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Universal maps of Cartesian products

by
W. Holsztynski (Ann Arbor, Mich.,) and R. Strube (London, Ontario)

~

Abstract. Let f: X—I" be a map of a compact space X such that dim [X— £~ 1()]<n. Then

THEOREM 1. The j’;llowing statements are equivalent

(D) fxg: Xx Y—I"%I™ Is universal for every universal map g: Y—I™ of any compact space ¥
such that dim [Y—g~t(i™]l<m, m =0, 1, 2, ...

Gi) fxgpki X% Mpr—I"xI? is universal for every prime p and positive integer k.

Above gpk: Mpe—I? is the canonical map of Mobius band of order p¥.

THEOREM 2. The following statements are equivalent

(8) fXgp: Xx My—I"xI* is universal for every prime p.

(b) If the composition of fi: [X, £~ IM1-(S", 1) and fo: (8", 1)~(S", 1) is homotopic to
S0 LK, fTYIMI-(S, 1) induced by f, then f2 is a homotopy equivalence, :

Some algebraic results also given.

' 1. Introduction. A continuous map f: X—-W is called universal if for every
continuous map g: X— W there exists an x € X such that £ (x) = g(x) [2]. Universal
maps give a common generalization of both the fixed point property and covering
dimension theory; there is also a relation with stable cohomotopy groups [S]. These
maps were studied by the first author in a sequence of papers, and also by S. Iliadis,
S. Kwapieti, and the second author [7, 8, 17], H. Shirmer renamed them “coincidence
producing maps” in [13], and discussed them in subsequent papers [14, 15]. Of
course there are numerous papers on generalized fixed point properties and on
coincidence points, and these are often related to universal maps. However, some
of these papers are just on universal maps and were written before the notion of
a universal map was introduced; e.g. see C. N. Maxwell [9], J. Mioduszewski and
M. Rochowski [10], Rosen [12] (in connection with [12] see C. Vora [18]).

In this paper we study universality of the cartesian product of universal maps
into cubes. Let f: X—I1" and g: Y—I" be universal maps. It is known that if X is
an n-dimensional paracompact space, m = 1, and Y is compact then fxg: X'x
X Y—-I"*1 is universal (see [4]; a more complete result in this direction is in [5]).
In general, f'x g is not universal even if X is a finite polyhedron (in fact, if X is a cube),
Y=1I m="1, and g = id; [5]. But if X and Y are compact oriented manifolds
(possibly with boundary) of dimensions # and m respectively, then f'x g is universal [6].
The restriction that X and Y be manifolds of these dimensions cannot be removed.
There are universal maps fi X—I%, where X is a 2-dimensional polyhedron or
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a 4-dimensional closed manifold such that fx f XxX: -+I4 1s not universal [6];
for a concrete example see [17].

‘We consider the following question. Given families F and @ of universal maps
into cubes, find a condition on fe F which is equivalent to the condition:

(*)  fxg is universal for every g € ®.

A geométric way to solve such a problem is to give a “small” family $,<® of ex-
plicit maps so that condition (x) is equivalent to the condition:

(%o) [fxg is universal for every ge &;.

ﬁere we solve this problem when F = & is the family of all universal maps of finite-
dimensional compact spaces into cubes of the same dimension. In a sense we get the
strongest possible result (see Theorem 1’ and the remarks which follow). We conjecture
the following. Let F = & be the family of all universal maps of finite-dimensional
compact spaces into cubes of the same dimension.

Let @, < & be an arbitrary family such that conditions (+) and (x,) are equivalent
for-every f € F. Then there exists a family ®; = &, such that &\ &, is infinite and () is
equivalent to the condition:

(*) . f xg is universal for every g e @, (for every fe& F).

2. Statement of main result. In order to formulate the principal result we need
to define the following special maps. Consider the annulus S!x I For a given
prime p and natural number k& we identify every p* points of the circle S* x {0} which
divide it into p* equal arcs. Let my, denote the 2-dimensional polyhedron obtained
from S*x I with these identifications (M, ok 18 @ “Mobius band of order p*). Define
amap g, :Mp—1I? as follows: g, maps the image of S* x {0} in M, to the centre of I2,
gy maps the image of S*x {1} in i1, onto the boundary I2 of I by the map
227" (where we identify S x {1} and I? with § 1cC), and g,, maps the image
of a radial line segment from S*x {0} to S* x {1} in M,, to a radial line segment
from the centre of I? to the boundary f? of I

‘We are now ready to state the main theorem (compact spaces are assumed to be’

Hausdorff).
' THEOREM 1. For a given map f: X-1" of a compact space X into the n-dimensional
cube I', where the dim(X—f~*(I")<n, the following statements are equivalent:
(@) fxg: X Y—I"x I" is universal for every universal map g: Y~ 1™ of a compact
space Y, where the dim(Y—g~1(I")<m, m = 0,1, 2,.
() f)gpm: Xx M, > I" % 1% is universal for every prime p and natural number k.

The proof of this theorem is preceded by a theorem in which we characterize
a class of right indecomposable maps (see Section 4) in terms of cartesian products.

3. Preliminaries. In this paragraph we will collect auxiliary definitions and known
results needed in the sequel. We use Cech cohomology with integral coefficients.
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ProrosITION 1 ([31). A4 map h: Z—I* is universal if and only if there does nor
exist an extension H of the map hlh=*(1%): h=*(I*)=T1* 10 all of Z.

Let h: Z—I¥ and set D = A~ (I%). Let §,_, be a generator of H*~*(I*) and let.
8y = 08, where &: H*~1(I*)—H*(I* [*). )

PROPOSITION 2. Let Z be a compact space with dim(Z— D)<k, Then h*(s,) = O
in HYZ, D) if and only if h is not umiversal.

Proof. This follows from Proposition 1 and the Hopf extension theorem:
(e.g., see Spanier [16] and [11], Appendix by Kodama),

Let s, and s,, be generators of H"(I", I") and H™(I™, I™), respectively. Identifying
' with I"xI™, it follows that s,xs, is a generator of H"* m(I"*m, j**m) If
S (X, H—-I" 1" and g: (Y, B)->(™, 1™), then

(Fxg) (s, X 8) = FH(s,) X g*(sy) € H"+m((X9 Ay x(Y, B)) .

Note that if 4 =f"*(I" and B = g~*(I"™), then (X, &) x(Y, B) =
where C = (fxg)~*(I"™). .

Since the canonical homomorphism H"(X, )@ H™(Y, B)—~H"*"((X, A) x (¥, B)),.
under which u®uv—-uxwv, is a monomorphism (see [12], Appendix by Kodama),
we have:

PrOPOSITION 3. Suppose f: X—1" and g: Y—I™ are maps of compact spaceS'X i
and Y with dim(X—A)<n and dim(Y—B)<m, respectively, where A = f~*(I")
and B = g~'(I™). Then f*(s,)®¢*(s,) = 0, in H'(X, AQH™Y, B) if and only
Frxg: Xx Y=I"xI™ is not universal,

We recall that a subgroup H of an abelian group F is said to be pure if the equa-
tion nx = h & H, where n is an integer, is solvab]e in H whenever it is solvable in the:
whole group F.

PROPOSITION 4. If H is a pure subgroup of F and F|H is finitely generated, then H is:
a direct summand of F (e.g., see Fuchs [1], Corollary 28.3).

XxY, O,

4. Related results. We make the following definition:

DEFINITION, A map (of pairs) /3 (X, 4A)—=(W, E) is said to be homotopically
right indecomposable if for all maps fy: (X, A)~(W, E) and fz‘: (W, Ey—(W, E)
sueh that f, o f; = f, it follows that f, is a homotopy selffequ1va1ence.
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The notion of right indecomposability is naturally defined for arbitrary categories.

It f: (X, A)—(I" [") is a given map, let f: (X, A)—(S", 1) be the composition
gof, where g: (I", IV —>("/1", %) » (8", 1). Let M, = My and g, = g,;.

TrrorEM 2. Let f: (X, A)~(I", ") be a given map of a compact pair (X, 4),
where 4 = £ (") and dim (X — A)<n. Then the following statements are equivalent:

(a) fx g, XxM,—>I"xI* js universal for every prime p. A

®) f': (X, A)—-(S5", 1) is- homotopically right indecomposable.

The proof of Theorem 2 will follow from the following sequence of lemmas,

LemMA 1. Let F be an abelian group, and let a € F. Then the following statements
are equivalent: :

(2)) a®B, # 0 in FRC, for all primes p, where B, is a generator of the (cyclic)
group C, of order p.

(b") « is not divisible by an;v integér other than +1.

Proof. That (a') implies (b’) is immediate. Suppose that a®p, = 0 in FQC,
for some prime p. Since the tensor product is continuous with respect to the direct
limit, we can assume that F is finitely generated. Let F+ F, refer to a fixed decompo-
sition of Finto the direct sum cf a free group F,and a torsion group Fy. Let o0 = oz +0ty,
where o, € Fp and o, € F,. Then a®p, = a,@p,+a,®p, = 0, and hence ;@ B, = 0
and «,®f, = 0. )

Sinrce F, is isomorphic to the direct sum of infinite cyclic groups, we will write
oy = i; o e; (where {ql, ..., &} forms the standard basis for é) C). Then

=1
r

0= “I®BP = __Zlﬁai(el®ﬁp) s
. r ‘
and since {e;®f,, ..., &,®f,} forms a basis for @ CJp, it follows that p|e, for
i=1

i=1,..,r and hence pja,.

Now decompose F, as the direct sum Cp; +...+ C,;,+ L, where no element of L
has order divisible by p. Then writing

s
%y = Z apilfl+)'=
. J=1
‘where f; is a generator of C,;, we obtain

0= @f, = 3, alfi®B)+i®8, = 3 (/10

=1

Since f;®8, is a generator for C,;,®C, =~ C,, ployy, for j =1, ..., 5. Since p}4, pla,.
Thu§ ;.vlac ; and plx,, implying plo, contradicting the assumption that no integer
# 1 divides «. Hence (b") implies (a").

In Lemmas 2 and 3 let F = H"(X, 4) and « = f*(s,) e F. :
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LemMA 2. The following statements are equivalent:

(a) fxgp: XX M,—I"x1I* is universal for every prime p.

(&) a®p, # 0 in FQC, for all primes p, where B, is a generator of the (cyclic)
group C, of order p.

Proof. This follows from Proposition 3 and the easily checked fact that
H*(M,, B) is cyclic of order p and is generated by g*(s,), where B = g;'(I?.

Lemma 3. The following statements are equivalent:

&) f': (X, A)—(S", 1) is homotopically right indecomposable.

(b") o is not divisible by any integer k # 1.

Proof. Suppose « is divisible by k s £1; then « = ko, for some oy € F. By
the Hopf classification theorem (e. g., see Spanier [4]), there is a map /. X, A)—(S",1)
such that #f(3,) = o, and hence f*(5,) = khy(s,). Let dy: (5", 1)=(S™, 1) be the map
induced by the map z—»z* from S*<C to itself. Then d;(5,) = kS,, and hence
F*(s,) = (dy © B)*(,). Since the collapsing map g¢: (1", i"—(S", 1) induces an
isomorphism g*: H"(S", 1)-»H"(I", I™ where ¢*(,) = s,, we again apply the Hopf
classification theorem to show that f’ = dj ¢ k. Since k # +1, d, is not a homotopy
equivalence and hence f* is not homotopically right indecomposable. Thus (b)
implies (b").

Suppose f* is not homotopically right indecomposable, i.e., there are maps
S (X, A)—(S", 1) and f,: (S, 1)~(S", 1) such that f,of; ~f’, but f is not
a homotopy equivalence. Since [S", 1; S”, 1] = Z and by the Hopf classification
theorem, f3(5,) = k8, for some integer k. Since f; is not a homotopy self-equivalence,
k # +1. Hence for some integer k # *1, there exists a map fi: (X, A)—(S", 1)
such that (£)*G,) = (2 of0) () = KfFIG,)- Since g*() = 8, @ = f*(s) = (/%)
and « = kf¥@,), i.e., klo and hence (b") implies (b). ‘

Proof of Theorem 2. By Lemma 1, (a') is equivalent to (b"). Hence by
Lemmas 2 and 3, statements (2) and (b) are equivalent.

5, Algebraic formulation. In this paragraph we formulate and prove an algebraic
substitute of Theorem 1, with topological spaces replaced by abelian groups.

TazoreM 3. Let F be a given abelian group, and let o € F. Then the following
statements are equivalent:

(i) a®pf # 0 in F®QG for any non-zero element of an arbitrary abelian group G.

(i) a®Pp # 0 in FQCy, for all primes p and natural numbers k, where B Bs
an element of order p in the cyclic group C,y. of order e

(iii") The subgroup generated by o is a direct summand of every finitely generated
subgroup of F containing o. '

Proof. Clearly (i") implies (ii). To show that (i) implies (iii) and that (iii’)
implies (i), we can assume that F is finitely generated. :

To show that (ii’) implies (iii"), we first note that by Lemma 1 « is not divisible
by any integer # 1, and thus [a| = c0. Let H = {a); we will show that H is a pure

2 — Fundamenta Mathematicae T. CV
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subgroup of F. This is for some integers r and s there is an element y € F such that
ra = §y, then there exists an element § € H such that ra = sd.

Suppose first that (r,s) = 1; then there exist integers « and b such that
ar+bs =1, and thus a = ara+bsa = asy+bse, i.e., o= s(ay+ba). Hence s|u
and s = +1. But then r¢ = +ye H, and we take 6 = +ru.

Now suppose (r, s) = m 3£ 1; then r = mr, and s = ms,, where (ro, §,) = 1.
Then ra = sy implies m(rou—sy7) = 0. Let Fy+F, refer to a fixed decomposition
of F into the direct sum of a free group Fy and a torsion group F;., Let o = oy+0t,
and y = y,+7,, where &, and y, and a, and y, € F;. Note that «; 5 0 since |af = co.
Then m(roo;—s07,) = 0 and thus roaep—soy, = 0, Le, rotty = S5,

‘We now show that o is not divisible by any integer other than 41, Suppose « r
is divisible by the prime p, i.e., a; = pa. Then

ac®ﬁpk z.pa}®ﬁpk+dt®ﬁpk = at®ﬂpk s
since | = p. F; can be decomposed as the direct sum C,;, +...+ Cy;, -+ L, where
. n

no element of L has order divisible by p. Then writing «, = oy, + A We have
Jj=1

at®ﬁpk = jgl(mpi_/®ﬁpk)+l®ﬁpk = jzjl(“pi,[®ﬂpk) .

Choosing k>max{iy, ..., i,}, %,;,®p, =0 for j=1,..,n Thus for this choice

of k, a®B . = 4@ B, = 0, contradicting the assumptions of statement (i"). Thus e,

is indeed not divisible by any integer other than 1.
Now, as before, it follows that s, = +1; thus s = +m, Now let § = +roo;
then ra = m(ry0) = +s(roa) = s(trya) = 56, where & ¢ H, ,
Thus we have shown that if F is finitely generated, H = (&> is a pure subgroup
of F. Clearly F/H is finitely generated; hence by Proposition 4, H is a direct summand
of F. Hence (ii") implies (iii"). ‘
Finally, it is easy to see that (iii’) implies (i'). Indeed, if «®p =.0 in F®G,
. where § and G are as in (i), a®f = 0 in F;®G for some finitely gederated sub-
group F, of F. Since H = (&) is a direct summand of Fy, a®B = 0 in HR®G. But
HQG = G by the isomorphism a®p—p. Thus f =0 in G, a contradiction.

-6. Proof of Thet?rem 1. We will use the previously established notation; in
partlcu_}z:r, S: X-I"is a map of a compact space X with dim (X' — 4)<n, where
A =f7YI". We set F = H'(X, 4) and « = f*(s,) € F.

LemMA 4. The following siatements are equivalent:

() fxg: X'x Y=I" x I™ is universai for every universas map g: Y-+I™ of a compact
space Y with dim(Y—B)<m, where B = g~3(I"™), m = 0,1, ...

(i') a®pB 5 0 in FRG for any non-zero element B of an arbitrary abelian group G.

Proof. By Prt.)pc?sitions 2 and 3, (i") implies (). To show that (i) implies i)
we first recall thaf; (i") is equivalent to (ii*) of Theorem 2. Suppose a®p = 0 in F®G:
then a®f,. = 0 in FQC,, for some prime p and integer k, where Box is an element

icm

Universal maps of Cartesian products 177

of order p in the cyclic group C, of order p¥: Consider the compact pair (M, B)
where My, is the two-dimensional polyhedron described in paragraph 0; and B is
the image of S* x {1} in M, (B ~ S%). Then it is easily shown that H*(Mp, B) = Cp,
and if By = gey, where ey is a generator of Cp, then (g,)%(s2) = Bu
(g = 0mod(p*~*)). Thus if weset ¥ = M, and g = g,,, then g: Y—I* is a universal
map of a compact space ¥ with dim(¥—B) = 2. Since ax f, = 0 in H"(X, 4) x
x H™(Y, B), /X g is not universal by Proposition 4. It follows that (i), and hence
(i), implies (i). o .

 LEMMA 5. Given a prime p and a natural number k the following statements
are equivalent:

() FX Gt XX Mp—I"xI? is universal. ,

(lip) @ X e # O in FQCy, where By, is of order p in the cyclic group Gy, of
order p*.

Proof. This follows from Proposition 3 and the fact that H*(Mp, B) = Cpy
and glh(s;) € H* (M, B) is of order p.

Proof of Theorem 1. By Lemmas 4 and 5, (i) is equivalent to (i) and (ii)
is equivalent to (ii’). By Theorem 3, (i’) and (ii') are equivalent, and Theorem 1
follows.

We remark that it is easy to see that (ii, .. ,) implies (iiy) for k =1,2, ...
Thus we can formulate Theorem 1 in a somewhat sharper way.

TreEoREM 1. For agiven mapf: X—I" of a compact space X into the n-dimensional
cube I", where dim(X—f~*(I")<n, the following statements are equivalent:

(@) fxg: X x Y—I"x I™ is universal for every universal map g 1 Y—=I™ of a compact
space Y, where the dim(¥—g~'(I")<m, m =0,1,2, ... '

(i) There exists a family Do={gy: p is @ prime, k = 1,2,..} such that for
every prime p, the map g, belongs to &, for infinitely many k, and fx g is universal
for every g € @,.

For example, let us identify I* with the unit disc in the complex plane, and let
St 2% be given by fo(2) = 27", Then fi(s;)Xgq = 0 if and only if ¢ =p
and r>k. This means that f,;, X g, is universal if and only if p#gorr<k. In
particular f X g, k41 15 DOt universal. This shows that Theorem 1’ is the sharpest
possible in the following sense. If Y{g,: pis a prime, k =1, 2, ...} is a family
such that condition (i) of Theorem 1’ is equivalent to the condition “fx g is universal
for every g € W7, then ¥ is one of the families @, specified by condition (iip) of
Theorem 1'. :
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Weakly Borel-complete topological spaces
by

Michael D. Rice (Fairfax, Va) and George Reynolds (Schenectady, N. Y.)

Abstract. A Tychonoff space is weakly Borel-complete if each ultrafilter of Borel sets with the
countable intersection property converges to some point in the space. This concept has been intro-
duced by Z. Frolik in [4] under the name Baire-Borel-complete, with a different definition. The
present paper studies such spaces, contrasting their properties with the Borel-complete and closed
complete spaces discussed in [9] and the familiar realcompact spaces, and adds some new results on
Borel-complete spaces. The primary difference in approach between [9] and the present work is the
measure-theoretic language adopted here. For example, weak Borel-completeness is equivalent to
each non-trivial 0-1 valued countably additive Forel measure having a non-empty support set
(necessarily consisting of one point). Finally, we note that the present work has considerable overlap
with the recent work of R. J. Gardner [6]; the details of this overlap are found at the end of section
two.

Section 1. A space is Borel-complete (resp. closed complete) if each ultrafilter
of Borel sets (resp. closed sets) with the countable intersection property is fixed
at some point of the space; alternately Borel-completeness is equivalent to each
o-additive 0-1 Borel measure being a point mass measure. Therefore each Borel-
complete space is weakly Borel-complete. For other background informalion the
reader is referred to [9]. In particular, the Baire (resp. Borel) sets are the smallest
o-field which contains the zero sets of continuous real-valued mappings (resp. the
closed sets).

TuroreM 1.1. The following statements are equivalent.

(i) X is closed complete.

(i1) Each non-trivial regular o -additive 0-1 Borel measure is a point mass measure.

(ili) For each closed ulirafilter & on X with (\F = & there exists a o-disjoint
open refinement of {X —F: Fe%} and X has no closed discrete subspace of measurable:
Dpower.

To prove the above theorem, we will need the following lemma that was dis-
covered during the writing of [9] (see 6.9-6.12 of [8]).

LeMMA. Let €< P(X) and let F be a € -yltrafilter closed under countable inter-
sections, Define

UF) = {S<X: S misses or contains some member of F .
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