Sy Mey) = 3 a (Y

b fme—1

and we get from (86) and (88) that for some polynomials g, h e Z [t]1 and
X, Y e@ft]

g Ity = f(T),

(102) G(X,¥) =g, H(X,T)=h
However
' Jo 1
H(X,¥) =) (Hl)a(x SATENS Ci L

henee taking in Lemma 12
a(l) =gt (0<i<hb—1),

we et from (102) that

tpr(8) = =R(F), @(f) =— X"
—X (8 e Z[#). ,
Thus X (1) « 7 [T1 and by sywmetry Y (§) s Z[1]. Moreover
X (Y T = GX, DVH (X, Y) = f(}).
Itk =1 we take in the 'proof of Theorem 3 K = Q({,),
(103) D(w,y) = a7 Ly

where {, is a primitive gth root of unity.

vho =1,
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By Lemma 5 u factorizes in. K into prime idcals of degree 2. By (92)
and (99) for some polynomials € Z[{;, t] and X, Y, e Q[t]

(104) n{t) 7 (8 = flut+1), 97‘ conjugate to 5 over Q(F),
(1.05) D (Xo(E), Xo()) = n(t).
Lot us setb .
t—1 t—z t—1
(106)  #(H) = ?7( ) X = XU(- ) T#) = Yn( )
Iz I Iz
We have

W) e 212, 1]

hence if p iz a prime ideal of K in the denominator of C(%) plp and p=p'.
However by (104)

S (B)=F(H, NC(9) =0(f)eZ
hénee. ord, G (9) = %ordpﬁ_(fj =0 and '
| () e Z[E,, E].
Now (103), (105} and (106) imply
X, T e Z1E);
aﬁnd we get by (104)

X (&), ¥ (8) « Z[¢]

XE LX) = ().

The proof of the first part of the theorem is complete. In order to
prove the second part it is enough to consider the case # > 2 (for #n = 2
the assertion ig contained in Theorem 1).

Let p be a prime satisfying

(10.7) p =1mod2**, p % lmod2n it mos£2°
and let us choose an integer ¢ such that
*+1 =0moedp®, ¢=—1 i «a=0,

Consider now the polynomial

(108) : ) = w(t)*+o ()",
W—1) ... (g—p1

(1—1) 19( P+ )’ ()
Tt is easily scen that f(f) € Z[t] and

where w() ==

= ou(l)+p™ "t

p" it ax0,

(109) - IFl =1,
"
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Moreover since polynomials w(f), v(t) are integer-valued the. equa,tio'n
gyt = f(t)ig soluble in 2,y & Z for all t € Z. On the other hand suppose
that '

(110) X+ X(@E=f1), X,Y¥YeZ[t].
Since
a1
P AORERAULE i SO AR 40)
. Zeml)
we have
nmax{{X|, 1Y} i e>0,

=

(n —Lymax{ X|, |¥} if a=0.

Hence by {109}
(111)

max {| X, | X[} < p.

- Taking 4 =0,1,...,p—1 we get (1) =0 hence

(112) X (B Y (5 = pmn Y,

T¢ n = 2% a> 1 orm == 3 by special cases of Fermat’s last theorem {111)
implics
(113)

XETE =0 (0<i<p)

If 0 > 3, by Zsigmondy’s theorem either X (i)¥ (i) =0 ox X)) =+ Y(9)

or X(i)"+ ¥ (4)* has the so-called primitive prime factor = 1lmod2n.

The last two possibilities are incompatible with (107) and (112) hence (113)

holds for all » > 2. By (112)if X (¢) = 0, Y {§) = p" 'fora = 0, ¥ (i) = e

for a > 0. In view of symmetry between X and ¥ we may assume that
there is & set § = {0,1, ..., p—1} with the following properties

P+l

- Y (i) = p"
2(n, 2) w=2

X () =0, for i 8.

I8l =

(Tt » is oven we can replace ¥ by ~ ¥.) Let

Py - [ [ i)

ied

It follows that

(114) IPia-;%;l%, X)) = 0mocLP(-c)',' 40 Epﬂﬂlquz?(t)
s 3 .

and wo get from. (108) and (110)
Y (8" == v(t)"mod P (™.

8~ Acta ATithmetica XXRVITLY
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Since ¥ (¢) = v(t)modP(¢) and (v, P)=1 we obtain

Y3) = »(t)mod P (5",

However by (111)

max {| Y[, o]} < p < nP|

hence
_ Y() =n(t) ¢ Z[11.
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Corrigendum. to the paper “Periodic analogues of the
Euler-Maclaurin and Poisson summation formulas with
applications to number theory”,

Acta Arith. 28 (1975), pp. 23-68
by

Brouen O, BerXpy (Urbana, I11) and
Lownrrl, SCHOENFELD (Buffalo, N.Y.)

There i a misprint in the formulation of Proposition 9.1 on p. 55

The correct formulation is as follows:

ProrosrrioN 9.3. For |y| < 2n/k,

Jee-1

-l N o0
v n‘)“u W 2 : ByA) iy
2) e T e iy oz e ’y == g ,
(9 & —1. it

Funl
where the last ewpression wuses the wmbral conveniion according to jw_h@'ch
after the formal expansion imto power series, the expression {B(A)Y is to

be repluced by B;(A). ,
Morcover on p. 29, line 3 rveplace L<<m<r by 2<m=<r
and on . 30, line 10 replace P by Py
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