Slippery Cantor sets in E”
by

James W. Cannon (Madison, Wis.) and David G. Wright (Logan, Ut.)

Abstract. We prove the existence of wild Cantor sets in E" (3>3) which can be pushed off
an arbitrary 1-dimensional compactum in E” by an arbitrarily small homeomorphism of E". This
answers in the negative a conjecture of R. J. Daverman.

1. Introduction. Wild Cantor sets in E” behave geometrically in E™ much like
polyhedra of dimension n—2 [12]. Thus two wild Cantor sets in “general position”
in E" might be expected to intersect like two polyhedra of dimension n—2. Such
an intersection of polyhedra would, in general, be nonempty precisely in the range
n=4. These considerations motivate the following conjecture of R. J. Daverman [3].

CoNJECTURE 1.1. A Cantor set C in E", n>4, is tame if and only if, for each
Cantor set D in E" and each &>0, there is an ¢-homeomorphism 4: E"—E" such
that (hC) n D = . (The e-homeomorphism 4 is to be thought of as an adjustment
putting AC and D in “general position”.)

Our goal is to supply counterexamples to Conjecture 1.1. We say that a set X
in E" can be slipped off the set ¥ in E" if, for each ¢> 0, there is an e-homeomorphism
h: E"—>E" such that (AX) n Y = &; otherwise we say that X cannot be slipped
off Y. No wild Cantor set can be slipped off every two dimensional compactum;
nevertheless we exhibit wild Cantor sets in E”, n>3, which can be slipped off every
1-dimensional compactum in E”, thus certainly off every Cantor set. This con-
tradicts Conjecture 1.1. L. O. Cannon has suggested the term slippery for the sets
that can be slipped off every 1-dimensional compactum.

Antoine’s Necklace, the standard wild Cantor set in E3 [1], is not slippery
(Section 3); for it cannot be slipped off the tangled one-dimensional continuum
described by McMillan and Row [8]. Antoine’s Necklace seems to be too rigid to
be slippery. We suspect that many wild Cantor sets in E", n>3, are also too rigid
to be slippery, but we have been unable to confirm our suspicion. Thus, the following
alternative to Conjecture 1.1 also suggested by Daverman [3], while unlikely, is still
a possibility.

CONJECTURE 1.2. A Cantor set in E" can be slipped off every Cantor set in E™.

Conjectures 1.1 and 1.2 arose in Daverman’s early attempts to improve the
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results of his paper [3]. Conjecture 1.2 is known to be true for n<3 [7], and it is
equivalent in all dimensions with the following conjecture [13].

CONJECTURE 1.3. For two Cantor sets C and D in E* with C n D a single point,
C can be slipped off D.

The key to our construction of wild slippery sets is to make them so knotted
that they fit through any conceivable hole. A tame arc in E 3 is not slippery [8] (can
the slippery lawyer go straight ?); we construct a slippery arc a in E 3 by putting every
possible knot in every subarc of a. All of our slippery constructions simply amplify
this idea of multiple knotting.

2. Definitions and notation. We use S", B” and E" to denote the n-sphere, the
n-ball, and Euclidean n-space, respectively. We let I, J", and 2" denote the piece-
wiselinear manifolds [—1, 1]%, [~2,2]", and the boundary of I"*!, respectively.
Suppose Y is a space with metric g. A subset of ¥is said to be g-small if its diameter
is less than or equal to &. If f, g are maps of a space X into Y, we say fis e-close
to g if o(f (%), g(x))<e for each x in X. A map of ¥ into itself is called an &-map
if it is g-close to the identity map. We let idy: X—X be the identity map and omit
the X when it causes no confusion. We use Int M and Bd M to denote the interior
and boundary, respectively, of a manifold M.

We let " denote the quotient space (B?x S" 2)/(B?x {x}) where x e "2,
A space W homeomorphic with W" is called a P-manifold (pinched-manifold) of
dimension #, and if n = 3 W is called a pinched solid torus. If n: B*x S""2 — W™
is the natural projection and h: W"— W is a homeomorphism, then
hom(B?x{x}) = pis called the pinchpoint of W. Notice that W—{p} is a manifold.
We also call 4o ({0} x S"2) a core of W. More generally, if U is an open subset
of the set X which, in turn, is a closed subset of the compact metric space ¥, and ¥'is
homeomorphic with the quotient space of B2x X with B> x {x} identified to a point
for each x € X— U, the homeomorphism sending x to (0, x), then X is a core for Y.
If X is a compact subset of E” and U is an open subset of X which is also a flat
(n—2)-manifold in E”, then by a thickening of X relative to X— U we mean a set ¥’
in E" with core X so that ¥—(X—U) is a B>-product neighborhood of U; further-
more Bd(Y—(X—1U)) is required to be flat in E™

3. Antoine’s necklace. We review the construction of Antoine’s necklace [1]
and prove a lemma. We then show that Antoine’s necklace is a wild Cantor set in £*
which cannot- be slipped off every 1-dimensional continuum.

A solid torus is a topological space homeomorphic to B?x S*. The inverse
of {0} x S! under some homeomorphism is a core of the solid torus. Consider the
embedding of 2k (k>2) solid tori 4,, ..., A5 in a solid torus A4 with core J. The
A; are small regular neighborhoods of the boundaries of the disks D; shown in
Figure 1. We call this embedding an Antoine embedding and for future reference pay
particular attention to the manner inwhich J lies in the union of the D;. The bound-
aries of the D; serve as cores for the A4;.
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‘We construct a Cantor set X = ()M, in E® where for each positive integer i,
M, is a collection of disjoint solid tori. We let M, be any solid torus in E3. The
collection M, is obtained by taking an Antoine embedding of solid tori in each
component of M;. By choosing k large enough we can suppose that the diameter
of each component of M;, is as small as we like. If the diameters of the com-
ponents of M; approach zero as i gets large, then X will be a Cantor set.

Fig. 1

LemMma 3.1. Suppose Y<E?® is compact, and suppose that any unknotted simple
closed curve in E*—Y is null-homotopic in E*— Y. Let X = (\ M, be the Cantor set
described above. If the cores of the components of M;,, miss Y, there is a homeo-
morphism of E* fixed outside M; which takes Y off the cores of the components
of M;.

Proof. Suppose the solid torus of Figure 1 is a component of M;. By assump-
tion BAD; n ¥ = @. For i = 1, 3 Bd D, is unknotted and hence there are singular
disks D} in E®— Y with Bd D} = Bd D; and in general position with respect to D,.

. Hence, we can find paths y;= D} n D, from Bd D; n D, to BdD,. Connecting the

paths y; by a path in Bd D,, we conclude the existence of an arc in' D, — Y which
runs between Bd D, n D, and BdD; n D,. In the disks with even subscripts we
find arcs like the one just constructed. In the disks with odd subscripts we choose
arcs in the boundaries which connect the arcs of the first collection. The union of
all the arcs is a new core for 4 which misses Y. We complete the proof by repeating
the above process in each component of M; and taking a homeomorphism which
takes the new cores to the old cores.

McMillan and Row [8] have shown the existence of a 1-dimensional con-
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tinnum Y in E? which fails to have the arc pushing property; furthermore, ¥ cannot
be homotopically linked by an unknotted simple closed curve. The failure of Y to
have the arc pushing property implies the existence of a polygonal simple closed
curve L which cannot be slipped off Y.

THEOREM 3.1. There is a Cantor set X in E® which cannot be slipped off Y.

Proof, Let £>0 be such that L cannot be moved off Y by a 4s-homeomorphism
of E3. Let M, be a solid torus in E*® with core L. We use M| to construct an Antoine’s
necklace X = () M; and require, in addition, that the components of M, and their
associated disks are g-small, If X can be slipped off Y, there is an e-homeomorphism &
of E3® onto E® which takes Y off X. Hence, X n A(Y) = & and M; n h(Y) =
for some i. Repeated applications of Lemma 3.1 give rise to an e-homeomorphism f
which is fixed outside M, and moves 4(Y) off the centerlines of the components
of M,. Now using the proof of the lemma we find a 2s-homeomorphism g which
takes fo h(Y) off L. This can be accomplished because the disks associated with M,
are e-small. The 4e-homeomorphism (g o fo k)~* takes L off ¥ which is a con-
tradiction.

4. A slippery arc in E°. The McMillan~Row example shows that a tame arc
in E3 cannot be slipped off an arbitrary 1-dimensional compactum. We now con-
struct a wild arc in E® which can be slipped off every 1-dimensional compactum.
The basic idea for the construction of slippery Cantor sets is contained in the con-~
struction of ‘the arc.

Consider the 3-ball B in E® which is the suspension of I? x {0} with suspension
points ¢ = (0,0, 1) and b = (0,0, —1). Let 4 be the straight line interval from «
to b and o;, i = 1,2,3, ..., be the 1-simplexes of a triangulation of Int4. We
denote the endpoint of o; which is closer to a by a; and the other endpoint by b;.
The arc o, is properly embedded in the 3-ball B; = (E*x ;) n B. In each B; we
find a properly embedded polygonal arc A; with the same endpoints as o;. The
arcs A; are chosen so that all possible knots are represented; i.e., if 4’ is a properly
embedded polygonal arc in B from a to b, then there is an orientation preserving
homeomorphism 4: B;— B for some i sending 4;, a;, b; to A4’, a, b, respectively.
The orientations on B; and B are induced by some fixed orientation of E3.

Wesetr;,j=1,2,3, .., to be the 1-simplexes of some triangulation of (J 4;.
For each 7; we find a 3-ball W, by choosing a small polygonal disk which contains
the midpoint of ¢; and is perpendicular to 7; and suspending the disk by the end-
point of 7;. This is done so that W;n W, =1,n1, for j+#k We let
W= ) W;u {a,b}. The pair (B, W) has the following important property.

LemMA 4.1. Suppose R is a 1-dimensional compactum in B which misses {a, b}.
Then there is a homeomorphism of B onto zrself, fixing the boundary, which takes W
off R.

Proof. Since R is 1-dimensional, there is a properly embedded polygonal
arc A’ in B from a to b which misses R. Because |J 4; contains all possible knots,
there is 2 homeomorphism of B onto itself, fixed on the boundary, which takes | 4,
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into a small neighborhood of 4’. We may also assume that W is taken into the
neighborhood and that the neighborhood misses R.

‘We now construct the slippery arc a as the intersection of nested compact sets X;.
Each X; is the disjoint union of a countable number of 3-balls and points. We
set X; = B, X, = W, and inductively define X, as the union of all previous sus-
pension points and the result of repeating the previous construction in each 3-ball
of X,; i.e., if B is a 3-ball of X,, we construct a set inside B similar to the manner
that W was constructed in B. If the diameters of the 3-balls of X; approach zero as 7
gets large, then ) X; = a is an arc.

THEOREM 4.1. The arc a can be slipped off .every 1-dimensional compactum
in E3.

Proof. Let RcE® be a 1-dimensional compactum and ¢>0 be given. We
choose i large enough so that the 3-balls of X; are all 1e-small. Since R is nowhere
dense in E3, there is a {e-homeomorphism % of E* onto itself which moves R off
the suspension points of X;. By repeated applications of Lemma 4.1 there is a homeo-
morphism f of E* onto itself, fixing points outside that 3-balls of X;, which takes
X;41 Off 2(R). The e-homeomorphism A~!of is the desired homeomorphism.

5. A slippery wild Cantor set in E3. The Cantor set of Section 3 could not be
slipped off every 1-dimensional compactum in E3. We now modify the construction
of Section 4 to obtain a wild Cantor set in E3 which can be slipped off every 1-dimen-
sional compactum. The Cantor set is wild because of its similarity with Antoine’s

" necklace. The Cantor set can be slipped off 1-dimensional compacta because of its

similarity with the arc of Section 4. We give only the construction but no proofs.
However, we will give proofs later when we show how to generalize this construction
in E* (n=3).

If T'is a pinched solid torus with pinchpoint p, we let g be a map of the 3-ball B
of Section 4 onto T so that g|B—{a, b} is a2 homeomorphism onto T—{p} and
g(a) = g(b) = p. The simple closed curve {p} U g( U 4)) is the core for a pinched
solid torus T” in T with pinchpoint p. We say that T’ is placed in T by the slippery
construction.

Once again, if T'is a pinched solid torus with pinchpoint p, we construct a coun-
tably infinite collection of disjoint pinched solid tori in E* which follow the core
of T and converge down to p. The cores of these pinched solid tori are indicated in
Figure 2. We say the collection of pinched solid tori has been placed in 1" using the
Antoine construction.

‘We now define the slippery wild Cantor set Q= E® as the intersection of nested
compact sets T;. Each T is the countable union of disjoint pinched solid tori and
points. We let T, be any pinched solid torus in E*. We define T}, inductively.
If i is odd, we let T;,, be the union of all previous pinchpoints plus the result of
placing pinched solid tori inside the pinched solid tori of T; by the slippery construc-
tion. If i is even, T}, is the union of all previous pinchpoints plus the result of placing
pinched solid tori in the pinched solid tori of T; using the Antoine construction.

2 — Fundamentha Mathematicae CVI -
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Fig. 2

If care is taken to insure that the diameters of the pinched solid tori go to zero as i
gets large, then Q is a Cantor set.

6. Some generalizations. In this section we make the appropriate generalizations
of our previous results to aid in the construction of slippery wild Cantor sets in E*
(n=3). We used earlier, without proof, the fact that a 1-dimensional compactum R
in B? cannot separate two points in the boundary. In fact, if a, b e (Bd B~ R there
is a polygonal properly embedded arc in B® from a to b which misses R. We now note
the generalization of this result.

- LemMA 6.1. Suppose I" = I*xI""% and X is a 1-dimensional compactum in
I"—(I*x 2"~%). Then there is a compact orientable piecewise-linear manifold M in
I"— X bounded by {0} x 2"~ which has an Int(I*)-product neighborhood (IntI%) x M,
the product structures on {0} x 2"~2 in (Int7?)x M and I" agreeing.

Proof. Consider the projection map m: I" — I%, We first show the existence of
a piecewise-linear map p: I" — I? such that p(x) = n(x) if x € BdI", p(x) € I>—{0}
if x e X, p is simplicial with respect to triangulations X and T of I" and I? respect-
ively, and 0 is the barycenter of a 2 simplex ¢ e T. This is because =] X can be ap-
proximated by two maps, the first taking X—BdJ” into the (1-dimensional) nerve
of a covering of X—BdI", the second taking the nerve into 7>— {0}. This procedure
defines p| X and p|BdI". The Tietze extension theorem allows for the extension
of p to all of I". The p we have constructed is now modified by a simplicial approxi-
mation theorem to obtain the remaining properties.

We let vy, vy, v3 be the vertices of the 2-simplex o. We now show that
M = p~*(0) has a g-product neighborhood M x & in I". We define the homeomor-
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phism /4: p~1(6) — M x . Suppose 7 € K is asimplex and p(t) = ¢. Then < is the
join of three facesty, 75, T3, f(t) = v;, i = 1,2, 3. A point @ in 7 can be written
Ay XgtHoaXy+o3Xs, X;€7; and oy oy +oy = 1. We define

Vh(0) = (bxy+dx+dxs, 4oy o, v+ o ns)

The polyhedron M is a cell complex [10]. The cells of M are given by éEn M
where ¢ ranges over the simplexes of K. Suppose v is a vertex of M, then v is the
barycenter of a 2-simplex y e K. Let X be the link of y in K and f: y* L — v+ X
be a simplicial map given by f(y) = v and f|Z = identity. Then f restricted to
M (y*Z) is one-to-one and goes onto a neighborhood of v in the (n—2)-ball
v* Y. Hence, M is a manifold at its vertices. By uniqueness of links, M is an
(n—2)-manifold. It is now easy to modify the product neighborhood so that the
product structures on {0} x2"~3 in both I" and the neighborhood of M agree.

The above lemma is essentially a classical result but was made known to us by
R. D. Edwards who used a smooth map p and the transversality theorem to do the
second part of the theorem.

We now generalize the slippery construction of Section 5. We let

I"'=IPxI"?c]?xJ"2 = J",

In I" we choose a countable dense set D and let {A,} be the collection of all properly
embedded, compact, piecewise-linear (n—2)-manifolds with BdM,; = {0} x Z"~3
and the vertices of M; contained in D. Furthermore, the M; must have Int7? product
neighborhoods (IntJ?)x M, the product structures on {0}x "3 in both I" and
(IntI?)x M, agreeing. It is clear that {M,} is countable and that if M satisfies all
of the conditions imposed on the M; with the exception of the condition on the
vertices, then a homeomorphism of I”", fixing the boundary, will take M onto
some AM;.

Let o; be the (n—2)-simplexes of some triangulation of IntJ"~2. We let &, be
piecewise-linear homeomorphisms of J"~2 onto itself, fixing the boundary, with
hyo;) = I""2 We use h; to construct a’ homeomorphism g, of J* onto itself,
fixing the boundary, satysfying ¢;|1*xJ"" 2 = idxh;. We let & = |J g7 (M) U
U (I*xBdJ""?). The set £  IntJ" is a piecewise-linear (12— 2)-manifold which
is flat in IntJ". The pair (J*, &) has the following important property.

LemMMA 6.2. Suppose R is a 1-dimensional compactum which misses I* x BdJ"~ 2.
Then there is a homeomorphism of J" onto itself, fixing the boundary, which takes % off R.

Proof. We may assume that R n I?x(J" 2—IntI""%) = @. Let M be an
(n—2)-manifold in I" which misses R n I" as promised by Lemma 6.1. We may
assume that M = M; for some i. Hence g(¥)cM;u I>x (" 2~IntI?) and
9g{Z)n R = O.

Let W be a P-manifold of dimension » with pinchpoint p. We let f: J* — W
be a map such that f(J2xBdJ""?) = p and f restricted to the complement of
J*xBdJ""* is a homeomorphism onto W—{p}. We call f(%) a knotted strand
in W. The following lemma is an easy consequence of Lemma 6.2.

2%


Artur


96 J.W. Cannon and D. G. Wright

LEMMA 6.3. Suppose K is a knotted strand in a P-manifold W and R W is
a 1-dimensional compactum which misses the pinchpoint. Then there is a homeo-
morphism of W, fixing BAd(W~ {p}) which takes K off R.

7. The Daverman-Edwards construction. Daverman and Edwards [5] have
shown that a (topologically) flat embedding of a compact piecewise-linear (n—2)-di-
mensional manifold in E” can be “approximated” by a Cantor set. The key to their
argument is the following theorem which we state without proof.

THEOREM 7.1. Suppose U is a neighborhood of a compact piecewise-linear
(n—2)-dimensional manifold N which is flatly embedded in E" (n23). For £>0 there
exists a flatly embedded compact piecewise-linear manifold N' whose components
are g-small and such that a loop y in E"— U is null homotopic in E"— N if and only
if y is null homotopic in E"—N'.

THEOREM 7.2 (Generalized Daverman—Edwards construction). Suppose X<E"
is compact, U= E" is open (n23), X—U is countable, and U v X is a flatly embedded
(n—2)-dimensional piecewise-linear manifold. Then for each ¢>0 there is a compact
set X' which satisfies:

O X-U=X-U,

(2) for each loop y in the complement of X u U, y is null homotopic in E"— X if

and only if y is mull homotopic in E"— X',

B) X' Uis aflatly embedded (n—2)-dimensional piecewise-linear manifold with
compact s-small components, and X

&) X’ is the disjoint union of A and B. The set A is compact and can be pushed
off the 2-skeleton of any triangulation of E" by an &-homeomorphism. The
set B is a countable union of (n—2)-sphere components of X' n U.

Proof. We assume familiarity with the Daverman-Edwards construction.
Let K be a triangulation of X n U with a fine mesh. The set X" is the union of X—U
and the result of applying the Daverman-Edwards construction locally to the tri-
angulation K. The properties (1), (2), and (3) follow from the construction of Daver-
man and Edwards. Now, in that construction, small (n-2)-spheres of X’ “approxi-
mate” the O-skeleton of K, one for each vertex of K, and the remaining manifold
components of X’ “approximate” the dual (n—3)-skeleton of K. The set B is the
union of those (n—2)-spheres approximating the 0-skeleton. The set 4 is the re-
mainder of X’. Let L be the (#n—3)-dimensional polyhedron which is the dual of the
0-skeleton of K. We set L= L u (X—U). If the mesh of K has been chosen fine
enough, we can find {&-homeomorphisms of E”, fixed outside U, which move A4 as
close as we like to L. Hence, it will be sufficient to show that [ can be slipped off
the 2-skeleton of an arbitrary triangulation of E”. But L—L can always be slipped
off the 2-skeleton of an arbitrary triangulation. Furthermore, by [6] for n = 4
and [2] for n=5 we may assume that L is a subpolyhedron of any triangulation
of E” and hence L can be slipped off the 2-skeleton by this assumption and general
position. These two facts together imply that L .can be slipped off the 2-skeleton
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of an arbitrary triangulation of £". We note that the argument given in [2] requires
Miller’s theorem [9] which was not known at the time. For our purposes we could
have given an alternative proof for n>>5 which avoids the use of [2] by pushing L off
the 0, 1, and 2-skeleta, respectively, using the piecewise-linear unknotting of ball
pairs [14].

We now give a construction which we will alternate with the generalized Da-
verman—-Edwards construction.

Suppose X< E” (n=3)is compact, UcE" is open, U n X is a flatly embedded
(n—2)-manifold, and each component of X' n U is an (n—2)-sphere. Let P be a set
which contains exactly one point in each of the (n—2)-spheres and ¥ be a thickening
of X n U relative to P which is contained in U. Let X’ be the union of X¥— U and
the result of placing a knotted strand in each P-manifold component of V.

LemMa 7.1. If y is a loop in E*~U, then y is null homotopic in E" — X if and only
if y is null homotopic in E"—X".

Proof. Let y be a loop in E"—U. If y is null homotopic in E"— X', there is
a map 9: B> — E” such that $|BdB* = 9, 9(B) n X' = &, and 9~ 1(BA(V-P))
is a finite collection of disjoint simple closed curves. Let D be a disk in B? bounded
by a simple closed curve of this collection. Then $(Bd D) is contained in Bd W for

-some P-manifold component of ¥ and $(D) misses the knotted strand in W. Hence,

by linking arguments [11, pp. 257-268] $(Bd D) is trivial in Bd W;. The map 4§ can
now be modified on a small neighborhood of D by mapping D into Bd W and then
using Bd W to push the image of the neighborhood of D to a side of Bd W. Repeating
the above process, we may assume $(D) n Bd(V—P) = @ and, hence, H(D) " X = O.
The proof of the other direction is trivial.

8. Slippery wild Cantor sets. We now construct slippery wild Cantor sets
in E” (n>3) as the intersection of nested compact sets M; with cores C;. Let
C, = S""2cE", M, be a thickening of C;, and y be a loop in E"-— M, which links
S"~2, We define C,..; and M, , inductively. If nis odd, C, ., is the result of applying
the generalized Daverman—Edwards construction to the compact set C, with respect
to the open set U which is the interior of M,. Then M, is a thickening of C,,
relative to the set consisting of all points of C,.,;— U plus exactly one point from
each (n—2)-sphere promised by condition 4 of the generalized Daverman-—
Edwards construction. Notice, the set M, ., has some P-manifolds as com-
ponents. If # is even C,.4 is just C, with the exception of the cores of the
P-manifolds which are replaced by knotted strands, and M, is just M, with the
exception of the P-manifolds which are replaced by thickening the knotted strands
relative the pinchpoints. Using the generalized Daverman—Edwards construction
to be sure that the components of M; get small, (| M; = X is a Cantor set. By
Theorem 7.2 and Lemma 7.1, y is not null homotopic in E"— X. Therefore, X is wild.

THEOREM 8.1. The Cantor set X is a slippery wild Cantor set.

Proof. Let R be a 1-dimensional compactum in E” and >0 be given. We
pick an integer k so that the components of M, are all fe-small.
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Let ¥, be the union. of the P-manifold components of M;. Inductively we
define ¥, (n>=k) by taking all the P-manifold components of M, ; which are not

contained in the union of the previous ¥;. The Cantor set X’ = \(M,— U V)
n=k i=k

can be slipped off the (n—2)-skeleton of any triangulation of E" by property 4 of the

generalized Daverman~Edwards construction. Hence, X is tame [13] and there is

a Fe-homeomorphism h of E™ onto itself which takes X’ plus the union of all the

pinchpoints of the ¥; off R. Therefore, for some 7, A(R) n (M,— |J V) = @. Let ¢
i=k

be a homeomorphism which is fixed outside' {J ¥; and moves M; ~ V; off 2(R). This
1=k

is accomplished by moving the knotted strand inside each component of V; off h(R),
fixing the boundary, and then pulling the intersection of M; with that component
close to the image of the knotted strand. We now have g(X) n A(R) = @, and
h™'og is the desired homeomorphism.

References

[1]1 L. Antoine, Sur I'homeomorphie de deux figures et de leurs voisanages, J. Math. Pures Apple
86 (1921), pp. 221-325.
[2] J.L. Bryant and C. L. Seebeck III, Locally nice embeddings in codi
J. of Math. (Oxford) (2) 19 (1968), pp. 257-274.
[31 R.J. Daverman, On the absence of tame disks.in certain wild cells, Geometric Topology,
Proceedings of the Geometric Topology Conference held at Park City, Utah, 1974 (edited
by L. C. Glaser and T. B. Rushing), Springer-Verlag (New York), pp. 142-155.
[4] — On the scarcity of tame disks in certain wild cells, Fund. Math, 79 (1973), pp. 63-77.
[5S1 — and R. D. Edwards, in preparation.
[6]1 H. Gluck, Unknotting S* in S% Bull. Amer. Math. Soc. 69 (1963), pp. 91-94.
[71 D.R. McMillan, Jr., 4 criterion for cellularity in a manifold, 11, Trans. Amer. Math. Soc.
126 (1967), pp. 217-224.
[8] — and W. H. Row, Tangled embeddings of one-dimensional continua, Proc. Amer. Math.
Soc. 22 (1969), pp.378-385.
[91 R.T. Miller, Approximating codimension three embeddings, Ann. of Math. 95 (2) (1972),
pp. 406-416.
[10] C.P. Rourke and B.J. Sanderson, Introduction to Piecewise Linear Topology, Springer-
Verlag, 1972, :
[11] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Chelsea, New York 1947.
[12] M. A. Stan’ko, The embedding of compacta in Euclidean space, Mat. Sbornik 83 (125) (1970),
pp. 234-255 (Math. USSR Sbornik 12 (1970), pp. 234-254).
[13]1 D.G. Wright, Pushing a Cantor set off itself, Houston J. Math 2 (1976), pp. 439-447.
[14] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. 78 (1963), pp. 501-526,
UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN
and

UTAH STATE UNIVERSITY
LOGAN, UTAH

sion three, Quart.

Accepté par la Rédaction 3. 6. 1977

icm®

A fixed point principle for
locally expansive multifunctions

by

Solomon Leader (New Brunswick, N. J.)

Abstract. Let (X, d) be a well-chained metric space and F a uniformly open multifunction
in Xx X with complete graph so that there exist >0 and an isotone @: [0, @)—[0  o0)such that
@)>t for O<t<a and d(u, v)=@ld(x, )] whenever d(x, y)<a, ue F(x), ve F(y). Then
p € F(p) for some p. In particular, every locally expansive, open multifunction with closed graph
on a compact, connected metric space has a fixed point. ’

1. Introduction. Let (X, d) be a metric space and f: X— X. F is expansive
on a set B if

6)) . d(fx,fy)>d(x,y)  for all x,y in B with x #£y.

fis contractive on B if (1) holds with the inequality reversed. f is a local expansion
(local contraction) if every point in X has a neighborhood B on which f'is expansive
(resp., contractive).

We seek here a fixed point principle that will provide a common base for the
following pair of dual theorems: Let (X, d) be a compact, connected metric space.
(i) Every continuous, open, local expansion f on X has a fixed point. (ii) Every local
contraction g on X has a fixed point. Theorem (i) generalizes a theorem of Rosen-
holtz [3] who proved (i) for local expansions with the condition d(fx, fy)=Ad(x, y)
for some A>1 replacing the less stringent inequality in (1). Theorem (ii) is a variant
of a theorem of Edelstein [1].

We can unite (i) and (ii) in a single theorem if we formulate it in terms of multi-
functions (i.e. binary relations).

Let F be a subset of X'x X. Let F(x) be the set of all y such that (y, x) e F.
Let F(B) be the set of all y such that (y, x) € F for some x in B. Fis expansive on B
if d(u, v)>d(x,y) whenever x,ye B, x # », ue F(x), and ve F(y).

The definition of local expansion is then the same as for single-valued
mappings.

With F'=fin () and F = g~* in (ii), both (i) and (ii) are subsumed by
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