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Let ¥, be the union. of the P-manifold components of M;. Inductively we
define ¥, (n>=k) by taking all the P-manifold components of M, ; which are not

contained in the union of the previous ¥;. The Cantor set X’ = \(M,— U V)
n=k i=k

can be slipped off the (n—2)-skeleton of any triangulation of E" by property 4 of the

generalized Daverman~Edwards construction. Hence, X is tame [13] and there is

a Fe-homeomorphism h of E™ onto itself which takes X’ plus the union of all the

pinchpoints of the ¥; off R. Therefore, for some 7, A(R) n (M,— |J V) = @. Let ¢
i=k

be a homeomorphism which is fixed outside' {J ¥; and moves M; ~ V; off 2(R). This
1=k

is accomplished by moving the knotted strand inside each component of V; off h(R),
fixing the boundary, and then pulling the intersection of M; with that component
close to the image of the knotted strand. We now have g(X) n A(R) = @, and
h™'og is the desired homeomorphism.
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A fixed point principle for
locally expansive multifunctions

by

Solomon Leader (New Brunswick, N. J.)

Abstract. Let (X, d) be a well-chained metric space and F a uniformly open multifunction
in Xx X with complete graph so that there exist >0 and an isotone @: [0, @)—[0  o0)such that
@)>t for O<t<a and d(u, v)=@ld(x, )] whenever d(x, y)<a, ue F(x), ve F(y). Then
p € F(p) for some p. In particular, every locally expansive, open multifunction with closed graph
on a compact, connected metric space has a fixed point. ’

1. Introduction. Let (X, d) be a metric space and f: X— X. F is expansive
on a set B if

6)) . d(fx,fy)>d(x,y)  for all x,y in B with x #£y.

fis contractive on B if (1) holds with the inequality reversed. f is a local expansion
(local contraction) if every point in X has a neighborhood B on which f'is expansive
(resp., contractive).

We seek here a fixed point principle that will provide a common base for the
following pair of dual theorems: Let (X, d) be a compact, connected metric space.
(i) Every continuous, open, local expansion f on X has a fixed point. (ii) Every local
contraction g on X has a fixed point. Theorem (i) generalizes a theorem of Rosen-
holtz [3] who proved (i) for local expansions with the condition d(fx, fy)=Ad(x, y)
for some A>1 replacing the less stringent inequality in (1). Theorem (ii) is a variant
of a theorem of Edelstein [1].

We can unite (i) and (ii) in a single theorem if we formulate it in terms of multi-
functions (i.e. binary relations).

Let F be a subset of X'x X. Let F(x) be the set of all y such that (y, x) e F.
Let F(B) be the set of all y such that (y, x) € F for some x in B. Fis expansive on B
if d(u, v)>d(x,y) whenever x,ye B, x # », ue F(x), and ve F(y).

The definition of local expansion is then the same as for single-valued
mappings.

With F'=fin () and F = g~* in (ii), both (i) and (ii) are subsumed by
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Theorem 1 below. A simple compactness argument left to the reader shows that
if g is a local contraction on a compact space, then g~ is a local expansion.

THEOREM 1. Let (X, d) be a compact, connected metric space. Let F be a closed,
nonempty subset of Xx X such that

(a) F is a local expansion,

(b) F is an open mapping: F(B) is open whenever B is open in X.

Then p € F(p) for some p in X.

Theorem 1 will be proved at the end of the paper as a special case of a fixed
point principle (Theorem 5) which does not require compactness.

2. Uniform a-local expansions. Let (X, d) be a metric space, F a subset of X'x X,
and O<a<oo. Fis an a-local expansion if

() d(u,v)>d(x,y) whenever O<d(x,y)<a, ueF(x), veF(y).

F is a uniform «-local expansion if there exists ¢: [0, o) — [0, c0) such that
1° ¢ is isotone: ¢(s)<@(¢) for s<t,

2° ¢p(t)>t for O<t<a,

3% du, V)= pld(x, y)] if d(x, y)<a, ue F(x), ve F(y).

A uniform expansion is a uniform oo-local expansion.

We call F complete if given (x,, y,) in Fforn = 1, 2, ... with both {x,) and {y,»
Cauchy, there exists (x, ¥) in F such that x, — x and y, — y. If (X, d) is a complete
metric space, then F is complete if and only if Fis closed in X'x X (i.e. F has closed
graph).

Let F be a uniform a-local expansion. Some properties of F are given in
Lemmas 1 through 6. ‘

LemmMa 1. F is an a-local expansion.

Proof. Apply 3° and 2° with ¢ = d(x, »).

Lemma 2. Let {y,y and {z;) be sequences in X such that d(yy, z)<a,
ks Ve+1) €F, and (2, 1) € F for all k. Then d(y, z)40.

Proof. Since (2) holds by Lemma 1, there exists z in [0, ¢) such that d(y;, z){ ¢
Hence, t<d(yy, z) <o for all k. So by 3° and 1°, d(¥;, 2)Z @ [d(Ver 1> Zer D12 0 ().
As k— oo this gives t2¢(¢) which by 2° implies ¢ = 0.

LemMa 3. Let {y,y be a sequence in X such that

3 APy Vee) <o and (Y, Yer) € F for all k.

Then d(y, Yx+ VO

Proof. Apply Lemma 2 with z, = Y.

LEMMA 4. Let 0<e<ua. Let §>0 be less than a—e and ¢ (e)—e. Let y, € X for
k=0,1,.. such that d(y,, y,)<6 and (3) holds. Then for all integers n>0

@ d(ys, v <e.
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Proof. We prove (4) by induction. (4) is trivial for » = 1. Given (4) for some
n>0 we contend

©) A(yys yur)<e.
By Lemma 3, d(yy, ¥ps1)<d(¥o,y;)<6 which together with (4) gives

d(yl: y,;+1)<d(y1; yn)+d(ym y,,+1)<a+§<cx.
So by 3°, since (yo,¥;) and (¥, y,+,) are in F,

© A1 yur DI, 1) -
Using (4) again we get

0 d(yo, y)<d(o, y1)+d(r1, y)<5+e<p(e) .

From (6) and (7) we conclude @[d(yy, y,+)]<@(e) which by 1° implies (5).
LeMMA. 5. Let {y;) be a sequence in X such that (3) holds. Then {y,) is Cauchy.
Proof. Given 0<e<a choose § as in Lemma 4. By Lemma 3, d(py—y, yv) <6

for some N>1. Apply Lemma 4 to {yy_y4+zp for k = 0,1, ... to conclude by (4)

that d(yy, Yy+m)<e for all positive integers m.

LeMMA 6. Let F be complete and {y,) satisfy (3). Then there exists p such that
ye—p and p e F(p).

Proof. {y), and hence {y,.,y, is Cauchy by Lemma 5. Also (y, Vys1) € F
and F is complete. Hence there exists (g, p) in F such that y,— ¢ and py., — p.
So g = p. ‘ '

THEOREM 2. Let F be a complete, uniform o.-local expansion in (X, d). Let {x;»
be a sequence in X, and N be a positive integer such that for all j, (x;, x;4y) € F and
d(x;, ;4 )<a. Then there exists p such that x;— p and p € F(p).

Proof. For r =0,1, ... let y(r) = Xuy4,- Apply Lemma 2 with y, = y(r)
and z, = y(r+1) to conclude that the sequences {yu(r)y for.r =0,1,.., N are
all equivalent. Now for y, = y(0) we have y,., = (V). So by equivalence
A(Ye, Yir1) — 0. Hence d(yy, ¥ 1) <o ultimately. Also (¥, Y1) € F. So Lemma 6
gives y, — p where p € F(p). By equivalence, y,(r) — p for r = 0, 1, ..., N. For any
positive integer j we have the representation j = kN-+r with 0<r<N. Hence, since
k— o as j— o and r<N, x; = y(r) — p.

3. The fixed point principle. Given a metric space (X, d) let U, = d~*0, «),
the set of all (x, y) in X'x X with d(x, y)<a. For F and G subsets of X'x X define
the composition Fo G to be the set of all (z, x) for which there exists y with (z, )
in Fand (y, x) in G. In these terms F is a uniform «-local expansion if and only
if given >0 there exists 6>0 such that U, n(F !0 U, ;0 F)=U,. (X,d) is

0
o-chained if ) U] = X x X, where the superscript » denotes n-fold composition.
n=1

(X, d) is well-chained if it is o-chained for all a>0.
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TueoreM 3. Let (X, d) be an o-chained metric space. Let F be a nonempty,
complete, uniform «-local expansion in (X, d) such that
®) U,o FSF- U,.

Then there exists p such that p e F(p).

Proof. Choose (x, ) in the nonempty set F. Since X is a-chained there exist
Xg, X1, ., Xy such that x; = x, xy = y, and x4y, x;) € U, for 0<i<N. We shall
extend this finite sequence inductively to an infinite sequence to which Theorem 2
applies.

Given xy, ..., Xy4; for some k>0 with
©) (Xi41,x)e U, for 0i<N-+k and (x;, xy4) €F
we choose Xyii+q as follows. By (9) with i =k, (%41, Xn+n) = (s> X0 o
o (Xy, Xy+1) € U, o F. Hence, (8) implies (xy41, Xy+z) € Fo U,. Thatis, (xy41, )€ F
and (y,xy.r) €U, for some y. Pick such a y to be xy,z+;. Then we have
Xgs s Xy+r+1 fOr which (9) holds with k& replaced by k+1.

Induction thus produces a sequence {x;» which satisfies the hypotheses of
Theorem 2. Apply Theorem 2 to get p.

Remark. If Fis a uniform 2e-local expansion with the other conditions as
they stand in Theorem 3, then the extension of x, ..., Xy is unique.

For the case o = oo Theorem 3 reduces to the following.

THEOREM 4. Let F be a complete, uniform expansion in (X, d) such that F(X) = X.
Then there exists a unique p such that p € F(p). Moreover, y, — p for every sequence
<y With yy in F(peyq) for all k.

Proof. Every metric space in oco-chained since U, = Xx X. Moreover,
FoUy=F(X)xX=XxX if F(X)=2X. So (8) holds for « = oo. Hence,
Theorem 3 yields p. Uniqueness of p and the last statement in Theorem 4 follow
from Lemma 2 with ¢« = o0 and z, = p for all k.

Meir and Keeler [2] called a mapping g: X — X on a metric space (X, d)
a weakly wuniformly strict contraction if for every £>0 there exists §>0 with
d(gx, gy)<e for all x, y such that d(x, y)<e+45. Thatis, go U,,;09" U, Itis
easy to see that a mapping g on X is a weakly uniformly strict contraction if and
only if g~* is a uniform expansion in our sense. Since such a contraction g is con-
tinuous, its graph is closed, hence complete in a complete space. So Theorem 4
implies the Meir—Keeler generalization of the Banach contraction principle: Every
weakly uniformly strict contraction g on a complete metric space X has a unique
fixed point p and g"(x)—p for all x in X [2].

We now present our main theorem.

TueOREM 5. Let (X, d) be a well-chained metric space. Let F be a nonempty,
complete, uniform a-local expansion in X x X for some «.>0. Let F also be a uniform-
open mapping: given £>0 there exists §>0 such that
(10) Uso FEFo U,.

Then there exists p such that p e F(p).
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Theorem 5 follows from Theorem 3 with o = § by the following lemma and
Lemma 1.

Lemma 7. Let F be an a-local expansion which is also a uniform-open mapping.
Then for all sufficiently small §>0,

(11) Uso FSFo U,.

Proof. Consider 5 small enough for (10) to hold with & = «. Consider any x
in X. By (10) the F-image of U,(x) covers U, » F(x). Since F is s-locally expansive,
F maps Uy(x)—Us(x) into the complement of U;o F(x). Hence, the F-image of
U,(x) must cover Us;o F(x). Since this holds for all x in X, we get (11).

4. Application to compact spaces. To get Theorem 1 from Theorem 5 we need -
two more lemmas. .

Lemma 8. Let (X, d) be compact. Let F be a local expansion, closed in Xx X.
Then F is a uniform a-local expansion for some o> 0.

Proof. Choose 2 finite open covering {By, ..., B,} of X such that F is expansive
on each B;. By Lebesgue’s covering lemma there exists f§ such that every subset
of X whose diameter is less than § is contained in some B;. So Fis a §-local expan-
sion. Pick o in (0, f). Pick K greater than both « and the diameter of X. For ¢ in
[0,0] let C, = Fod '[t,a]o F~'. Since a composition of closed relations in
a compact space is closed, C, is compact. If C, is nonempty define ¢(¢) to be the
minimum of 4 on C,. If C, is empty take ¢(¢) = K. Then 1°, 2°, 3° can be readily
verified.

LemMmA 9. Let (X, d) be compact. Let F be a closed subset of X x X such that F is
an open mapping. Then F is a unz"form~open mapping.

Proof. Suppose the conclusion were false. Then there would exist >0,
o(m)— 0, and (y,, x,) such that

(12) (yns xn) € U&(h) < F
and
(13) (GnX)EFU,.

Since X is compact we may assume x, — x and y, — y for some x, y in X, since we
can replace the original sequences by appropriate subsequences. By (12) there exists z,
such that

(14) (yns Z") € Ué(n)
and
(15) (G x)eF.

Since y, — ¥, (14) implies z, — y. Hence, since F is closed in Xx X, (15) implies
(¥, x)e F. Pick 6 in (0, &). Then for arbitrary z, d(z, x)<§ implies

d(z, x,)<d(z, x)+d(x, x,)<é+d(x, x,)<e for d(x,x)<e—5.
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Hence, since x, — X, Us(x)<Ufx,) ultimately as n— co. Applying F we get
(16) Fo Uyx)=Fo Ufx,) ultimately .

Since (y, x) € F and (x, x) € Uy, y € F(x) S F ¢ Ug(x). Since Uy(x) is open, F o Uy(x)
is open by hypothesis. Therefore, since y,—y and yeFo Uyx), y, & Fo Us(x)
ultimately. Hence by (16), », € Fo Uy(x,) ultimately, which contradicts (13).

" Finally, Theorem 1 follows from Theorem 5 under Lemmas 8 and 9 since every
connected metric space is well-chained.
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s-Fibrations
by

L. S.’ Husch and J. R. Stonghton (Knoxville, Tenn.)

Abstract. The concept of s-fibration is introduced which generalized the notions of Hu-
rewicz fibrations and approximate fibrations. Many results about Hurewicz fibrations which
are not frue for approximate fibrations are proved for s-fibrations. For example, a homotopy
classification theorem for s-fibrations over then n-sphere is proved.

1. Introduction. A° mapping f: E— B between compact metric spaces is an
approximate fibration if, given &> 0, there exists >0 such that whenever &: X —» E
and H: Xx[0,1]— B are maps with d(H(x,O0), fh(x))<8, then there exists
G: Xx[0,1]— E such that G(x,0) = h(x) and d(H(x,1),fG(x,t))<e for all
xe X and te [0, 1]. Coram and Duvall [2] introduced approximate fibrations as
a generalization of cell-like mappings [10] and showed that the uniform limit of
a sequence of Hurewicz fibrations is an approximate fibration. By using. shape
theoretic concepts, they also showed that approximate fibrations possessed many
properties shared by Hurewicz fibrations.

One notable exception is that the pullback of an approximate fibration need
not be an approximate fibration. In this work, we define the concept of s-fibrations
which we show generalizes the concepts of approximate fibrations and Hurewicz
fibrations. Pullbacks behave properly and many other results about Hurewicz
fibrations carry over. For example, a homotopy classification theorem for s-fibrations
over the n-sphere is proved (Theorem 11.1). As a consequence, information about
cell-like decompositions of ANR’s is obtained (Theorem 12.1).

T. B. Rushing has informed the authors that S. Marde§i¢ and he [11] have
also generalized the theory of approximate fibrations but that the overlap between
these works is little. R. Goad [6] has also a generalization of approximate fibration
but, again, there is no overlap with this work.

2. Definitions. We shall assume that the reader is familiar with [12]. Since our
results are valid for a larger category of spaces than that considered in [12], our
definitions will sometimes differ.


Artur




