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Almost every tree function is independent
by

Leonard Gallagher * (Washington, D. C.)

Abstract. Points of the Cantor set C may be represented as branches of an infinite dyadic tree.
Nodes of the tree may be randomly labeled with 0's and 1’s. A tree function is a mapping from C
to [0, 1] determined by assigning to each branch the real number having binary representation as
the labeling of the branch. A tree function f is independent over a relation R C [0, 1]" if for every
SEqUENCe Xi, ..., Xy Of distinct elements of C we have ( F(x), oS (x,,)) ¢ R. We define a Borel
probability measure on the set of tree functions and show that if R is null with respect to a special
Hausdorff measure on [0, 1]" then almost every tree function is independent over R.

1. Introduction. 'A. geneéralized notion of independence was introduced by
Marczewski in [2] and extended by Mycielski to relational structures in [4]. Follow-
ing [5] and [6] we consider relational structures of the form {M, R>;<, wWhere M is
a non-empty, complete metric space, R, =M'® and 1<r(k)<w for all k<w. For
any set X a function fi X—M is independent over the Ry’s if for every k and every
SEQUENCE Xy, ..., X, Of distinct elements of X” we have (f (%)s cennf (%)) & Ry

The Cantor set is denoted by the symbol C and is understood to be the discon-
tinuum {0, 1}* under the usual totally disconnected metrization. M € is the space
of all continuous functions f: C—M with the usual uniform convergence topology.

The main result of this paper is a theorem analogous to the main theorems
of [5] and [6]. In [6] Mycielski proves that if each R, is meagre in M then the set
of functions f'e M® independent over all R/’s is comeager in the space M. In [5] he
lets M be Buclidean n-space and shows that if the R;’s are of Lebesgue 7 (k)-dimen-
sional measure zero then there exist independent functions fe M’ € Welet M = [0, 1]
and prove that if each R, is ho-null (see below) in [0, 1] then almost every tree
function (see below) is also independent over the R’s (see Remark 1, Section 5).

In Section 2 we define randomly labeled trees and tree functions. We also con-~’
struct a probability measure over the set of all tree functions and estimate the measure
of certain useful subsets. In Section 3 we prove that two interesting properties are
true for almost all tree functions. In Section 4 we define A-null sets and compare

* This paper constitutes part of the author’s Ph. D. thesis at the University of Colorado under
the direction of Jan Mycielski and S. M. Ulam. This work was supported in part by an NDEA
Title TV Graduate Fellowship.
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them with sets of measure zero under Hausdorff -measure. We also show that sets
of measure zero under a product Hausdorff measure are z-null. In Section 5 we
prove the main result of this paper.

We wish to thank Andrzej Ehrenfeucht for the main idea used in the proof of
Theorem 3.1.

The major results of this paper were announced in [11.

2. Tools and lemmas. A tree is a partially ordered set with the property that the
set of predecessors of any element is well-ordered. For ordinals n the nth-level of
a tree is the set of all elements whose predecessors are order isomorphic to 7. A branch
of a tree is a linearly ordered subset which intersects every level of the tree.

We let (xy, ..r %) = {<1, %), ..., <n, x,>} and denote by T the infinite dyadic.
. tree consisting of all finite sequences of 0’s and 1’s under the partial ordering
(1, wos 1,) S(515 -ovs 5,). We denote by 27 the set of all {0, 1}-labelings of T, i.e.,
functions a: T—{0, 1}. Clearly each ae2T is a tree under the partial ordering
(t, 2())<(s, a(s)) if and only if 1<s. Also 27 carries the patural product topology
and probability product measure for which P({ue2”: a(f) =5}) =1 for allteT
and §e{0, 1}. For these reasons elements of 27 will be referred to as randomly
labeled trees.

To each ae2¥ we may associate a continuous mapping f,: C—[0,1] by
putting : N ’

)

fa(x) = Z a(x(): eny X, —1)/2"

n=1
for each x = (xq, Xy, -..)€ C. The f,’s are called tree functions. The set of tree func-
tions is identified with 27 under the mapping o<f, and inherits the topology and
measure of 27.
For any & = (6;, ..., 6,) € {0, 1}" a dyadic interval of C is ]{he set

C() = {xeC: (xg, s X,—1) = O}
and a dyadic interval of [0, 1] is the set
1) = {ye [0; 11::",:]542‘@ <i_ilai/2i+1/2"} .
For dyadic intervals of C and [0, 1] we define
H©O,n) = {ae2”: £(C) NI, ...,8,) # S},
H(m,n) = {22 f{CGy, ... 6)) O 13, ..., 0;) # O}

By symmetry it is clear that the P-measure of H(m, n) depends only on m and n,
and not on the §; and §; involved. If n<<m it is easily shown that all

P(H(m,n)) = 1/2".

To see this we let C(3y, ..., 6,) and I(d}, ..., 8,) be dyadic intervals defining H(m, n)
and observe that every o€ H(m,n) satisfies a(dy,...,86,) =& for k=1,..,n
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An upper bound for the P-measure of sets H(m, ) with n>m is needed in
Section 5. The following Lemma 2.2 specifies the desired bound.

Lemma 2.1

1) P(H(0, k+1)) = P(H(0, k))—P(H(0, k))*/4,

2) P(H(m,m+k)) = P(H(0, k))/2"™,

Proof. For positive integers n and ¢t = & or te T the set

D) = {xeT: t=x,t # x, Card(x\1)<n}

is a subtree of T of height n. For branches B = (b, ....b,) of D,() we put
a(B) = (a(by), ..., %(B,)) and for §e{0,1}" put M(D,(1),0) = {xe2": a(B) # 6
for any branch B of D,(f)}. It is clear that the P-measure of M(D,(2), 5) depends
only on n and not on the choice of ¢ or 8, so we denote by p, the P-measure of such
sets.

Let I(5,, ..., &) be a dyadic interval of [0, 1] that determines one of the sets
H(0, k). For every o € H(0, k) there exists an x & C with f(x) € I(8y, ..., 6) so it
follows that H(0, k) = 2'\M(Dy(@), §) where & = (5, ..., 6). Thus P(H(0, k))
= 1—p, for all positive integers k. Next let & = (8y, ..., S ) € {0, 1}¥"! and
for 6% = (63, ..., O4sr) PUL M = M(Dk+1(®)’ 5), M, = M(Dk((o))s 5*), and
M, = M(Dy{(1)), 5*). The set M may be partitioned into four disjoint sets as
follows: :

Sy = {a: a((0)) = a((1)) # &,},

8y = {a: u((0)) # a((1)) = &, and « e My},

Sy = {o: 8; = ((0)) # a((1)) and x e M},

8y ={o: «((0)) = a((1)) = 8, and e M; and e M,}.

Thus P(M) = 3-3(1+P (M) +P(M)+P(M)P(M,)) and pery = (1 +2p+p5)
= }(1+p,)? The substitution p, = 1—P(H(0, k)) gives (1).

To prove (2) we let C(5y, ..., 8,,) and I(], ..., 6;44) be dyadic intervals that
determine one of the sets H(m, m+k). Let M = M (Dy{(81, s ) s 15 e Sryas)):
It is clear that every o e H(m,m+k) satisfles o(8y,...,6,) =&, forn =1, ..., m
and that o ¢ M. Thus P(H(m, m+k)) = G"PQ\M) = (1—p,)/2" = P(H(, k)/2".
Q.E.D.

4
2. ) ) <l —)2™
Lemma 2.2. P(H(m, m+k)) <4+k>/2

Proof. Let fand g be defined over the positive integers so that f (k) = P(H(0, k)
and g(k) = 4/(4+k). By direct observation we see that f'(1) = %. It is also easily
seen that g (k)(1 —%g (k))<g(k+1). In addition, for real numbers a and b satisfying
0<a<b<], the inequality a(l —}a)<b(1 —4b)is valid. Clearly f (1) = i<t =9g.
Proceeding by induction we assume that 0<f (k) <g(k)<1 has been shown. From
Lemma 2.1.1 and the above we see that

0<f(k+1) = FID(I—1f ()<g®)(1 — g () <g(k+ D=1
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It follows that £ (k) < g (k) for all positive integers k. The desired result follows from .

Lemma 2.1.2. Q.E.D.

Remark. It can also be shown that for large k, P(H(0, k)) approaches 4/(4+k)
asymptotically.

3. Properties true for almost every tree function. The following results show that
almost all tree functions are not one-to-one but retain an important property of one-
to-one functions in-that they map C onto a perfect subset of [0, 1]. ‘

THEOREM 3.1 (Ehrenfeucht). Let T, and T, be disjoint subirees of T' randomly
labeled with O’s and 1’s, each having a unique smallest element. With probability =%
there will be a branch of Ty labeled in the same way as a branch of T,.

Proof. For t € T'the set D(f) = {x & T: 't < x} characterizes subtrees of 7' having
a unique smallest element. Fou «e2” and branches B = (b) of D(1) we put
a(B) = (a(by)). For t and s two incomparable elements of T, i.e., t&s and s,
we denote by 4 the set of o e 2" for which there exist branches B, of D(f) and B,
of D(s) satisfying a(B,) = a(B,). It suffices to show that PlA)=4.

For 1y, .., %, pairwise incomparable elements of T' the set D,(t,..,1,)
= {xeT: t;<Sx for some 7 and Card(x\t;)<n—1} is a subtree of height n with m
roots. If m = j+k we denote by M,(j, k) the set of a e 27 satisfying the property
that for all branches B, of D,(t;, ..., z;) and B, of D,(t;1 4, ..., k), 0(By) # a(B,).
We put g,(j, k) = P(M,(j, k)) and observe that ¢,(j, k) does not depend on the
choice of ths underlying D,’s. We partition D,4,((0)) into {(0), D,((0,0), (0, D)}
and D,.4((1)) into {(1), D,((1,0), (1, D)}. It is then not difficult to verify the
equation
6] Gut1(1, 1) = 3+14,(2,2).

Similarily we partition D,.,((0,0), (0, 1)) and D,.,(1,0),(1, 1)) into points
and subtrees of height » and arrive at equation

@ n+1(2,2) = 76(2+84,(4, 2)+44,2, 2)* +24,(4, 4)) .

It is clear that g,.,(2,2)>¢,2,2)>q,(4,2)>g,4, 4) so if we substitute 42,2)
for the other quantities in equation (2) we get 2¢,(2, 2)*—34,(2, 2)+1>0. It follows
that ¢,(2,2)<% so substitution into (1) gives g,.(1, 1<% for all n Put
A, = 2"™\M,(1,1) where M,(1,1) is determined by D, and D,s). Since
P(M,(1, 1))<# we see that P(4,)>} for n>1. Also the sets A, are monotone de-

creasing and 4 = () 4,. Thus P(4)=1 since P is continuous from above. Q.E.D.
n=1

COROLLARY 3.2. Almost every tree function is not one-to-one.

Proof. Let B be the set of « €27 for which the tree function Jx is one-to-one.
It suffices to show that P(B)<e for arbitrary £>0. Choose 7 sufficiently large so
that ($)*"<e. Let ¢ be any element of the nth level of T, and denote by M(r) the set
of all «e2” for which there does not exist a branch of D((1,0)) (see proof of
Theorem) with «-labeling the same as some branch of D((z, 1)). Clearly M(y) is
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the complement -of some 4 as in the Theorem so P(M(f))<3.for all 7. Also
B= (M(©) so PB)ISP(NM()<($)*" <& QE.D. :
t ! t

THEOREM 3.3. Almost every tree function maps the Cantor set onto a perfect subset
of [0, 1].

Proof. For each positive integer n and each e T we denote by B,(¢) the set
of xe 2" for which a((z, w) = a((z,v)) for all u, ve {0, 1}". Each ae B,(¢) maps
all elements of the nth level of D(#)\{¢} (see proof of 3.1) into the same binary

o0
digit, so P(B,(f)) = ()*"~*. Thus the set B = {J () B,() has P-measure zero. It

teT n=1
sufices to show that £,(C) is perfect in [0, 1] for all & e 2"\\B. All f,’s are continuous
0 f,(C) is closed in [0, 1]. Let z e f(C) be arbitrary and choose x & C such that
z = f(x). Let G be any open neighborhood of z and choose n sufficiently large so
that the interval of radius 1/2" about z is contained in G. Since « ¢ B there exists
7€ C(Xos s Tyy) With £,(3) # £u(3). Also | £L)—f()<1/2" and fy(») € G.
Thus z is a limit point and f,(C) is perfect. Q.E.D.

4. Hausdorff -measure and A-nullity. In this section we consider a special
collection of subsets of Euclidean n-space R". These sets, which we call A-null
(Definition 4.1), are defined in a manner similar to sets of measure zero under
Hausdorff s-measure (see [7]). In Theorems 4.3 and 4.4 we show that every N = R"
which has measure zero with respect to Hausdorff %z-measure or has measure zero
with respect to a product Hausdorff measure, is A-null.

Let & be a real-valued, monotonic increasing function defined for =0, positive
for >0, continuous on the right, and with #(0) = 0. For any set X' < R" we denote
by d(X) the diameter of X. :

DEFINITION 4.1. A set NS R" is said to be h-null if for every >0 there exists
a collection {G(j, k): j=1,..,n; k=1,2,..} of bounded open sets of R such
that i

Cs

Ne l;G(j,k) and i ﬁh(d(G(j,k)))<s.
k=1j=1 k=1 =1

[l

1

It is easily seen that a countable union of h-null sets is ~-null. We also observe
that vertical and horizontal lines in R? are A-null, but that for some A’s
(eg. 1(1) = /D the diagonal in R® is not A-null. Thus /4-null sets are not invariant
under congruences. Also, with A(f) = /7, vertical and horizontal lines in R? are not
of measure zero under Hausdorff z-measure ([7] p. 79) so A-null sets need not be of
measure zero under s-measure.

Lemma 4.2. If {N(j): j =1, , 1} is a finite collection of subsets of R such that
n
at least one N(j) is h-null, then N = P N(j) is h-null in R".
j=1

Proof. Since % is continuous on the right and positive for #>0 there exists §>0
such that 0<A(x)<1 whenever 0<x<J§. We consider R as a countable union of
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intervals of diameter less than d. Since a countable union of s-null sets is A-null
we may assume without loss of generahty that NSF; X...x F, where F;<R and
d(F;)<38. Let s be chosen so that N(s) is - null. For arbltrary &>0 there exist sets
G(k) open in R such that
'oo ’ ]
N@Ees UGK) and kzllz (d(Gx))<e

J k=1 =
By putting G(j, k) = G(k) if j = s and G(j, k) = F; otherwise, we observe
that .

1"’ GG, and Y TIAWGU, B)<h(d(GE)<e. QED.
j=1 k=1 j=1

"ca

Tk
THEOREM 4.3. Let h be as above and put h,(f) = (A())". If N< R" has Hausdorff
h,-measure zero then N is h-null.

Proof. For £>0 it follows by [7], Def. 16, that there exists a collection
{NFE): k=1,2,..} of open sets of R” such that

N EkEJlN (k) and ki h(d(N(K))) = ki(h @@)y<e.

We define S(j, k) = {x;: (X1, s Xp o0, X,) € N(K)} and put a(j, k) = inf S, k)
and b(j, k) = supS(j, k). Let G(j, k) = (a(j, k), b(j, k) so d(G(j, K))<d(N(k))

n
and N(k)= P G(j, k) for all k. The open intervals ‘G(j, k) satisfy Definition 4.1.
i=1

Q.E.D.

Remark. We recall that Hausdorff 4-measure depends only on the germ of
at 0 and that if A<A* then Hausdorff %-measure < Hausdorff A*-measure
([7], Theorem 40). Thus if N=R" has Hausdorff h,-measure zero for I<m<n it
has Hausdorfl A,-measure zero and is A-null.

Let 7 be Hausdorff #-measure on R and let #" be the correspondmg product
measure on R* (see e.g. [3], p. 90) Recall that 7n"(X; X...x X,) = H n(X;) where
=1

multiplication is extended by assuming 0-c0 = c0-0 = 0.
THEOREM 4.4. If 7"(N) = O then N is h-null in R".

Proof. Let ¢>0 be given and put &* = &/2". Since n"(N) =
R(j, k) =R such that

0 there exists sets

NEG P R(j,k) and i ﬁn(R(j,k))<s*.
k=1j=1 ¥S1 =1

»
If =(R(j, k)) = O for any k then P R(J, k) is h-null by Lemma 4.2 since /- measure
=1

zero and /z-null are identical on R. Thus without loss of generality we may assume
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{
that m(R(j, k))<oo for all j and k. Then by. the definition of =. there, exist open sets

G(j, k,r) in E such that
RGHEU GG, k7 and 3 h(d(GU, K, M))<22(RU B)).

r=1 =1
Tt then follows that

P Gk, 5)
J=1

wCs . - %
R

we 0

k=1s=1 s
and

H 5 MGGk )

TMs'

i iz f[h(d(cu,k,s,)))

k=1s1=1 sp=1j=1

o0 n . -
( 2 1’[ 27t(R(j, K))<2'e* = ¢. Q.E.D.

5. Independent tree fanctions. In this section we put Ay(f) = —1/logt for 0<t<1
and restrict our attention to hy-null sets in n-cubes [0,1]". We then prove
Theorem 5.3, the main result of this paper. The choice of the function A, is suggested
by Lemma 2.2 since we desire that /(1/2%) should be not lesser in magnitude than
P(H(0, k).

It is not immediately clear that the collection of Ao-null sets is ‘hon-trivial. But
we can show that in every n-cube there are comeager Ao-null sets. We let
(ri: i=1,2,..) be any ordering of the points of [0, 1]* having all components
rational in [0, 1]. We put §(m) = 1/e?" and let N(, m) denote an open sphere.of

diameter 5 (m) containing the point r;. Then thc set G= ﬂ U N(i, i+j)is comeager
oo j=1li=10

in [0 1]" because it is.the countable mtcrsectlon of open.dense séts. To show that-G is
also. hy-null in [0, 1]" we let z:>0 be glven and choose a positive integer j so that
1/27 <& Then ‘ . -
Gs UNG,i+) | and 2 ho(d(N(z l'l'J))) =12<e
s0 Deﬁmtlon 4.1 is satisfied. . ¥
LeEmmA S.1. If N0, 1]" is ho-null, then for every e>0 there exzsts a collection

I(j,k) ofdyadtczntervalsof [0 l]such that NC U P I(] k) andz Hl/p(], k)<e

1,=
where I(j, %) = 1(5) for some 55{0 1pubs
Proof. Put e* = &/(3"(log2)"). By Deﬁmtlon 4.1 there exists a collection G(j, k)
of open sets of [0, 1] such that '

NC U P G(],k) ‘ancI'
. k= 1j=1
3 — Fundamenta Mathematicae CV/2

- Z T mlaceu. et
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Clearly each set G(j, k)-can be covered by at most three dyadic intervals of [0, 1]
with diameters less than or equal to d(G(j, k)). Thus ‘

G, k<1, k, DV I(, k,2) VI, k,3)
and

C) I;I(j,k,i,)

1 in=1j=1

where d(I(j, k, i))<d(G(j, k) for all i,. Also each 1(, k, i) = I(8) for some
Se {0’ l}p(i.k,i) S0 .

hold(IG, K, D)) = —1/(og(1/2°9*5M) = 1/(p(j, &, D)log2)

“Thus
) n 0 3 3 n
5 5.5 MTbGkin=3 3 2 T oDl ki)
k=1i1=1 h=1j=1 =1 is=1 =1 j=
] 3 3 n
<(og2)" 3, % - ¥ I hold(GU, k)
k=1 iy=1  Ix=1 j=1

<3'(log2y" ¥ T hold(G(j, K))<e. QED.
k=1 j=1
Let {t;: j=1,...,n} be a collection of distinct elements of {0_‘, 13" and let
{I;: j =1, ..., n} be a collection of dyadic intervals of [0, 1] each of diameter less

than 1/2". Put H; = {xe2”: £(C@)) N I; # O} and H =j(_\ 1Hj.‘

- LEMMA 5.2. P(H) = 2 [ P(H]) for some K<m2™.
Jj=1

Proof. We put I; = I(8;, ..., 8jx(;y) and observe that n(j)>m for all j. We put
D; = Dyj—n(t;) as defined in the proof of Lemma 2.1. Clearly each Hj is identical
to some H(m, n(j)) as defined in Section 2 so by Lemma 2.1.2 P(H) = 1/2’"P(H}")
where H}‘ is the set of all ¢ 27 for which there exists a branch of D; whose o -labeling
is identical t0 (§jme1s s Ojmepy). We let ;= (fy, ..., &) and put

Xy = {02 alty; o ty) = 6 for k=1, ..,m}.

Each X; is determined by fixing the image of m elements of T and thus () Xjis
i=1

- .
determined by fixing at most mn elements of T. It follows that P( () X)) = 1j2mn-K
! j=1
where K is the number_ of redundant labelings. Clearly H; = X;n H;‘ 50
n n
H=( X0 H
=1 Tj=1
and

PH) = P(O X)P(A HY = (1127F [T P@E) = 25 [ P(H) .
Jj=1 j=1 . j=1 J=1.
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It remains only to determine K. Let i€ {1, ...,m} be given and for é € {0, 1}* put
B = {t;: ()1, ..., ;) = 8}. Define REDUN(B,(3)) = max{0, Card(B,(5))—1}.
It follows that ‘

K=Y Y REDUN(B(?)).

i=1 8e(0,1}

The t;’s are all distinct so Card(B,(6))<2"" regardless of the value of n. Thus

mn m
K<Y ¥ @i-1) =Y (@"-2)<m2". QE.D.
i=1 Je{0,1} i=1

THEOREM 5.3. If R is hy-null in [0, 11", then almost every tree function is inde-
pendent over R.

Proof. Let m be a positive integer such that 2":>n. Consider a sequence
L ={(t,..,t,) of distinct elements of {0, 1} and put :

W(R,m,L) = {ae2”: In’ F(CE) N R+ S} .
. i=1

To show that P(W(R, m,L)) = 0 we let ¢>0 be given and put M = m2" and
e* = gf(@2M). Let {I(j,k): j=1,..,n; k=1,2,..} be-a collection of dyadic
intervals of [0, 1] covering R as in Lemma 5.1 with & = g*. Without loss of gener-
ality we choose all I(j, k) so that p(j, k)>m. Putting

B(,K) = {zeZ: £{C1)) n 1(. k) # B}

we see that W(R,m,L)yc U ( B(j, k) and that
-1 ]

k=1 j=
P(W(R,m, L))skZIP(. 1B(j, k)
. =1 j=
<2y, [1P(B(j,k)) by Lemma 5.2
¥=1j=1

A

1 \*)
R

™s

o

=
]
=
-
]
s

1/2"(4/(4+p(j, k)—m)) by Lemma 2.2

<My 1(2"(p (s k) —m))

k=1

Ms ibMs
= kl‘l':’a

<2M4"k 11/p( j. k)<e.

i
-

i

]

Since &>0 was arbitrary ‘it follows that P(W(R,m,L)) =0. We then put

W= U UW(R,m,L) and observe that W has P-measure zero. We claim that
m=n {L} f

every f, for which « ¢ W is independent. This follows because for any set {x;, ..., X,}

of distinct elements of C with (f,(x,), ..., u(*,)) € Rthere exists an m>n and an L

such that a € W(R, m, L). Q.E.D.

3 -
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... Remarks. 1) To get a theorem similar to Mycielski’s (see introduction) we can
extend Theorem 5.3 to the case where the number of relations is countable. Th1s
follows by the countable additivity of the measure Pin 27 .

2) Combining Theorems 3.3 and 5.3 it follows that almost every tree function
is independent with perfect range in [0, 1].
. ..3) Theorem 4.3 ensures that Theorem 5.3 remains valld if the Hausdorff
(—=1/logp)"-measure of R is zerc.

4) Theorem 4.4 ensures that Theorem. 5.3 remains valid 1f R is of measure zero
with respect to the product measure (hy-measure)”.

-.5) The mapping o—f, from 27 to the space [0, 1]° is continuous: For-any Borel

set B<[0, 1] ‘we define u(B) = P({u €2": f, € B}). Under this Borel measure,
and for.any. -null R<[0, 17% ‘almost every f€[0,11¢ is independent over R.
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‘Sequence of iterates of generalized contractions

" Kanhaya L. Singh (College Station, Tex.)

Abstract. The main purpose of this paper is to study some properties of generalizéd contrac-
tion mappings. In Section 1 we have shown that if T'is a generalized contraction mapping of closed,
bounded and convex subset of a uniformly convex Banach space into itself with nonempty fixed
points set, then the mapping T2 defined by T3 = AI+ (1—)T, for any A such that 0 <1< 1 is asympto-
tically regular. As a-corollary of this .we get the result of Schaeffer (Jbr. Dcutch Math. Verein:
(1957), pp. 131-140). In Sectlon 2, we prove for Hilbert spaces. the mapping Tz as deﬁned above i is
a reasonable wanderer. Asa coro]lary of this weé obtain the fesult of Browder and Petryshyp

(1. Math, Anal. and Appl. 20 (1967), pp. 197-228). Finally in Sections 3 and 4, we ‘have obtained .

some results for the weak and strong convergence of sequence of iterates for mappings of this type.

Introduction. The main aim of this paper is to study some properties of géner-
alized contraction mappings. In Section 1 wehaveshown that if T'is a generalized
contraction mapping of a closed, bounded and conyex subset of a uniformly convex
Banach space into itself with non-empty fixed point set, then the mapping T, defined
by Ty = Al+(1—A)T, for any A such that 0<i<1 is asymptotically regular. In
section, it is shown.that if T is a generalized contraction self mapping of a closed,
convex subset of Hilbert space with non-empty fixed point set, then the mapping T,
defined as above is a reasonable wanderer with the same fixed point as 7. Finally
in Sections 3 and 4 we have obtained some results for the weak and strong conver-
gence of sequence of iterates of such kind of mappings.

DERINITION 1.1. Let C be a closed, bounded and convex subset of a Banach
space X. A mapping T: C—C is said to be nonexpansive if

| Tx~Ty||<]|x—y|| forall x, y in C.
.DEFINITION 1.2. A mappikng T: C—C is said to be quasi-nbnexpansive if
N Tx =Tyl <allx =yl +b|lx~Txl| +clly =Tyl

for all x, y'in C, 220, 520, ¢>0 and a+b+c<1.
‘The following example shows that there are quas1-nonexp'ms1ve ‘mappings wlnch
are not nonexpansive.
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