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Hence, since x, — X, Us(x)<Ufx,) ultimately as n— co. Applying F we get
(16) Fo Uyx)=Fo Ufx,) ultimately .

Since (y, x) € F and (x, x) € Uy, y € F(x) S F ¢ Ug(x). Since Uy(x) is open, F o Uy(x)
is open by hypothesis. Therefore, since y,—y and yeFo Uyx), y, & Fo Us(x)
ultimately. Hence by (16), », € Fo Uy(x,) ultimately, which contradicts (13).

" Finally, Theorem 1 follows from Theorem 5 under Lemmas 8 and 9 since every
connected metric space is well-chained.
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s-Fibrations
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L. S.’ Husch and J. R. Stonghton (Knoxville, Tenn.)

Abstract. The concept of s-fibration is introduced which generalized the notions of Hu-
rewicz fibrations and approximate fibrations. Many results about Hurewicz fibrations which
are not frue for approximate fibrations are proved for s-fibrations. For example, a homotopy
classification theorem for s-fibrations over then n-sphere is proved.

1. Introduction. A° mapping f: E— B between compact metric spaces is an
approximate fibration if, given &> 0, there exists >0 such that whenever &: X —» E
and H: Xx[0,1]— B are maps with d(H(x,O0), fh(x))<8, then there exists
G: Xx[0,1]— E such that G(x,0) = h(x) and d(H(x,1),fG(x,t))<e for all
xe X and te [0, 1]. Coram and Duvall [2] introduced approximate fibrations as
a generalization of cell-like mappings [10] and showed that the uniform limit of
a sequence of Hurewicz fibrations is an approximate fibration. By using. shape
theoretic concepts, they also showed that approximate fibrations possessed many
properties shared by Hurewicz fibrations.

One notable exception is that the pullback of an approximate fibration need
not be an approximate fibration. In this work, we define the concept of s-fibrations
which we show generalizes the concepts of approximate fibrations and Hurewicz
fibrations. Pullbacks behave properly and many other results about Hurewicz
fibrations carry over. For example, a homotopy classification theorem for s-fibrations
over the n-sphere is proved (Theorem 11.1). As a consequence, information about
cell-like decompositions of ANR’s is obtained (Theorem 12.1).

T. B. Rushing has informed the authors that S. Marde§i¢ and he [11] have
also generalized the theory of approximate fibrations but that the overlap between
these works is little. R. Goad [6] has also a generalization of approximate fibration
but, again, there is no overlap with this work.

2. Definitions. We shall assume that the reader is familiar with [12]. Since our
results are valid for a larger category of spaces than that considered in [12], our
definitions will sometimes differ.
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A directed set (I", <) is closure-finite provided for every y € I', the set of pre-
decessors of y is finite. A tower of topological spaces E = {E,, e,p, I'} is an inverse
system of topological spaces where I' is a closure-finite directed set of indices and
the bonding maps, e,;: E;— E,, y<p, are continnous. A tower of maps between
two towers, f: E— E’ = {E,, ey, I} consists of an increasing function /2 I" — T
and a collection of continuous maps f,: Epp— E, such that for y<§,
Fyermsmy =y fi(=i-e. fyeso e is homotopic to e, ).

Composition of two towers of maps, fo g can be defined (see [12]), id will denote
the identity tower of maps. Two towers of maps f, g: E—E' are homotopic, f~g,
provided for every feI”, there exists a e I', a £ (B), g(B), such that fze a2 gpesipe

A map from a tower E to a topological space B is a collection p = {p,; a I}
of continuous maps p,: E, — B such that for all f>a, p,e,y = p;- Let p: E—B
and p': E’— B’ be maps and let g: B— B’ be a continuous map. A tower of maps,
I I_E_—> E’,is (p, ', g)-preserving if the homotopy in the definition of tower of maps
between f, e s and €5 fi, 52y @y, t€[0, 1], can be chosen such that py@; = gpsp
for all 1.

Let p: E— B be a map. The triple £ = (p, E, B), or, more simply, p, is called
an s-fibration if, given o & I', there exists B> o such that whenever X is a topological
space and g: X — E; and H: Xx[0, 1]— B are maps with pyg(x) = H(x, 0),
then there exists G: Xx [0, 1]— E, such that p,G = H and e,g(x) = G(x,0),
xe X.

An order preserving function ¢: I — I' such that ¢ () >« for all a e I' is called
a t-finction for the s-fibration p: E — Bif ¢ («) can be substituted for § in the de-
finition. By Lemma 5 of [12], we can find a -function for an s-fibration.

If x € B, the fibre of p at x is the tower of spaces p~*(x) = {ps *(x), €| Pz (), T}

Let o: I' — I be an order-preserving function such that ¢(a)>« for all «; the
shift map, o: E — E, induced by o is the towers of maps o defined by 6, = eyy().
Note that g=id. Given two towers of maps, f, g: E— E', we write f = g if there
exist shift maps g,0': E'—E'and 7,7 E—E such that gft = o'g7’. Trivially,
if f=g, then f:g.ﬁ

Let E = {E,, e,;, I'} be a tower of spaces and let Y be a space; then Ex ¥ will
denote the tower of spaces {E,x Y, e,xid, I'}. If p: = {p,}: E— B is a map
then pxid = {p,xid}: Ex Y— Bx Y is also a map.

Let p: E—~ B and p': E'— B’ be s-fibrations. Suppose that f: B— B’ is
a continuous map and F: E— E'is a (p, p’, f)-preserving tower of maps. If xe B,
then F induces a tower of maps, F|p~!(x): p~*(x)— p’~*(f(x)), given by the col-
lection, {F,|pri(): p;(;)(x)—> Py~ Y(x), yeI'}. The pair (F,f) is called a bundle
map if, for each x e B, there exists a tower of niaps G.: p'~*(f(x)) — p~'(x) such
that (Flp*(x) o G,~id|p""*(f (%)) and G,o(Flp~'(x)~id|p~*(x). In the
terminology of [12], F|p~*(x) is 2 homotopy equivalence for each x e B. We say
that the bundle map F covers the map f.

A bundle homotopy is a bundle map (F,f), F: Ex[0,1]— E’ covering

f: Bx[0,1]— B". If (F,f) is a bundle homotopy, for ie [0, 1], let F;: E— E’
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be the tower of maps {F;,} where Fy,(x) = F,(x, i). Two bundle maps (f;,f,) and
(f1, /1) are bundle homotapic,.denoted Jfo=pf1, if there exists a bundle —homotopy
(F,f) such that (F;,f) = (¢fi7', f) for i = 0, 1 where o't’ are shift maps on E-.

Let p: E— B and p’: E' —> B be s-fibrations. A bundle map F: E—E’
covering the identity map is a (bundle) equivalence if there exists a bundle map
G: E'— E covering the identity such that F o G and G o F are bundle homotopic
to the identity with bundle homotopies covering the projections Bx [0, 1] — B’
and Bx [0, 1] — B, respectively. In Section 10, we will show that a bundle map
covering the identity is an equivalence. G will be called a (bundle) inverse of F. Note
that a bundle map which is bundle homotopic to a bundle equivalence is also a bundle
equivalence.

3. Approximate fibrations. Let f/* E— B be a continuous map between the
compact metric spaces E and B. Let d and d’ denote the metrics on E and B respec-
tively and define ¢((e, b), (¢, 8")) = max{d(e, e"), d'(b, b")} for points (e, b), (', B")
e ExB. Let I'f = {(e, f'(€)} be the graph of f and let E; denote the (1/i)-neigh-
borhood of I'f'in Ex B, where 7 denotes a positive integer. Let ¢;;: E;— E; denote
inclusion, j>1. Define p;: E; — Bbype, x) = x;notethat p = {p;}: E = {E;}—> B
is a map.

THEOREM 3.1. f is an approximate fibration if and only if p is an s-fibration.

Proof. Suppose that fis an approximate fibration and let the positive integer i
be given. For & = 1/i, let § be given from the definition of approximate fibration.
Let 8’ be chosen such that if x, y € E, d(x, y)<&', then d( f(x), f(»))<d/2. Choose
a positive integer j>i such that 1/j<é’, d/2.

Let g: X—E; and H: Xx[0,1]—B be continuous maps such that
pig(x) = H(x,0). Thus g(x) = (¢'(x), H(x, 0)) for some function g': X — E.
Since g(x) e E;, there exists eeE such that g[{e,f(e)), g(x)]<1/j<é’. Hence
d(e, g'(x))< 5" and d'(f(e),fg'(x))<8/2; thus

d'(fg'(x), Hx, 0)<d'(fg'(x), f (&) +d'(f(e), H(x, 0))<5.

By hypothesis, there exists a homotopy G': X x [0, 1] — E such that G'(x, 0) = g'(x)
and

d(fG'(x, 1), H(x, t))<e.

Define G: Xx[0,1]1—E; by G(x,t) = (G(x,0), H(x,?)); G is the desired
homotopy.

Now suppose that p is an s-fibration and let >0 be given. Let 6’ be chosen
such that if d(x, )<, then d'(f(x), s (»))<e/2. Choose a positive integer i such
that 1/i<e/2, &'. Let j be the positive integer given by the definition of s-fibration.
Let§ = 1/jand let g: X — E and H: Xx [0, 1] — B be continuous maps such that
d'(fg(), H(x,0))<8. Define g'(x) = (g(x), H(x, 0)) € E;; thus there exists
G': Xx[0,1]— E, such that G'(x,0) = g'(x) and p;G'(x,t) = H(x,t). Suppose
that G'(x, r) = (G(x, £), H(x, 1)) for some G. G is the desired function; for, since
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G'(x,t)e E;, there exists eeE such that ol(e,f (e)), G'(x, 1)]<1/i. Hence
d(e, G(x, 1))<1/i<d’ and d'(f(e), fG(x, 1))<ef2; therefore
d'(fG(x, 1), H(x, 0)<d'(fG(x, 1), f(@)+d'(f(e), H(x, H)<e.

Note that E is the inverse limit of {E;} and f is the inverse limit of {p;}. Let
f: E— B be an approximate fibration which is not a Hurewicz fibration [2]; then
the constant sequence { f}: {E} — B is not an s-fibration. Thus the inverse systems
which we can associate to f and E in order to prove an analogue of Theorem 3.1
form a proper subset of those systems whose inverse limits are f and E. Note also
that £~1(b) is also the inverse limit of p~*(b).

The difficulty with the above construction is that the mappings p; are not proper.
We will now modify the above construction to alleviate this problem. The proof of
the following is left to the reader.

PROPOSITION 3.2. Let f: E— B be a continuous map between the compact
metric spaces E and B. Form the inverse sequence {E;, e;;} as above and let {4} be
a sequence of subsets of Ex B such that for each i there exists j and k for which 4;= E;
and E,=A;. Then p: E— B is an approximate fibration if and only if {q;}: {4}
— B is an s-fibration where qie, X) = x.

w0 0
Let Q =k1j[1[0,1],C be the Hilbert cube and let N; =k1;11[0, 1/i],. Define

n;: E;xN;— B by nye, t) = pe).

PROPOSITION 3.3. p: E— B is an s-fibration if and only if {n;}: {E;x N}—B
is an s-fibration. o~

THEOREM 3.4. Let E and B be compact ANR’s and let f: E— B be a continuous
map. Then there exists a tower of compact ANR’s {E}, and a map q: {E}—B
such that f is. an approximate fibration if and only if q is an s-fibration.

Proof. Consider the map {n;}: {E;x N;} — B as in Proposition 3.3. Recall
that an ANR Y is convenient [14] if given a compactum X< ¥ and a neighborhood ¥
of X in Y, there exists a compact ANR Mc ¥ such that Xsint M. By [2] Ex Bx @
is a convenient ANR. Thus it is possible to find a sequence of compact ANR’s {4}
such that for each i there exists j and k for which 4;SE;xN; and E,x N, S 4,.
Theorem 3.4 now follows from 3.1 and 3.2.

Let p: E— B and p’: E'— B be approximate fibrations where E, E’ and B
are compact ANR’s. Suppose that there exists an embedding f: E— E' such that
p'f=p. Let {n}: {ExxN;}—B and {m}: {EixN}— B be defined as above.
Given i choose j>i such that if d(x,y)<1/j then d(f(x),f(»)<1/i for x,yeE.
Define f;: E;x N;— E{x N, by fie, b, t) = (f(€), b, t) where (¢, b, t)e ExBx Q.
It is easily checked that {f;}: {E;xN;} — {E{xN;} is a tower of maps which is
({n;}, {ni}, id)-preserving. :

TuEOREM 3.5. Suppose that for each xe B, p~i(x) and p'~'(x) are ANR’s
and flp~ ()i p~l(x)—p'~(x) is @ homotopy equivalence. Then {f}: {E;x N}
— {E{x N} is a bundle map. . .
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Proof. It must be shown that { /;}| {n.} ~*(x): {n,}~%(x) — {n}}~1(») is a homo-
topy equivalence. We would like to apply Theorem 12 of [12], but the inverse systems
ngl‘;(x), {n}7*(x) do not satisfy the hypotheses that they consist of compact

’s.

Let ¥; be the (1/i)-neighborhood of p~*(x) in E; then V;x {x} x N;=n; *(x).
There exists 6 >0such that if d(x, p(e)) <9, then d(p~*(x), p~'(p(e))) < 1/i. Choose &'
such that if d(y, z2)<d’, then d(p(y),p(z))<5/2. Choose j=i such that 1/7<6’, §/2;
then if (y,x)ep;i(x), then d(x,p(y))<8 and hence yeV;. Thus Py i (x)x N;
SVix{x}xN; and the towers {n} '(x) and {V;x{x}xN;} are homotop;/
equivalent. Since V;x {x}x N; is a convenient ANR, there exists a compact
ANR M;=V;x{x}xN; which is a neighborhood of p~(x)x{x}x{0}. Note
that {n;}"'(x) and {M,} are homotopy equivalent when {M;} is a nested sequence.

Similarly construct {A;} corresponding to {}}~*(x). Now apply Theorem 12
of [12] to get that {M,} and {M;} are homotopy equivalent and hence, {n;}~*(x)
{n{}~*(x) are also homotopy equivalent.

Let f: E— B and f': E'— B be approximate fibrations where E, E’, and B
are compact ANR’s. Let g: E— B and g': E’— B be the s-fibrations associated
to f and f’, respectively, as in Theorem 3.1.

THEOREM 3.6. If there exists an equivalence F: E— E', then for each £>0,

tﬁere exist maps h: E— E' and g: E' — E such that
@ d'(f'h(x). f ()<

(i) d'(fg(x),f'®)<e

(iii) gh and hg are homotopic to the identity.

Proof. Consider the projections

pi: ExB—E, pj: E'xB—E',
ps: ExB—B, p;: E'xB—B.

Choose & such that if d(x,»)<d, d(x,y)<68, then d(py(x),po(y))<e,
d(po(x"), p2())<e. By Proposition 3.4 of [7] there  exist &-homotopies
At ExB—ExB, h;: E'x B— E'x B such that

(@) hy =1id, h{ =1id, :

(b) h|I'f=1id, h|Tf =id,

(c) there exists i such that A, (E)=I'f and Ai(E)=Tf".

Let G: E'— E be an inverse for F and define g: E'— E to be the com-
position. .

idx fr Gk _
E'—>E{y>E,~>Tf~E.
Then .
d'(fg(x), £ (%) = d'(fphy G (A% [ (), f'(x))
= d'(pay Gi(id x ) (), p, Giidx f)(x))
= d'(p2h4(2), p2(2))

whete z = G(id xf")(x). Since d(hy(2), z)<d, d'(p2hi(2), ps(@)<e.

3 — Fundamenta Mathematicae CVI
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Define h: E— E’ to be the composition
idxf
E—-—>EF(,)—>E, —>Ff’—>E

Similarly, d’(f'h(x),f(x))<e.
Choose j>i such that F;Grg,eerq), J~elj (Herc we use the fact that F o G~id.

Then

N

hg = P\ F(id x f)p by Gid % f7)
= pify Fihy Gid % f7)
=~ py Ky Fily Grpy(id < f7)
o pyhy Fiho Grap(id xf7)
= py W FiGrayid X )
o~ piAi(idxf") = id.

Here we used the fact that the bonding maps for E are inclusion maps. Similarly
gh=~id.

4. Homotopy theory of the space of shape equivalences.. A well-known result
in the theory of locally trivial fibre bundles is that there is a bijection between the
equivalence classes of such bundles over the n-sphere with a suitable fibre F and
the n—1 homotopy group of the space of homeomorphisms of F with the compact-
open topology [17]. In Section 11, we shall prove the analogue of this theorem for
s-fibrations. However, since there is no natural topology for the set of shape equi-
valences (or in the terminology of [12], homotopy equivalences) of the fibre, we shall
use the formalism of semi-simplicial theory in order to develop a homotopy theory.

Let F be a tower of spaces and let & (F) be semi-simplicial set of homotopy
equivalences of F; an n-simplex of &£ (F) is a bundle equivalence f: F X A" — Fx 4"
where 7: Fx A" — A" is the product bundle with F as fibre and 4" is an n-cell.
If A" is triangulated as an ordered n-simplex and d;: 4" — 4" is the boundary oper-
ator which omits the ith vertex, then define 9, f = f|F x 8,4". The ith degeneracy
operator is defined analogously. It is easily seen that & (F) is a Kan complex [13].
Composition of bundle equivalences makes &&(F) into a Kan monoid com-
plex ([13], p. 68).

If " is the n-sphere and X, € S”, then a based map of S™ into ¥& (F) is a bundle
equivalence f: FxS"— FxS" such that f]Ex{X,} =id. Two such maps, fo
and f;, are homotopic rel X, if there exists a bundle equivalence H: Fx S"x[0, 1]
— FxS"x [0, 1] (as bundles over S”x [0, 1]) such that H |F x§"x {i} = f;x {i},
i=0,1 and H|Fx{X,}x[0,1] =id; we write fy~,f, - ~, is an equivalence
relation and the set of equivalence classes forms a group, m,(#¢ (F)), called the n-th
homotopy group of ¥&(F). Since ¥&(F) is a semi-simplicial monoid the group
operation on m,(8(F)) can be defined by composition, [f1[g] = [feg] ([13],
p. 68) and m,(¥&(F)) is Abelian for n>0 ([13], p. 68).

There are natural actions of (¢ (F)) and =,(¥8(F)) on m,(¥& (F)). The

©
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latter action is the one normally studied; the topological treatment in [8], pp. 131-134
can be followed in our circumstance. The conclusion which will be useful for us is
that we can ignore basepoints if we only consider mappings of S”, n>0, into the
path component of &&(F) which contains the identity. Ie., 7,($°& (F)) is isomorphic
to the group of homotopy classes of maps of S, into £&(F) with the property that
if f+ Fx8"— Fx.S" represents such a map, then f|F x {X,} is homotopic to the
identity ([8], p. 133). We shall abuse notation and use m,(#&(F)) for the latter
group.

Let So = {Xp, X;} and let g: FxS°—FxS°
no(&&(F)). Define g': F — F by the composition

represent an element of

% (X1} g
F——=Fx{X}>Fx{X,}>F.
Let f represent an element of =, (¥&(F)), n>0. Define
g f) = ((g) "  xid) o fo (g'xid) .

((g"~* denotes some homotopy inverse of g'.) It is easily checked this defines an
action of my(¥&(F)) on =,(5# (F)) (using the abuse of notation as noted above).
Let mi(8(F)) denote the orbit space of this action; i.e. the quotient space obtained
from n,(&(F)) by identifying [f] with [g*(f)] for all [g]e no(#E(F ))

The following are easily shown.

ProrosiTiON 4.1. Let f: Fo— Fy be a homotopy equivalence; then f induces

" a bijection f*: (S E(Eo)) — mi(FEEY) for all n.

PROPOSITION 4.2. Let f, g: E— E' be towers of maps. f~g if and only if there
exists a tower of maps K: Ex[0, 11— E’ such that K, = fand K = g.

5. Covering homotopy theorem. The main result of this section is a covering
homotopy theorem for towers of maps into s-fibrations.

First we have need of the following two results whose proofs are exactly the
same as the proofs of the corresponding results for Hurewicz fibrations [16],
pp. 100-101.

PROPOSITION 5.1. Suppose that p: E— B is an s-fibration with t-function ¢.
Let Fy, Fy: Xx[0, 1]~ E, be maps such that there exist homotopies H: Xx [0, 1]
x[0,1]—B and G: Xx{0}x[0,1]— E,uy with H(x,t,0) = pyeFolx, 1),
H(x, t, 1) = pyFylx, 1), Gx, 0, 0) = Fy(x, 0), G(x, 0, 1) = Fy(x, 0) and
PowG(x,0,1) = H(x,0, t). Then there exists a homotopy H': X'x [0, 11x[0, 1] — E,
such that p,H' = H, H'| Xx {0} x [0, 1] = €py G, H'(x,1,0) = eyp(eyFo(x, 1) and
H'(x, t, 1) = euq)(u)Fl(x: £).

COROLLARY 5.2. Suppose that p: E— B is an s-fibration with t-function ¢.
Let Fo, Fy: Xx[0,1]— E, be maps such that Fo| Xx{0} = F1|Xx{0} and
PotyFo = Powy Fy- Then there exists a homotopy H: Xx[0,11x[0, 11— E, such
that H(x,t,0) = e, Folx, 1), H(X, 1, 1) = eupuy F1(x, 1), H(x,0,1) = € Folx,0)
= €ypyF(x, 0) and p,H(x, t, 8) = Py Folx, 2).

3
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THEOREM 5.3. Suppose that p: E— B is an s-fibration with t-function ¢. Let
h: D — E be a tower of maps and let H: DX [0,1]— B be a map such that h is
(H, p,id)-preserving: then there exists a tower of maps G: Dx[0,1]— E such
thatﬂpuG,,,(x, t)=Hgu(x, 1), Go(x, 0) =€ap2(n) hyrey(%) and G is (H, p, id)-preserving.

Proof. Let ae I and consider the homotopy Hyyz(,y and the map Z,2(,. Since
Py o) = Hygre(x, 0), there exists a homotopy Gi: Dygryx [0, 11— Eyy
such that Gi(x, 0) = €ppra o) and pow G, = Hyprgy. Lot G(a) = Fyagy
and define G (x, ) = €, G'(x, 1).

First we show that {G,}: Dx[0,1]— E is a tower of maps. Suppose that
pzo. Let d, denote the bonding maps in D. Consider the homotopies
Gy ° (oo % 19); eptapm © Go* Doy % [0: 11— Eoiay;

G o {doarn < 1D (%, 0) = epprin tor dotwyamn()

€ty Co@e?(m) Mgy (X)
7
= eppmUi(x, 0)

R

Potey G © oo ¥1d) = Hipe © owen X id) = He(p

‘ = Popy G = Poto) ptaron T -
We can apply Proposition 5.1 to get a homotopy G, ° (dscmaip X 1) €xp(s) Gp 50
that {G,} is a tower of maps which is (H, p, id)-preserving.

Pcha(X: t) = pzerzlp(at)G;(x: t) = p(p(cc)G;(xz t) = HG(a)(x: t)
and

Ga(x> O) = Cap(a) G;(x: 0) = Cagp(a) e?’(“)‘l{{(d) ]7402(“)(36) .
By using Theorem 5.3, one can prove the analogues of Proposition 5.1 and

Corollary 5.2 as in [16], pp. 100-101.

PROPOSITION 5.4. Let p: E — B be an s-fibration and let F,F': Dx[0,1] = E
be towers of maps such that there exist a map H: Dx [0, 11x [0, 11— B and a tower
of maps G: Dx{0}x[0,1]— E for which

GIDx{0}x {0} = EIDx {0},  GIDx{0}x{l} = F'|Dx{0}

and G is (H, p,id)~preserving. Then there exists a tower of maps G': Dx [0, 1}
%[0, 11— E such that

G'1Dx{0}x[0,1] =G, @G'Dx[0,1]x{l} =F", G'IDx[0,1]x{0}=F

and G' is (H, p, id)-~preserving.

PROPOSITION 5.5. Let p: E — Bbe ans-fibrationandlet F and F':Dx [0, 1]—E
be towers of maps such that there exists a tower of maps G: Dx{0}x[0,1]— E
with

GIDx{0}x{0} = FIDx{0}, G|Dx{0}x{1} =F’'|Dx{0}

©
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and poF = poF' and Gis(poF, p,id)-preserving. Then there exists a tower of
maps H: Dx[0, 11x [0, 11— E such that H is. (po F, p,id)-preserving for all
te [0, 1]5

H|Dx{0}x[0,11=G, HIDx[0,1]x{0}=F and H|Dx[0,1]x{0} = F".

6. Shape invariance of fibres. As the first major application of the covering homo-
topy Theorem 5.3, we shall prove that if p: E— B is an s-fibration with B path-
connected then for b, b’ e B, p~*(b) and p~1(b").are homotopy equivalent. This is
a generalization of an analogous result for approximate fibrations proved by Coram
and Duvall [2]. The proof is analogous to the proof of the corresponding result for
Hurewicz fibrations ([16], p. 101). Next we apply these techniques to simplify the
detection of bundle maps.

Let p: E— B be an s-fibration and let w: [0, 1] — B be a path. Consider the
inclusion ii: p~*(w(0)) — Eand define H: p~*(w(0))x [0, 1] — Bby H = W o (p xid)
where W(x, #) = w(t). By Theorem 5.3, there exists a tower of maps G: p~*(w(0))x
%[0,1]— E  such that p,G, = Hgy for all o and G(x, 0) = eppamtprem(®)
where ¢ is the #-function of p. Define f: p~*(w(0)) — p~*(w(1)) by the composition

id x {1} G
2T (wO@) = (w@)x [0, 1] 5E.

Let w': [0, 1]— B be a path such that w'(i) = w(i) for i = 0, 1 and such that w
is homotopic rel{0, 1} to w’. If we construct G’ and f corresponding to w’ as above,
then it follows from Proposition 5.4 that the towers of maps f, f": p~*(w(0))
— p~*(w(1)) are homotopic.

Hence we have a functor L from the fundamental groupoid of B ([16], p. 101)
to the category whose objects are towers of spaces and whose morphisms are homo-
topy classes of towers of maps.

Let w, w' be paths in B such that w(l) = w'(0). Recall that w = w’ is the path
defined by

ey Jw(2) for te][0, 4]
W wi) = {w’(Zt— 1) for tel}1].
Suppose that w'(t) = w'(0) for 0<¢<%. Construct G, f, G’ and f' as above. By
the assumption on w/, we may also assume that Gy(x, ) = g,ey(x) for 0<r<E.
Let G”: I' — I' be an increasing function such that G''(e) =G («), fG'(e) [12]. Let
ket pgi(w(0)) — py(w(1)) be a homotopy such that

ko = fitaumorm®)  and ki = ey foweremert -
Define GJ: pg(w(0)) — E, by
Golegusin(): 2t) for 0<is3,
Gy Cx, 1) = kg a(%) for <1<y,
Gl formeramen @), 2t—1)  for  2< t<1.
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Note that GJ(x,0) = e,eng(*) and p,D;(x,t) = w* w'(t). Consider

J'@) = G/(x, 1) = G;(fG'(az) 5 fG’(at)G”(u)(-x)a 1) =1 o fara © efG'(a)G”(a)(x) .
We have shown the following. ‘

ProposiTiON 6.1. L{w#w'] = I'[w]e L{w'].
homotopy classes; —i.e. [f1e[g]l = [feg].)

THEOREM 6.2. Let p: E — B be an s-fibration and let by, b, lie in the same path
component of B. Then there exists a homotopy equivalence p~'(bo) — p~*(by).

THEOREM 6.3. Let p: E— B and p': E'— B’ be s-fibrations, let k: B—B'
be a continuous map and let K: E— E' be a (p, p', k)-preserving tower of maps.
If there exists bye B such that K|p~*(bo): p~*(bo) — p'~*(k(bo)) is a homotopy
equivalence, then for all b which lie in the path component of B which contains b,
K| p~i(d): p~i(b)— p~(k(®)) is a homotopy equivalence. In particular, if B is path-
connected, then K is a bundle map.

Proof. Let w: [0, 1]— B be a path such that w(0) = b, and w(l) = b. Con-
struct H, G and f as above. Then kw is a path in B’ such that kw(0) = k(b,) and
kw(l) = k(b); construct the corresponding H', G’ and f' as above. Let

=Klp~'(by) and K, = K[p~*(b) and let g: p'~*(k(do))—p *(bo) be the
homotopy inverse of K.

Let G = KoGo(gxid): p (kb))% [0,1]— E" and let f': p'~*(k(by)
— p'~"}(k(®)) be the composition

denotes composition of

(4: 2l

G"

id x {1} .=
P k(o) — > p "M k(b))% [0, 1] E" .
Note that

P'G" = pPKG(gxid) = kpG(gxid) = kH (g xid) = kWw(pxid) = p'G’
and

G'p (ko)< {0} = Ko (g xid)|p' ™}k (bo)) x {0}
which is homotopic to the identity map of p'~*(k(b,)) x {0}. By Proposition 5.5, this
homotopy can be extended to a bundle homotopy between G” and G’ which covers
p'G’. In particular, f’ and f'* are homotopic; hence f is a homotopy equivalence.
But since f = K o fe g, and since both f and g are homotopy equivalences, K, is
a homotopy equivalence.

7. Path lifting property. W. Hurewicz defined the concept of path lifting property
of a map and showed its equivalence with the covering homotopy property [9].
We develop an analogous theory in this section which will be useful in the next
two sections.

If E={E,, ey, I'} is a tower of spaces, let E'%" = {E[", &, I} denote
the tower of spaces where EL>! is the collection of paths in E, w1t11 the compact-
open topology and 2,,(¢) (1) = e,4(p (1))

Let p: E— B be a map. For «el, let

B, = {(e, w) e E,x B w(0) = p,(e)}

icm
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and define byt E,;—> B, by byle, w) = (ea(e), w). B = {B,, b, '} is a tower of
spaces. Define p . Ef% ”—+E by p,(w) = (w(0), p,o w); it is straightforward to
check that B: E[0 1, B is a tower of maps.

Define g: B— B! to be projection along the second coordinate. Let
r: E'"— B be the map induced by p. Note that § is (r, g, id)-preserving.
A lifting function for p is a (g, r, id)-preserving tower of maps A: B — E!%* such
that jio A = id.

THEOREM 7.1. p: E — B is an s-fibration if and only if there exists a lifting function
Jor p.

Proof. Suppose that p is an s-fibration and let ¢ be the ¢-function for p. Define
Fot By By by file, w) = e and F,: Buagy %[0, 11— B by Ffle, w), 1) = w(f).
Note that F((e, w),0) = w(0) = pya(€) = Pyag file, w). Hence there exists
a homotopy Fy: By x [0, 11> Eyy such that pyq, Fi = F, and

Fyf(e, ), 0) = eoupaq fules W) = €pupr(®) -
Define A, Bopy— ELM by Afe, W)(2) = eppy Fille, W), 2). Tt follows from

Corollary 5.2 as in the proof of Theorem 5.3 that {4,}: B— E™'is a tower of
maps which is (g, r, id)- ~preserving. Consider
Ba o dule, w) = (Aule, W)0), P © Aofe, W)
 (anto e, ), 0) 4
= (ew’(u)(e): W)
= bygrale, W) .
Hence {1,} is a lifting function for p.

Now suppose that there exists a lifting function A = {4,} for p. Let aeI' and
let f+ X— E;, and F: Xx[0,1]— B be maps such that Paay S (%) = F(x,0).
Define g: X— B by g(x)(t) = F(x,t) and define H: Xx[0,1]—E, by
H(x,t) = 2(F (), g(x))(2). H is the desired lifting.

A lifting function A = {4} is regular if for every x e E;u, A%, PawX)
= €,m(*); — i.¢. degenerate paths are lifted into degenerate paths. By using exactly
the same proof as in [9], p. 957 one can show the following.

COROLLARY 7.2. Let B be metric; p: E— B is an s-fibration if and only if there
exists a regular lifting function for p.

We need the following proposition which is an analogue of a result of
E. Fadell [4].

PROPOSITION 7.3. Let p: E— B be an s-fibration and let A: B— E™" be
a lifting function for p. Define X: E®"— E'Y by

xa:(w) = ;Lac(w(O)J)A(z) ° W)
where we EXy3. Then there exists a homotopy &: EP°U%[0,1]— B9 such
that ®|E®1x {0} = id, #|EP % {1} = X and @ covers the projection
B1x [0, 1]— B,
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Proof. Let ¢ be the z-function for p and let w e Elye). Define 0 = pio o w
and ¢~ B>Y by
1-spn _ JO(s+)  for
o= {a(l) for

Define H,: Eloidx [0, 11— E*" by

tel0, 1-45],
te[l—s,1].

for tel0,s],

Hw,s)(@) = {em‘“)w(t) tels, 1].

Ezq,(,,)lq,(u)[W(S), 0'1_5] (t-'S) for

By Proposition 5.1, ¢ = {H,}: E*"x[0, 11— E®Y is a tower of maps; it is
easily checked that & has the desired properties.

8. Pullbacks. Let ¢ = (p, E, B) be an s-fibration and let f: B’ — B be a con~

tinuous map. For ae T, let E; = {(b, x) € B'x E,| f(b) = p,(x)} with the subspace

topology.
If f=a, define
(l) 8;/,: E[;‘—) Ea’: by eoz/}(b: x) = (b5 euﬂ(x)) 3
@) F,: E,—E, by F(b,%) = x,

(i) F: I'— T by F(@) = a,

(iv) pi: E,— B’ by pib,x) = b.

It is easily checked that p’ = {p;}: E' = {E;} — B’ is a map.

THEOREM 8.1. p': E’ — B’ is an s-fibration with the same t-function as p and
(F, f) is a bundle map.

Proof. Given ael’, choose 8 = @(«) where ¢ is the ¢-function for p. Let
g: X— Eg and H: Xx[0,1]— B’ be maps such that pjg(x) = H(x, 0). Find
G: Xx[0,11—E, such that p,G =fH and e,Fg(x) = G(x,0). G(x,t) =
(H(x, 1), G(x, 1)) defines the desired homotopy. Hence P’ is an s-fibration. Since
Flp.7 () py (%) — py Y(f (%)) is a homeomorphism, (F,f) is a bundle map.

S*¢ = (p', E', B) is called the pullback of ¢ by f.

THEOREM 8.2. Let £ = (p, E, B) be an s-fibration and let fy,f,: X — B be
homotopic- maps. Then fg & and fTE are bundle equivalent.

Proof (see [16], p. 102). Let f¢'¢ = (p°% E°, X) and f3*¢ = (p%, E*, X) and
Iet (B fo): fo & — & and (FL, f)): ff&— & be the bundle maps constructed above.
Let F: Xx[0, 1]— B be a homotopy such that F(x, 0) = f(x) and F(x, 1) = fi(x).
By Theorem 5.3, there exist towers of maps G°: E°x[0, 11— E and G*: E'x
%[0, 1] — E such that

puG;(x, t) = F(P:;‘(u)(x)’ Z) , i=0,1,
G(x,0) = Coprey Fory(®),  Gix, 1) = ewz(a)Fql,z(ﬂ)(x) .
Define g°: E°—E* and g': E*— E° by
92, %) = (b, GX(6,%),1)) for (b,x)e Egow »
ga(b, x) = (b, GX((6, %), 0) for (b,%) eEhy-

icm
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Note that
G%g* xid)| E* x {0} = G'| E* x {0}
and
pG%(g* xid) = F(p° xid)(g* xid) = F(p'xid) = pG* .

By Proposition 5.5, (G°(g* xid), F) and (G*, F) are bundle homotopic. Similarly,
(G°, F) and (G'(4° xid), F) are bundle homotopic. Since G'(g°g" x id)~,G?, the
restriction of this bundle homotopy to E'x{l} induces a bundle homotopy
Flg®g* o, F* which covers f;. This, in turn, induces a bundle homotopy g°g* ~;id
covering id: X — X, Similarly g*g°e,id.

COROLLARY 8.3, Let & = (p, E, B) be an s-fibration and let B be contractible;
then & is bundle equivalent to the trivial s-fibration' p~*(b,) x B— B for any b, & B.

9. Homotopy extension theorem. The following is the main result of this section.
The analogous theorem for Hurewicz fibrations was proved by Fadell [5]; this proof
is very similar.

THEOREM 9.1. Let p: E - B and p': E' — B be s-fibrations where B is a poly-
hedron and let A be a subpolyhedron of B. Let X = (Ax[0, 1)) u (Bx{0}) and
T = (pxid)~*(X) where pxid: Ex[0, 1]— Bx[0, 1]. Let ¢: T— E’ be a bundle
map covering the map X ~— B defined by (y, t)— y. Then there exists a bundle map
@: Ex[0, 11— E' covering the projection Bx[0,1]— B such that @|T = o.

Proof. Let U be an open set in Bx [0, 1] such that Xc U and X is a strong
deformation retract of U; let H: Ux[0,1]— U be a homotopy such that
H(x,0) = x, H(x, 1) e Xand H(x, t) = xforallxe X, e [0, 1]. Let #: U~ U™»H
be defined by H(x)(t) = H(x, ). Let ¥V, = (p,xid)"*U. Consider the projections

n: Bx[0,11—» B, m: Ex[0,1]—E, ¢: Bx[0,1]—1[0,1].

Let #: (Bx [0, 1D — BOY be induced by = and define ,: V,— B'™' by
W, = foHo(p,xid)|V, and y,: V,— [0, 1] by x, = ¢ ° H; o (p,xid)| V. Define
Pot Ve B by J(0) (1) = (@)1 -1).

Let A and )’ be regular lifting functions for p and p’, respectively (cf. Cor-
ollary 7.2). Define #: I'"—I' by ®(®) = ApA'(®) and define &;: Vg — Ez by
\'D;(‘D) = A;((P,ﬂ/(ac) [A(pl’(m)(nw(u)(u)’ l// d’(a)(v)) (l): th(cz)(D)L %ﬁ(m](v))(l) .

Let W be an open set in B such that A=W and Ax[0, [l Wx [0, 1]=U. Let
f: B—[0,1] be a continuous function such that f(4) =1 and f(B~W) =0.
Define @,: Eggy [0, 11— EL by 8,(», ) = D4y, f (Pow(3)1)-

We first show that {&,: Ex[0,1]— E’ is a tower of maps. Let a<pB,
then

‘p«(cm(a)m(n)(.l’) >t )

= B eowom():S (Pawtamom) 1)
= YT where ¥ = (ep@ap () S (Pay() 1)
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= lé(fl’a'(a)[lq.z'(a)(%(z)(ﬁ): ‘/’m(u)(f’)) @, qu(u)(“)]n lpqs(m)(ﬁ)\(l)
= )'o:((pl’(a)[A'rp}.’(m)(edi(a)di(ﬂ)(y)5 qu(ﬂ)(v))(l): Xrn(p)(”)], lptb(/i)(”))(l)
where v = (¥, fPap(¥) 1)
= A‘;((PF.’(m)[A’tpl’(a) ° (eamarm X id)(y ) ‘Pq:(ﬂ)(v)) ), ch(/i)(")]a 'ﬁm(p)(”))(l)
= 1@ 1o eprmers ° Aore(¥s Vow®) (D %o @], Fan(®)) (1)
= 2P re © Cortorn X1 ozn (7 Yo ®) D) Xom(©)]s Pomn®) (1)
= Jye (Exrwrm xid) ((Pl’(ﬁ)[)'qﬂ.'(ﬁ)(y s Wm(p)(”))(l)a Xw(/x)(v)], g;m(ﬂ)(”))(l)
= €250 0 A (75 Vo @) (D Xoy®]s Foe®)(D)]
91,9‘%()" > JPai () 1) = e, By, 1).
We now show that {®,} covers the projection Bx [0, 1]— B.

PePu(y,t) = P;@;(yaf(Pcp(a)(Y)) f)
= Pn’z['1;(4’A'(z)[/lqaz'(a)(nq:(u)(v)’ ‘/’rp(a)(v))(l), X:p(u)(v): %(,)(v))(l)]
= '/7¢(z)(0)(1) where v = ()’:fpm(a)(J’) f)
= V) (0)
= (ﬁ oo (Pcb(m) % id) (”)) 0
#oH (Pow¥» [Pow(3)2)(0)
nH ((P;n(u)y > Joow(Y) t), 0) = 7T(P¢(a)y > JPow(Y) f) = Po@Y -
Suppose that (y, £) € Tgy; then

¢z(y> t) = QQ(J’,f(Pm(a)(J’)) t) = @;(ya t)
il }’;((Pl'(d)[z'{pl'(z)(y’ Ipdi(a](y3 t))(l): X(b(a)(y9 t)]: lpd)(u)(ya t))(l)
= X;(Q’l’(a)[/‘{(a).’(m)(y’ wm(u)(y’ t))(l)s t]a 'pm(u)(J’: t)) (1) .
Since (y’ t) € T@(a), (Pd)(a)(y); t) € X and H((Ptt(m)(y)’ t): S) = (pd)(a)(y): t) for all

s€ [0, 1]. Thus Yoy, 1) = o B o (pogyxid)(y, t) is the constant path which will
denote by its image, pe)(»). Hence,

Dy, 1) = A;(@L’(u)[lwl’(a)(y’p@(a)(y))(l)ﬂ t]: P¢(a)(y))(1)
= %(‘P;J(a) e«pz'(u),cb(u)[}’ > t], Pw(u)(J’)) o
= €prw) Pt Corrta) 0ia)( Vs 1) -
Thus @|I = @. The fact that ¢ is a bundle map follows from Theorem 6.3.

COROLLARY 9.2. Let & = (p, E, B) be an s-fibration and let B be contractible.
Let xo€ B; then there exists a bundle equivalence F: E— p~'(bo)x B such that
Flp™7(bo) = id x {id}.

See Corollary 8.3,

i

I

10. Bundle maps and bundle equivalences. The main result in this section is that
a bundle map of an s-fibration over a compact polyhedron covering the identity is
a bundle equivalence. The proof is modelled on an argument of E. Fadell [5] to
prove an analogous result for Hurewicz fibrations.

s- Fibrations 119

LemmA 10.1 Let p: E— A" be an s-fibration where A" is the n-cell and let
S = (24"x[0, 1) U (4"x {0}) U ("% {1}). Let D = (pxid)~*(S). If f: DD
is a bundle equivalence such that f|Ex {0} = id, then there is a bundle equivalence
g D— D such that gl(p~1(@4M x[0,1) U (Ex{0}) = id and the bundle map
g of: D — D admiis an extension @: Ex [0, 11— Ex [0, 1] which is also a bundle
equivalence.

Proof. Let F = p~*(x,) be the fibre of p where x, is a vertex of 4”. By Cor-
ollary 9.2, there exists a bundle equivalence f: E— Fx 4" such that B|p~*(xo)
= id x {xo}. We may choose 7' so that B~*|Fx {xo} — p~*(x,) is (the shift of
the) projection along the first factor. B induces bundle equivalences Bxid: Ex[0,1]
—Fx4"%x[0,1] and f': D— ExS where f' = fxid|D.

Consider f = p'ofo ™t FxS— FxS. If we choose (x,,0) to be a base
point for S, then f’ represents an clement of ©,(#&(F), id). Let g': Fx.S— Fx§
represent the inverse of the class of f'; we may assume that

g'|Ex(@4"x[0, 1D U (4"x {0}) = id .

Let = f'"tog of.

Since &¢(F) is a simplicial group and by the choice of g', there exists an ex~
tension @': FxA4"x[0, 11— Fxd4"x[0,1] of g'of. Let §=(f"*xid)o g’
o(Bxid). @D =p"togof of = togopofof 1o which is bundle
homotopicto f'~* o g’ o B o f = g o f. By Theorem 9.1, 7 o fis extendable to a bundle
map ¢t Ex[0,1]1— Ex][0, 1].

§1(p~ (64" x [0, 1) U (Ex {0}
=~ o g e Bl(p7H047x [0, 11) L (Ex {0}
Bt Bl(p @4 % [0, 1]) L (Ex {0]) -

Since p'~ 1« B’ is bundle homotopic to id, we apply Theorem 9.1 to obtain a bundle
map ,4_;: D — D such that g|(p~1(84")x [0, 1]) U (Ex{0}) = id and g is bundle
homotopic to §. Since g o f is bundle homotopic to § < f, the existence of the exten-
sion @ follows from a third application of Theorem 9.1.

I:EMMA 10.2. Let p: E— 4" and p': E'— 4" be s-fibrations and let H: E—E’
be a bundle map covering the identity. Let g: p'~*(04") — p~ (04" be a bundle map
covering the identity such that g o H| p~*(04") is bundle homotopic to id|p~t(@4™
by the homotopy &: p~(04")x [0, 11— p~*(94") which covers the projection
34" % [0, 1] —> 04", Then there exists a bundle map G: E' — E covering the identity
such that G » H is bundle homotopic to id by a homotopy ® which extends & and covers
the projection A" x [0, 17— A"

SUBLEMMA. Let xo be a vertex of A" Define C: A" — (AN by C(x)()
= (L=f)x+1xo. Let ) and A' be regular lifting functions for p and p', rfspectively;
Let H° = H| E”l(xo)"and let G' be a homotopy inverse for H®. Define H: E— E
and G: E' — E by

I
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HQ@) = AHN(@@) for wael’,
G@) = VG'AMe) for ael,

ﬁu(J’) = )';{Hg’(a)l}'Hl'(u)(y P C(FAHZ.’(z)(.V)))(l)]: C(Puwm()’)}} ),
G.z()’) = a{G'z(a)[}hé;';.(u)(J’s C(Pﬁm'ma)(y)))(l)], C(PQG'A'(@(J’))} 1)

where é(x)(t) = C()(L—1).

Then B is a bundle equivalence which is bundle homotopic to H, G is an inverse
for H and ¢ G| p'~*(@4") is bundle homotopic to g.

Proof. Define J: (EN*Y—(EN%Y as in Proposition 7.3 and let
&: (EN1x [0, 1]— (E)>Y be the homotopy whose existence is guaranteed
by this proposition. Define f: E — (B N1 by

p(e) = AH(@) for oael’,
BN (@) = H Dy, Cpan@)A-N1  for  ye Epgy
and define ¥: Ex[0,1]— E’ by
V() = fd(e) for ael”,
Py, 1) = @ulBowy(¥), 11(1)  for  yeEya.
Then
Ty, 0) = S.[Baw(¥), 01(1) = ero[Bam() (1]

= e;q:(z) Hm(a)[lmp(m)(y, C(P;.Hm(u)(.v)) (0]
= €100 How o, pom() »

Yy, 1) = BufBow(3), 111
= €;¢(a)(z;(a) B (o) (J’)) @
= f?;(p(u)(%(a)(ﬁ(pru)(J’) 0, P;n(m) e ﬁa:(a)(J’))(l))
= ;q?(rz) (/’{;z(z){Hzﬁ(a)[ﬂ'Hlb(a)(y’ Cc (Pum@(ﬁ))(l)]s Pé:(a)Hw(u)[le(u)(J’: C(I’leb(m)(y)))]})
= ea’up(a) ("L;(m){Hdﬁ(a)[}“H@(a)(y » C (P;.m(a)(y)))(l)], 6(1’3}1«»(@(3’))(1)})
= €up How(¥) -
Thus H and H are bundle homotopic.
Consider A’ I"—1TI"; let 8: E'— E' be the shift map induced by A’. There

exists a homotopy K: g“l(xo)x [0, 1]— p~*(x,) such that K, = 6G'66H %" and
K, = © where ¢, ¢’ and 7 are shift maps. Define K: Ex [0, 1] — E by
K@ = AdHVAG'oMe) = AKL(0) for oael.

and

Ka(J” 1) = Aa{Ki.(a)[}'KJL(m)(ya C(sz(z)(J’)))(l)a f]a C(Paxz(a)(}’))} 1.
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There is no loss of generality in assuming that o(@)=A(®) and o’'(B)=A(B) for
all @ and B. Note that

a(J’s 0) = ;{a{KJ-(u)[/'LKA(a)(ys C(sz(a)(y)))(l), 0]: C(Pam(::)()’))}(l)
= }'a{ei.(oz)n'l(u) G;l(a) e/Grr).(u),}.’l’G’ﬂA(u) H ,g'z'a'a,x(a) CH I ) G aA(w), KA(e)
[flmcu)(;lh C(sz(u)(y)))(l)], C(P;.m(m)(y))} O]
= Am{eﬂ(at)a}.(a) Ge’:;.(«) fa'az(a),w'az(a) 7 MG'oi(a) CAHI AG a2 (w), KA ()
[Am(u)()’: C(Paxz(a)(J’)))(l)], C(l’zm(a)(y))}(l)
=y /h{@z(«)u(a) G;Z(a) ;"’G’M(a][g XGaMa) CARA 2 Gaae) Ka@ (W)
, C(]’AKJ.(u)(J’)](I) C(pAKA(u)(y))}(l)
(for, we let, ignoring indices, w(t) = He[A(y, C(p( M))®)]; by Proposition 7.3,
e'w(l)a 1’(W)(1))
S plup /lp{Gﬁ(p) %fa(p)[ﬁ 2o ap) €2 w16 4, K2 (V)
C(sz(u)(J’)](l), C(sz(«)()’))(l)
= Cyp G/z " 2GADCat x 264 Ka@) (V)

for some

and
Ry,1) = A Kl il C(ParamM))D), 1], C(Paxaw()} (1)
= Aafes xaml i@y C(Parawy(»)) D], Caxam()}D)
2y ki) -
[Again, this bundle homotopy follows from Proposition 7.3. This time, we consider
the path, ignoring indices,
w(®) = He[A(y, CLe() D], Tr (N} (D)

where C(2)(s) = C(2)(#5).]

Thus Gff~,id. Similatly, fG=~,id.

All that remains to be shown is that G| p’~*(64") is bundle homotopic to g.
Note that id~g(H|p'~"(04")=g(H|p'~*(24") and hence,

Glp ™' @a"=g (R ' (04")(C Iy~ @04M)=g

Proof of Lemma 10.2. By the above sublemma, §| p'~}(84") is bundle homo-
topic to ¢; by Theorem 9.1, g extends to a bundle equivalence G': E — E. Without
loss of generality, we may assume that G’ = ggr where o and 7 are shift maps. Using
the homotopy & given in the hypotheses, we can find a homotopy

& pm'(@4"x [0, 11— p~1(24")
such that & = p and & = wG'H{ where g, @ and { are shift maps.

Let S be as in Lemma 10.1 and let D= (pxid)*(S). Suppose that
E={E, ¢, I'}; then = {D,,dy, I'} where D, = (p,xid)"*(S) and


Artur


122 L.S. Husch and J. R, Stoughton

dy = euxid|D,. Define h: [ —T to be an increasing function such that
h&)=tHG 00 (@), Ep@), p(®) for all ael’; ¢ is the ¢-function of p. Define
hz: Dh(m)——) sz by
[ (ex 00t Garotes Herwpt(€ncone,ia(¥): )

for . = Isph(a)(y) ed” »
(eu{p(z) Z.-:l,p(m)(efqr(a),h(m)(y) » t) 5 t)

for  puw(y)€dd”, tel0,1],
(eo(ll(a)(y): t) for ph(m)(y) € A": t=0.
It is easily checked that h = {#,} is a bundle equivalence of D.

By Lemma 10.1, there is a bundle map y: D— D such that
71(p~ (84" %[0, 1]) v (Ex{0}) = id

and yh can be extended to a bundle map ¢': Ex [0, 1]— Ex[0, 1]. Let y’ be the
composition

by, 1) =4

x {1} i
E—Ex]|0, 1]—>E><[0 11—E

G

where 7 is projection. G = y’'G’ and @ = 5@’ are the desired bundle maps.
THEOREM 10.3 Let p: E— B and p': E'— B be s-fibrations such that B is
a finite connected palyhedron B.If h: E— E' is a bundle map covering the identity,
then h is a bundle equivalence.
The proof is by induction on the number of simplexes of a triangulation of B
and by the use of Lemma 10.2 (cf. [5]).

11. Classification theorem. Let s& (X, F) denote the set of equivalence classes
of s-fibrations over X whose fibre is homotopy equivalent to F where the equivalénce
relation is bundle equivalence.

Consider the n-sphere S™ = B* U B~ where B™ and B~ are n-cells with
B* n B~ = 8", an (n—1)-sphere. Suppose that x, € S"~%. Let p: E— S" be
an s-fibration such that p~*(x,) is homotopy equivalent to the tower of spaces, F.

By Corollary 9.2, there exist equivalences H*: E* — p~!(x)x B™ and
H™: E™— p~'(xo)x B~ where H*[p~'(xo) = idx {xo}; p*: E* —B* and
p~: ET— B are restrictions of p to BT and B, respectively. Note that
L=H"o(H7)™|p~ xo)xS"™* is an equivalence of p~i(xo)x S"~! to itself
such that L|p~*(xo) x {xo} = idxid. By assumption, there exists a homotopy
equivalence G: p~*(xq) — F. Define u: s# (8", F)— ny—,(#8(F)) by sending
the equivalence class of p: E-— S" to the homotopy class represented by

(Gxid) o Lo (G~ xid): FxS" > Fx St

Note that this map represents an element of ,_,(##(F)); however, in order
to show that y is well-defined, we have to pass to m_,(%& (F)). The main result
of this section is the following.
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TasoreM 11.1 u: s (S", F) .»n,’:‘_l(yé’(f)) is a bijection.

PROPOSITION 11.2. p is independent of the choices of the equivalences H*, H~
and G.

Proof. Let Q’: 2" Mxo) — F be an equivalence; then

(Gxid) o Lo (G™! xid)
= (idxid) o (Gxid) o L o (G~* xid))
2((G 0 G xid)(G e G~ xid)((Gxid) o Lo (G xid))

which, by using the action of ny(#8(E)) on m,_,(¥&(F)), is equivalent to

:((Gc g“)xid) ) ((Qxid)ol; o (Q""xid))e((go Q"i)xid)
(G xid)o Lo (G~ xid).

The independence of the choices of H* and H ™~ follows by a similar, but much
simpler, argument since the restriction of two equivalences E* — p~*(xo) x B* to
the s-fibration over S"~' are homotopic.

ProrosITION 11.3. u is well-defined.

Pro of. Let p: E — 8" be an s-fibration such that there exists an equivalence
K:E—E Lt G=G o K| '(x), H*= (G™' o Gxid) o H* o K|p~Y(BY),
A= (@G Lo Gxid)oH™ o K| p(B )andf H+o(ﬁ )" pTHS™ ). Then

(@xid) e Lo (G xid)
~(@xid)o (G o Gxid)e HY o Ko K
~(Gxid) e Lo (G xid) .

o) e (G0 Bxid) o (G xid)

Now suppose that F is a singleton set {F} where F is an ANR. We shall show
that p is a bijection by constructing its inverse A: m—,(¥&(F)) — sF (S*, F).

Let h: Fx 8" ' FxS§" ! be a bundle equivalence which represents an
element of m),(%# (F)) such that #|F x {x,} is homotopic to id. If & = {#}, then
let E be the quotient space obtained from (FxB*)u (FxB™) by identifying
x & Fx S" ' with A(x). It is at this point that the hypotheses that F is a singleton
is used; the author is unable to perform a similar construction to obtain E otherwise.
Define p: E-+S" by p(x, y) ==y, where xe F and yeS".

PRrOPOSITION 11,5, p: E~ S" is an approximate fibration.

Proof. It is easily checked that p is completely movable and, hence, by [3]
(sec also [6]), p is an approximate fibration.

Let p= {p}: E = {E}— S" be the s-fibration associated to p as in Prop-
osition 3.3. Recall that the fibre of p is homotopy equivalent to F.

Define A: (S8 (F)) — sF (5", F) by sending the class of h to the class
of p: E— 8",

ProposITION 11.6, A is well-defined.
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Proof. Let us first consider the case when & is homotopic to k', by a homotopy
H: Fx8"1x[0,1] = FxS"*x[0,1] where H|FxS" 'x{0} = hx{0} and
HIFxS"'x{1} =’x{1}. Let D be the quotient space obtained from
(FxB*x[0,1]) u (Fx B~ x[0, 1]) by identifying x e Fx S*1x [0, 1] with H(x).
Define §: D — S"x[0, 1] by 6(x,») = y where xe F and ye S"x[0,1]. As in
Proposition 11.5, § is an approximate fibration. Let §: D — S"x [0, 1] be the
associated s-fibration as given in Proposition 3.3.

By Theorems 3.5 and 10.3, the s-fibrations p: E— S" and

315718 x {0 57X(S"x {0)) = §"x {0}

are equivalent (we identify S with S"x {0}). Let ¢: E— D be the composition
E—§7*(S"x{0})=D where the first map is the equivalence given above; note
that ;,-0 is a bundle map such that §¢ = p. By Theorem 5.3, there exists a tower
of maps @: Ex[0,1]— D such that ®|Ex{0} = ¢, 66 = pxid and & is
(pxid, §, id)-preserving. Since ¢ is a bundle map, by Theorem 6.3, & is a bundle
map covering id and, hence, by Theorem 10.3, & is a bundle equivalence. In particu-
lar, pxidf(pxid)=*(S"x {1}) and §|§*(S"x{1}) are equivalent; again by using
Theorems 3.5 and 10.3, these two s-fibrations are equivalent to p: E— S" and
p't E'— 8", respectively, where p’ and E’are defined analogous to p and E, for &'.
Thus p and p’ are equivalent.

Let g: F— F be a homotopy equivalence; to complete the proof of the prop-

- osition, we must show that the s-fibrations associated to h and

B = (g7* xid) e h o (g xid)
are equivalent.
-1 xg
The function F— F— Fx Q is homotopic to an embedding A,: F— Fx Q

and there exists 1,: Fx Q — Fsuch that 1, ¢ , = id. Define 4;(x, y, z) = (4;(x), 2)
and A5(x, ¥, 2) = (Aa(%, ), », 2) for (x,y, 2) e Fx Qx §""1. Note that

gxid: FxOxS" 1> FxQxS8" !

and g~*xid: Fx QxS"" ' — Fx QxS""* are bundle homotopic (over S"~1)
to {43} and {1} respectively.
Define

B Fx OxS" 1 — Fx QOxS" !
by

H'(x,,2) = (g7 xid)(t(h(g (), 2), ), H"'(x, 9, 2) = L4(t(h(AaCx, 2), 2), )
where m: Fx Q— F is projection and #: Fx " 1x Q— Fx QxS** is given
by t(x, y,2) = (x,z,y). Form p”: E" — S" and p'"'t E'" — 8" corresponding to
A" and A", respectively, as above. Since k' is bundle homotopic to A" (over

S"~1), the s-fibrations (p, E”, S") and (p"', E", 8" are bundle equivalent by
the first part of this proof.

and F": Fx OxS"1— Fx Qx S" 1
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Define ¢@: E'—E"” by o¢(x,») = (x,0,7) where (x,»)e Fx(B* U B™).
By Theorems 3.5 and 10.3, ¢ induces a bundle equivalence ¢: E'— E”. Define
& E—E" by &(x,3) = (L(x),y) where (x,y)e Fx(B* U B~). Again by
Theorems 3.5 and 10.3, ¢ induces a bundle equivalence ¢: E— E'™. Hence, E
and E’ are bundle equivalent and the proof of 11.6 is campleted.

PROPOSITION 11.7. pd = id.

Proof. Let h: Fx 8" "' — Fx§""* represent an element of 7 ,(#8(F)).
Let p: E— S" be the s-fibration associated to k by A as constructed above. Let
¢’ FxB* —p~™'(B*) be the inclusion map and define ¢; : Fx B* — E;x N, by
0i' (@) = (¢'(2), p¢'(2), 0). Note that {p;} = @*: FxBY— p~Y(B%) is a tower
of maps which by Theorems 3.5 and 10.3 is a bundle equivalence. Define
@”: Ex B~ — p~*(B7) similarly: note that o™ h = ¢~

& =(p*") "¢ " [FxS"* is a bundle equivalence which represents the class
associated to p by p. Note that ¢* @ is bundle homotopic to ¢~ |FxS* ! and
since *h = ¢~, @ is bundle homotopic to h. ;

ProrosiTiON 11.8. Au = id.

Proof. Let r: R — S" be an s-fibration; choose equivalences H*: r~{(B*)
=1 Yxp)xBY, H™: r™'(B) =1 Y(xo)xB~ and G: r~i(x,) = F as above.
Let h=(Gxid)eH" o (H™) o(G 'xid) be the equivalence of FxS" !
associated to r by pu. Let p: E— S” be the s-fibration associated to k by A as con-
structed above. Define ¢*: FxB* — p~*(B™)and ¢~ : FxB~ —p~(B™) as in
the proof of Proposition 11.7.

Let ¢ = ¢@" o (Gxid)o H*: 17 (BY)—p '(B") and ¢ =@~ o(Gxid)o

o HT: r‘I(B') — p~*(B™). We would like to define ¢&: R— E by using £* and £7;

unfortunately they do not agree on r~(S"~%). Note that
§+|r—1(Sn—-1) = (£+ ° (_ijid) ° _H+
syt e (Gxid)e HY o (H™) ™ o (G xid) o (Gxid)o H ™
=" oho(Gxid)o H™ = ¢~ o(Gxid)o H™ .
By Theorem 9.1, this bundle homotopy can be extended to a bundle homotopy
of r™*(B*). By using the end of this bundle homotopy £~ can be extended to
¢: R— E. Since £* and £ are equivalences, £ is a bundle map by Theorem 6.3

and, hence, by Theorem 10.3 ¢ is an equivalence.

12. An application. Let E and E' be compact ANR’s such that there exist cell-
like maps p: E— §" and ¢: E'— 8"; — i.e. for each xe S", p~*(x) and ¢7'(x)
have the shape of a point [13]. By [10], p and g are approximate fibrations and hence,
by Theorem 3.4, the associated maps p: E— S" and g: E'— 8" are s -ﬁbrationg
As in the proof of Theorem 3.5, the fibres p~(x) and g~'(x) are homotopy equi-
valent to the inverse system consisting of a single point {x0}. Note that y—1(FE {xq})
is the trivial group. By Theorem 11.5, p: E— S" and g: E'— S" are bundle equiv-
alent, The following result is a consequence of Theorem 3.6.

4 — Fundamenta Mathematicae CVI
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TuEoREM 12.1. Let p: E— 8" and q: E' — S" be cell-like mappings of compact
ANR’s onto S™. Then for each £>0 there exist mappings h: E—~E’ and g: E'— E
such that d(qh, p)<e, d(pg, q)<e and the composites hg and gh are homotopic to
the identity.

Theorem 12.1 follows also from [1] and [15] in the case when E = E' = §",
n # 4, ’ .
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The Bing-Borsuk conjecture is stronger than
the Poincaré conjecture

by
W. Jakobsche (Warszawa)

Abstract. It is shown that the existence of a fake 3-cell implies the existence of a 3-di-
mensional homogeneous compact ANR-space which is not a manifold.

We say that the space X is homogeneous, if for every pair of points x, ye X

. there exists a homeomorphism A#: X — X such that h(x) = y. We are concerned

with the following conjecture:

CoNJECTURE 1 (Bing, Borsuk [4]). Every n-dimensional homogeneous compact
ANR-space is an n-dimensional manifold.

In dimensions 1 and 2 this conjecture was proved by Bing and Borsuk in [4].
Here we prove that in dimension 3 Conjecture 1 is stronger than the Poincaré con-
jecture,

CoNsECTURE 2 (Poincaré), Every homotopy 3-sphere is homeomorphic to
a 3-sphere.

By a homotopy 3-sphere we mean a closed 3-dimensional manifold which has
a homotopy type of 3-sphere. We shall use the term fake 3-cell for a compact
contractible 3 -manifold which is not homeomorphic to a 3-cell. Itisknown ([61, p. 26)
that (2) is equivalent to the statement that there are no fake 3-cells, Our main goal
may be formulated as follows:

THEOREM 3. If there exists a fake 3-cell F, then there exists a 3-dimensional
homogeneous compact ANR-space K which is not a manifold.

The proof of Theorem 3 consists of several parts: first we shall construct the
space K (assuming the existence of the fake 3-cell), then we shall prove that
Ke ANR, that K is homogeneous, that K is not a manifold, and finally that
dimK = 3. All the time we shall assume the existence of a fixed fake 3-cell F with
a given triangulation (by [3] F can be triangulated) and with a fixed orientation.
Moreover, we can assume that there exists a homotopy 3-sphere H such that F is
obtained from H by removing from it a single open 3-simplex, in particular that
the boundary OF is equal to the boundary of a 3-simplex (see [6], p. 26).
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