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0. Introduction

NIPALS (Nonlinear Iterative Partial Least Squares) soft models are primarily
intended for interdisciplinary problems, or more generally for complex situations
where prior information is scarce. Blocks of manifest (directly observed) variables
are the structural units of a NIPALS soft model. The data may be observatiorns
over time or a cross-section. Each block of observables serve as indicators for a latent
(indirectly observed) variable, estimated as a weighted aggregate of its indicators.
A typical application: School pupils’ achievement as influenced by Home background
and School conditions: see Fig. 1.

Well-known problems of multivariate analysis are (i) how to define “quality
of life”, “consumer sentiment”, “home background”, and other “soft” notions
by the way of suitably weighted aggregates of a block of indicator variables, and
(ii) how to assess the inner structure of a block of observables using the family
of methods known as “multidimensional scaling”. While the current methods under
(i)-(ii) are concerned with just one block of observables, NIPALS soft modelling
in general is a multi-block, causal-predictive approach. The arrow scheme of a soft
model defines the conceptual design of the model, showing the hypothetical “inner”
relations between the latent variables. The inner relations are assumed to form
a causal chain system. The weights used in estimating a latent variable are deter-
mined by a system of weight relations. This is an auxiliary system that extracts infor-
mation from the latent variable to be estimated and its adjacent variables; that is,
those latent variables with which it is directly connected in the arrow scheme. For
each latent variable and its indicators the investigator has the option to choose
between two versions of the weight relations, called Modes A and B. The weight
relations are called Mode C if each of Modes A and B is chosen at least
once in the model. .

The first principal component and the first canonical correlation can be seen
as special cases of NIPALS soft models, with one or two latent variables, and with
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weight relations Mode A and B, respectively. The NIPALS estimation ulgoriﬂun
yields the indicator weights, and thereby explicit estimates for the case values of
the latent variables, and then in turn the estimates for parameters, residuals, and
other unknowns in the model.

Generalization aspects: (a) Latent variables in two or more dimensions;
(b) Inner relations that form an interdependent system.

1. NIPALS soft models: Principles of specification
and estimation

The principles will be briefly set forth using Models C331 and C332 for illustra-
tion of the general design. For further details, including references to earlier papers,
see [25]-[27], [30%].

1.1. Conceptual design of NIPALS soft models: The arrow scheme

Home background.

Puplls’
achievements

School conditions

Fig. 1. Arrow scheme for NIPALS soft models €331 (without broken "arrow) and C332
(broken arrow included) as applied to explain School pupils’ achievements as influenced by Home
background and School conditions

The arrow scheme shows how a complex problem is structured and simplified
in NIPALS soft modelling. Observables are grouped into blocks, and taken as indi-
cators for as many latent variables. Each latent variable is estimated by a weighted
aggregate of its indicators. The code letters A, B, C indicate which mode of NIPALS
estimation the investigator has chosen.

The inner relations between the latent variables are the causal-predictive core
of the model. All information between the blocks of a soft model is conveyed by
the latent variables via the inner relations. No information between the blocks is
directly conveyed by the indicators, nor by the residuals that occur in the model.
1.1.1. Notations in the arrow scheme,

Squares: Manifest variables, grouped as indicators into blocks.
Circles: Latent variables.
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Arrows between latent variables: Inner relations.

Arrows between a latent variable and its indicators mark the choice of weight
relations: Single arrows for Mode A, a-bundle of arrows for Mode B.

Arrow heads: Residuals of weight relations and inner relations. Residuals
are not indicated otherwise in the arrow scheme.

1.1.2. Model C331, as shown in the arrow scheme, and as the code indicates, has
three blocks of indicators, three latent variables, and ome inner relation.

1.1.4. The observables are grouped into blocks so as to be indicators for holistic,
“soft” concepts; in the present case Students’ achievements, Home background,
and School conditions. As indicators for a “soft” concept the observables in one

and the same block usually are correlated, and more correlated than indicators in
different blocks.

1.2. Operative specification of NIPALS soft models
The exposition in 1.2-1.4 covers the prototype case of NIPALS soft models when
the structural relations are linear, and the model is specified in terms of the data.

1.2.1. Data. In Model C33]1 the three blocks of indicators will be denoted by
(la—c) xph=1,.,H), y(=1,.,0, =znk=1,.., K)

(i) The data may be given as raw data, say N cases (time series or cross section
data), to be denoted by Xuy, Vjns Ztn (=1, ..., N).

(if) Moment data. In this case the data is the first and second order moments
of the raw data, namely the vector of averages L = (¥, J;, Zx) of the observables,
and their dispersion (variance-covariance) matrix, denoted by R(x, y, z) or V(x, y, 2)
according as the indicators are or are not standardized to unit variance.

1.2.2. Latent variables. The three latent variables of the model are estimated by
@a) X=f D (wex)s ¥Y=f ) )y Z=1r) sz
% 7 - E

where f, (@ = 1,2, 3) are standardizing factors that give X, ¥, Z unit variance.
(i) With raw data, formulas (2) give case values X,, ¥,, Z, (e =1,...,N)

for the latent variables in terms of the weights wyy, Waj, Wi and the case values 1.2.1

(i) of the indicators. , o
(ii) With moment data, elementary operations on (2) give the averages X, ¥, Z

and the correlation matrix R(X, ¥, Z) of the latent variables, as well as the covari-

ance matrix of the latent variables and the indicators, all:through in terms of the

weights wy,, Wy, wa, and the moment data 1.2.1. (ii).

1.2.3. Block structure. This is the set of simple OLS regressions of any indicator

on its latent variables,

(3a) X = Puao+PuXntUin; Vo= DrjotPaTattzgl Zm = Pako+PaxZyt+Uan.

The coefficients p,;, pa;, Pax are called the loadings of the three blocks of indicators.


GUEST


336 H. WOLD
Since both the loadings and the latent variables are unknown, some standardization
of scales is necessary to avoid ambiguity in the model. In soft modelling, all latent
variables are standardized to unit variance; cf. 1.2.2.

For each indicator the investigator should specify a priori for each loading
whether its sign is expected to be positive or negative. Soft modelling provides two
complementary measures for the relevance of an indicator: loading and weight.

1.2.4. Inner relations. The inner structural relation of Model C331 explains the
third latent variable in terms of the two first ones,

(32)

1.2.5. Weight relations. For the three blocks of Model C331 the weight relations
are specified as follows, the location parameters being omitted:

Z = byo+bsy X+byy Ytes.

xblock: Z= ) (wya)+d;
(4a-b) "
pblock:  Z= 3 (wauy)+ds;

J

2y = War(bs1 X+ b3, V)+dy, (k=1,...,K).

The rationale of the specification (4a-c) will be explained in 1.3.3. In passing
we note that in accordance with 1.1.1 and the arrow scheme, the weight relation
for each of the x and y-blocks is a multiple regression, for the z-block a set of simple
regressions.

(4c) z-block:

1.3. The design of NIPALS soft models: Four fundamental principles

L3.1. The reduction principle. NIPALS soft models are designed so that simple
models form special cases of more complex models. For example, if the y-block
is deleted in Model C331, formulas (1)-(4) will reduce to the specification for Model

C221, also denoted by C2. If also the x-block:is deleted, Model C2 will reduce
to Model A110, or briefly Al. '

(i) NIPALS models Al10 and B221 are mumerically equivalent to the first

principal component and the first canonical correlation, respectively; [13], .[14],
[24].

1.3.2. Estimation as a corollary of specification. Tn NIPALS soft modelling the arrow
scheme provides as an immediate corollary the algorithm for NIPALS estimation
of the unknowns of the model. The NIPALS algorithm proceeds in three stages.
The two first use the indicators as standardized to zero mean; the third stage esti-
mates the location parameters.

The first stage of the NIPALS algorithm is an iterative estimation of the latent

variables as weighted aggregates of their indicators, with weights determined by
the weight relations.
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1.3.3. For the design of the weight relations the investigator can choose between two
versions of the least squares principle. For each latent variable the weight relations
are designed to maximize the correlation of the latent variable and a linear form
of those latent variables, called adjacent, with which it is directly connected in
the arrow scheme. The investigator havin gthe optionto choose between the weight
relations Mode A or B, these make different twists of the least squares principle.

Weight relations, Mode A: The weight of any indicator is the simple OLS re-
gression coefficient of the indicator on a linear form of the adjacent latent variables.

Weight relations, Mode B: The indicator weights are the multiple OLS regression
coefficients of the linear form of adjacent latent variables on the block of indicators.

Thus in Mode A the indicators enter as predictands in a set of simple OLS
regressions, in Mode B as predictors in a multiple OLS regression. Hence the ensuing
estimates of the latent variable as a weighted aggregate of its indicators is called
predictand-weighted and predictor-weighted, respectively.

Depending ont whether a latent variable is estimated Mode B or A, the estimate
is or is not invariant to changes in the scales of its indicators.
1.3.4, The device of “partial least squares”, The combined use of several OLS re-
gressions in 1.3.3 constitutes the NIPALS device of “partial least squares”. Let
the proxies for the unknowns obtained is estimation step s be denoted by super-
scripts (s). For given proxies X®, Y{9, Z{” of the latent variables, the inner rela-
tion (3b) determines the proxies b§3, b$?, b2 so as to minimize the residual var-
iance var (e$). Similarly, for any weight relation, say (4a): for given proxies Z»
the weights wi{> (h = 1, ..., H) are determined so as to minimize the variance
of the residual d{®, thereby maximizing the correlation between X and Z{.

In the limit as s — oo, various least squares criteria are fulfilled simultaneously,
giving estimates for the unknowns that fulfil the operative definition of the model.

(i) Well to note, the “partial least squares” conditions 1.3.4 in general will
not imply that the resulting NIPALS estimation will fulfil an overall, total least
squares criterion.

1.4. Estimation of NIPALS soft models, exemplified by Models C331 and C332.
1.4.1, Model C331, We shall spell out the estimation procedure with raw data input.
Until further notice we assume that the observables (1) are measured as deviations
from their means, implying X = 7 = Z = 0 for all h,j, k.
1.4.2, Start, s = 1. Arbitrary starting values are specified for g, say w =1
(k =1, ..,K). Then (2c) gives first 3 and then Z{" (n = 1, .., N).
1.4.3. General step from s to s+1.

(i) Using Z& (n =1, ..., N), the multiple OLS regression (4a) gives wii""
(h=1, .., H).

(i a) Using witD, standardization of the aggregate (2a) to unit variance
gives fi'+D),

22 Banach
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(iib) Using w§iF® and f§+9, the aggregate (2a) gives XD (n = 1, ..., N).

(ii)-(iv) ‘As in (i)-(ii, 2-b), again using Z{”, the regression (4b) gives wijD
(j=1,...,J), and the aggregation (2b) gives f{+V and Y&V (n =1, ..., N).

(v) Using Z{, X+, Y$*+D (n= 1, ..., N) the multiple OLS regression (3d)
gives b§{Y and p$HY.

(vi) Using X&+Y, Y&+ (n=1,...,N) and b§3P, b§D, the simple OLS
regression (4c) with k fixed gives wiit? (k =1, ..., K).

(vii) Using wg;+? and proceeding as in (i)~(ii, a=b), the the aggregation (2c)
gives [+ and ZE+Y (n=1,...,N).
1.44. The limit as s - co. Subject to a suitable convergence criterion, the limiting
estimates are denoted as in (1)~(4), for example,
(5a-c) Wi = lmw§), X, =1lmX{®, by = lim 5§,

§=+00 5-+00 s=0

1.4.5. The block structure. The second stage of the NIPALS algorithm estimates
the block structure 1.2.3, using the latent variables estimated in the first stage.
1.4.6. Nonzero means. When the estimation 1.4.2-1.4.5 has been performed, the as-
sumption in 1.4.1 of zero means can be revoked, with no change in the estimates
1.4.4, just as in OLS regression, The following formulas for the ensuing estimates
of the location parameters will suffice for illustration,

(6a—<) X =7, Z (WuF)s  Puo = Ex—pisX, byo = Z—bs X—by, Y.
7

1.4.7. The sign of the standardizing factors. Since the standardization factors in 2
have ambiguous sign +, the signs should be chosen so as to make for agreement
with the signs of the loadings postulated in 1.2.3. The degree of agreement makes
a partial test for the realism of the model; cf. [2].

1.4.8. Moment data input. Having spelled out the estimation procedure 1.4.2-1.4.7
for raw data input, it is direct matter to adapt the procedure for moment data input
}.Z.I(ii), The estimation output will include the coefficients of weight relations,
Inner relations, and block structure; the dispersion matrices of latent variables and
residuals; and the covariance matrices of observables, latent variables, and residuals.
1.4.9. Models C331 and C332: Thresholds in NIPALS soft modelling.

(@) In the special cases of Models A221, B221, C221, the first stage of the
WIPALS algorithm does not estimate the inner relation, which then is estimated in
the second stage. For the same two-block models the inner relation can be the sole
target of the first estimation stage, a device which leads to numerically the same
results; [8], [20]. '

(ii) jhe bassage from two to three blocks of observables is crucial in NIPALS
soft. modelling. When coming to C331 and more complex models the two estimation
devices referred to in (i) are no longer equivalent and self-contained. Turning next
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to Model C332, we shall see that the passage from one to two inner relations is
equally crucial in introducing a new feature into the estimation procedure.
1.4.10. Model C332. As seen from the chart, Model C332 has the same arrow scheme
as C331, except that one more inner relation enters, namely for Y in terms of X.
For the same data 1.2.1, Models C331 and C332 have the same operative specifica-
tion (2a~c) for the latent variables, for the inner relation (3b) that explains Z, and
for the weight relations (4¢) of the z-block. The inner relation for Yin Model C332
is specified by

(7) Y= bzo+b21X+e2‘

Fhe new feature of Model C332 is the weight relations for the x and y-block, (4a-b)

being replaced by
(8a) W2821b21 Y+ W3s31b3: 2 = Z (Winxn)+dy,
W

(8b) Wasaiban X+ WassabsaZ = ) (0ay3)+da.
j

The factors W, and W, are nonnegative weights that the model builder has the
option to attach a priori to the two inner relations, ‘
® . W2+ Ws=1, W,>0, W;>0. _
The sign factors sy are designed to avoid that the left-hand terms in (8a-b) cancel
when forming the normal equations for the OLS regression coefficients to the right;
the special case

(10 8531 = sign[bs r(X, Z)]

will suffice to indicate the general design of the sign factors. .

1.4.11. Computer programs. The estimation procedure 1.4.1-1.4.7 with options
for raw data or matrix data input has been programmed for the computer by Ares-
koug [6); covering 4, B and C-models with one inner relation, and up to three
blocks of observables; Hui-Hausman [11] have made a program for up to twelve
blocks of observables, and otherwise of the same scope. Apel [5] has programmed
the general procedure 1.4.1-1.4.10 for raw data input and up to five blocks of ob-
servables, with any design for the inner relations, and any option for the choice
of the weight relations. Apel’s program is being implemented for optiomal raw
data or moment data input, and for using the revised version (10) of the multi-
plicative factor system W;sypi;-

2. The intermediate position of NIPALS soft models between data
analysis and traditional model building

The position at issue is somewhat flexible. We shall consider four version of NIPALS
soft modelling, ranging from clearly data-oriented to more “hard” modes of speci-
fication. '

2%
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2.1. The operative specification 1.2 and the estimation 1.4
The NIPALS approach is distinctly different from data analysis in being based
on the notion of model. A NIPALS soft model is conceptually defined by its arrow
scheme. Otherwise, the specification 1.2 and estimation procedure 1.4 are data-
oriented, inasmuch as the specification formulas (1)~(4) refer to the data, and the
ensuing estimation procedure 1.4.3 operates on the data.

Bach of the following Sections 2.2-2.5 develops and supplements the soft
modelling approach as presented in 1.1-1.4.
2.2. Population concepts of the model: moments of first and second order.
Formulating the model in terms of the population, this version takes (2)-(4) to be
estimates of the latent variables and the structural relations as defined in the popu-
lation. For example,
(la—c) Xy = o +my b +vins Y = Tajo+mzyn+ray;
is the counterpart in the population to the block structure (3a~c). In the population
the indicators are specified by their expectations and their correlation and dispersion
matrices, say .
(123.—0) L* = [E(xh)’ E(yf): E(Zk)]’ R*(xs Vs Z), V*(x: Vs Z)'
The population parameters of a soft model, such as the theoretical coefficients
B30 Ba1s Baz of the inner relation (3d), are obtained by the estimation procedure
1.4.1-1.4.8, using the population moment data (12), and proceeding just as in 1.4.8.

Zp = Tako + 7o L+

2.3. Predictor specification of the structural relations

This version of the model design includes, in addition to 2.2, the specification of
the theoretical relations as predictors, that is, conditional expectations; [21]. For
example, the predictor specification of the population counterpart to the inner
relation (3d) reads

13 E(1E, m) = Bao+Pa1&+Ba2m.

(i) A principal aim of NIPALS soft modelling is to obtaih between-blocks
(inner) relations that are (a) operative for causal-predictive purposes, and (b) rela-
tively stable in various respects. As to (a) the predictor specification (13) makes
the inner relations amenable to causal-predictive inference in the same sense as
OLS regressions. As to (b), see 3.2.

(ii) On predictor specification of weight relations and inner relations, the
estimation procedure 1.4 remains operatively and numerically the same. On predictor
specification, under mild additional assumptions, the estimation procedure gives
parameter estimates that are consistent in the large-sample sense; [22], [23].

(i) In econometric model building, structural relations are often referred
to as “equations”, and their residuals as “errors in equations”. Predictor specifi-
cation is more general, a key difference being that while equation sare (sometimes
treated as) reversible, predictor relations (13) are irreversible, for example,

14 E(§IL, m) # (E—Bao—Bsa)/Bas,

except for the special case where the residual ¢ is vanishing identically.

icm
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2.4. Data simulation

To simulate data for a soft model as conceptually defined by its arrow scheme, the
investigator must specify the parameters of the block structure and the joint prob-
ability distribution of the latent variables. To illustrate by Model C331, we shall
simulate N = 100 cases, assuming that the latent variables have a jointly normal
distribution with zero means and specified correlation matrix R¥, subject to inde-
pendent observations over the 100 cases. First, case values &,, s Ca(n =1, ..., 100)
are generated for the latent variables on the basis of their trivariate normal distribu-
tion. Second, case values x,, Yin> Zin for the indicators are generated from the
block structure (lla-c), using the specified parameters, the simulated case
values of the latent variables and three sets of simulated residuals, vy, Vs, an

2.5. “Hard” modelling
The data simulation 2.4 has carried us to the realm of traditional model building,
with its “hard” assumptions on the distributional properties of the model.

Reference is made to two problem areas where theoretical properties of soft
models can be explored by means of simulated data.

(i) Consistency. The NIPALS estimates based on a finite sample of size N
will, as N — co, tend to the estimates based on the moment data of the popu-
lation, if we disregard exceptional parameter values that are discontinuous in the
limit.

(ii) Consistency at large. Subject to further assumptions on the residuals vy,
Va7, U3k, and assuming that there are many observables in each block (H, J, K large),
and that the sample size N is large relative to the block size, the NIPALS par-
ameter estimates will approximate the teoretical parameters. Special cases: principal
components and canonical correlations; cf. [13], [14].

3. NIPALS soft modelling: A beginning of applications

Attempts to break away from the “hard” assumptions of traditional model building
are “in the air”. Path models with latent variables rapidly came to the fore in socio-
logy in the 1960°s, and are now gaining momentum in other social sciences. The
NIPALS approach to path models with latent variables thus in its beginnings, both
with regard to theory and applications.

3.1. In the wide realm of potential applications of NIPALS soft modelling to inter-
disciplinary and other complex problems, large areas are terra incognita to quantita-
tive analysis. For pioneering work in virgin fields, reference is made to Adelman
et al. [2], who use Adelman-Morriss’s cross section data ([3], [4]) on 74 developing
countries to estimate NIPALS three or four-block models for the relationships
between natural resources, social factors, political factors, and economic growth.
Meissner et al. [15] in another pioneering application use NIPALS three to five-
block models for the construction of an ecological-economic model for region
Hessen.


GUEST


342 H. WOLD
Noonan et al. [17] and Noonan-Wold [18] have applied NIPALS model C331
to the I.E.A. data bank on school pupils’ achievements. This is a problem area
that for more than two or three decades has been explored by quantitative methods,
The NIPALS analysis suggests that previous school survey research has tended to
systematically under-rate the influence of the school conditions as compared with
the home background.

3.2. The applications of NIPALS soft modelling thus far available are encouraging.
From the point of view of subject matter analysis the numerical results are plausible,
and give new vistas on the interdisciplinary problems under analysis. In accordance
with 2.3 (i) the numerical results meet the principal aim to obtain between-blocks
(inner) relations that are amenable to causal-predictive inference.

As regards matters of statistical technique, the studies in 3.1 are unison in
showing that the inner relations and the loadings have a high degree of stability
with regard to various tests. As to the weight relations it is shown that the par-
ameters are more stable for A-type than for B-type models. For NIPALS one or
two block models the estimation procedure 1.4 converges with probability one; [7).
For larger models, convergence of the procedure has never been a problem in ap-
plications to real-world models and data.

4. NIPALS soft modelling: Generalization aspects

The NIPALS approach in Sections 1-2 invites to generalizations in several direc-
tions. We shall here refer to extensions where current research has given tangible
results.

4.1. Nonlinearities in the variables

As is usually the case in least squares modelling, it is direct matter to generalize
the design in Sections 1-2 so as to cover nonlinearities in the variables, whereas
nonlinearities in the parameters are much more of a problem. For example, trans-
forming the manifest variables by forming squares, inverses, logarithms, etc., the
transformed observables may be used as f_'resh indicators.

4.2. Hybrids of path models with manifest and latent variables

If a block of manifest variables in a NIPALS soft model contains just one observable,
the latent variable of the block will reduce to this indicator. Hence when given
an ordinary path model where all variables are directly observed, we may form
hybrid models where one or more of the observables are replaced by latent variables
indirectly observed by a block of indicators.

4.3. Latent variables in two or tnore dimensions
To repeat from 1.3.1 (i) the first principal component and the first canonical cor-
relation are special cases of NIPALS soft modelling. Using the residuals of the block

e _®
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structure as data input, the NIPALS algorithms for these models give principal
components and canonical correlations of second order; that is, latent variables in
two dimensions, and the procedure can be repeated to give latent variables in three
or more dimensions. The device is of general scope in NIPALS soft models. For
each block of indicators, whether the weight relations are designed Mode A or B,
the consecutive latent variables are mutnally uncorrelated. Each new dimension will
bring a new term into the block structure. As in canonical correlations, the
consecutive dimensions will give different numerical coefficients in the inner
relations.

4.4, NIPALS soft models where the inner relations form an interdependent (ID)
system.

In Classical ID systems the structural relations do not allow predictor specification,
and therefore are not amenable to the same causal-predictive interpretation as ordi-
nary regression relations; [21]. Reference is made to REID (Reformulated) and
GEID (General ID) systems, and to the estimation of REID-GEID systems by
the FP (Fix-Point) method; [16]. REID systems establish predictor specification
of the structural relations by replacing explanatory endogenous. variables by their
predictors; GEID systems generalize classical and REID assumptions about the
residual correlations; FP is an iterative partial least squares procedure.

The estimation technique 1.4 is now being adapted so as to cover NIPALS
soft models where the inner structural.relations are interdependent. The adaptation
transforms the system of inner relations from Classical ID to REID-GEID form,
and makes combined use of the NIPALS alorithm 1.4 and the FP procedure; [26],
271, [29*].

5. Comparative aspects: NIPALS soft modelling vs. data analysis
and Maximum Likelihood methods

5.1. Data analysis

Principal components, canonical correlations, and Hauser’s model [10] — in NI-
PALS versions: Models Al, B2, and C2 — are cases of overlapping between NIPALS
soft modelling and data analysis. In these simple models numerically the same
results can be obtained by different statistical methods. For C331 and more complex
NIPALS models there are no counterparts in data analysis, as is only natural since
the arrow scheme and the concept of model are here more essential for the purpose
of squeezing information from the data.

5.2. Maximum Likelihood (ML) methods

Just as the first principal component is the simplest case of NIPALS soft modelling,
the first factor in factor analysis is the simplest case of an array of path models
with latent variables as developed by K. G. Joreskog, using ML methods; see the
program paper [12], with references to earlier works. The NIPALS soft approach
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and the ML “hard” approach to path models are similar with regard to the arrow
scheme and also in other respects; yet there are distinct differences. To specify:

5.2.1. Explicit estimation vs. elimination of the latent variables. In NIPALS soft
modelling the latent variable of each block is estimated as a weighted average of the
observables in the block. Hence when the weights are estimated, the NIPALS ap-
proach gives case values for each latent variable in terms of the case values that
the data contains for the observables. The case values can be exploited in various
ways for testing and further development of the model.

Tn ML modelling the latent variables are eliminated in the course of the estima-
tion of the inner and outer structural relations. Hence no case values can be obtained
for the latent variables. This T see as a serious disadvantage relative to NIPALS
soft modelling.

5.2.2. Identification. Thanks to the explicit estimation of the latent variables, NIPALS
soft models are always identifiable. In corresponding ML models, on the other hand,
the elimination of the latent variables during the estimation is a transformation
of the model, and as always the transformation involves some loss of information
with regard to the identification of the model. Again to specify:

(i) The ML versions of Models C2, C331 and more complex NIPALS soft
models are not identifiable, unless ancillary assumptions are incorporated that
are not implied in the arrow scheme; [9]. The more complex the model, the more
ancillary assurptions are needed.

(if) As noted in 1.4.5 it makes no problem in NIPALS soft modelling to include
the location constants of variables and relations in the analysis. In corresponding
ML models the location parameters add considerably to the intricacy of the identifica-
tion problems; see [19)]. ’

5.2.3. Hypothesis testing. Speaking broadly, the ML methods of hypothesis testing
are distribution oriented, providing significance levels for likelihood-ratio and other
tests on the model; see [12]. NIPALS soft modelling, in contrast, uses data oriented
methods. Specific reference is made to perturbations analysis [1], and to cross valida-
tion, [28]. Having been implemented for principal component models, this last-
mentioned method allows straight forward generalization to multi-block NIPALS
soft models.

5.3. The scope of NIPALS vs. ML approaches to path models with latent variables.
The two approaches are complementary rather than competitive. The “hard” ML
approach is appropriate in microanalysis and relatively simple models, where the
observational experience provides prior knowledge about the distributional assump-
tions as well as the assumptions needed for identifiability (see 5.2.2). The “soft”
NIPALS approach is primarily intended for macroanalysis of nomexperimental
data on interdisciplinary and other complex problems. Between these very different
situations there is a wide realm of intermediate problem areas where the reach and
limitation of NIPALS “soft” and ML “hard” modelling is largely unexplored, and
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where in due course the success or failure of applications to real-world problems
and data will be decisive for the verdict.

Acknowledgements. This paper is a write-up of four lectures at the Stefan Banach
International Center of Mathematics, Warsaw, in October 1976, and draws also
from the planning of a course on NIPALS soft modelling at the University of Penn-
sylvania in the Spring Term. 1977. The paper is expository. What is new lies mainly
in the arrangement of the material, the spelling out in 1.3 of four principles of NI-
PALS modelling, and in 2.1-2.4 of four intermediate positions of NIPALS modelling
between data analysis and traditional model building. The sign rule (10) removes
an inadequacy in previous versions of the double factor system.

The research project on NIPALS soft modelling under which this paper belongs
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* The proofs were received in March 1980, more than three years after the manuscript
was submitted to the editors. The developments of soft modelling in this period have been
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some clarifying reediting, by adding references [29*]-[30*], but without making substantive
changes.
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SOME REMARKS ON LARGE DEVIATIONS FOR
WEIGHTED SUMS IF CRAMER’S CONDITION
IS NOT SATISFIED

W. WOLF
Technical University of Dresden, G.D.R.

1. Introduction

1.1. We consider a sequence of independent identically distributed random
variables X, X, ... with EX; = 0 and D*X; = 1 and a double array {a} = {au,
1 < k<€ n1<n< o}of nonnegative numbers, We want to study the asymptotic
behaviour of the probabilities

(L) Pl{ayXi+ ... +@uX, > x} or  PlayXi+ ... +apX, < —x}

in the case where if n — c0 also x = x(n) - 0. Large deviation theorems for
weighted sums under Cramér’s condition were studied by S. A. Book [1], [2], L. Saulis
and V. Statulevidius [6]. Our aim is to derive asymptotic representations for the
probabilities (1.1) if Cramér’s condition is not satisfied. '
1.2. In the following, g always denotes a function with the following properties:
g(x) is nondecreasing and continuous if x > C(g) and satisfies the conditions

(1.2) e(x)Inx < g(x) € C*(g)x*, O<a<l1
and
(1.3) g(x)x~! is strictly decreasing.

(Here o(x) is an arbitrary monotone increasing function with lim g(x) =
X0

C(g) and C*(g) are positive constants depending on g.)
Furthermore, let the array {a} satisfy the following condition (see [6]):
There exist numbers 6 and 8, 0 < 6 <1, 0 < # < 1, such that, for every
sufficiently large n, for at least dn of the @,.’s the inequalities

(14) ) Oy 2 ﬂyn

hold; here

(L.5) TR yn = max{ay, 1 <k<n}.
. k
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