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To begin with put E; = E, 4, = C,(X) and assume that the construction is done
for k = n.

By the condition (i) of Lemma B, Sec. 3 there exists #,,, such that the set
G={lek: fe Ad;.q,,} Is stationary; the set H= G\L(V;) U ...u L))
is also stationary and for every & € H the set Ve\(Vi, U oo U V) = Wy is a neigh-
bourhood of the point p,. Since p,e UﬁX,x for ¢ e H, there exists s(&)<& with

a<

Wen Xy # . The function s: H—» @ is a regressive function with the stationary
domain H and therefore there exist a stationary set I H and an ordinal «e Q
such that Ics™*(z). Thus Wen X, # @ for every ¢ el and, since |X,|<m, there
exist a stationary set E.; =7 and a point gy, € X, such that .1 € Wy whenever
¢ € By . Finally, let A, be an arbitrary ordinal from E,, 1+ We have fy(a4. ) = 1
for &€ Ly q, as Wy Vyand also fy (a4 1) = 0 for i<k, as ey € Vi U UV,
This completes the construction. .

It is now easily verified that the conditions (c,), (c,), (¢;) are fullfield if we put
fi = f;, (indeed, if i>k then A€ B,y and therefore f;(a;) = 1).
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Kan fibrations in the category of
simplicial spaces

by

R. M., Seymour (London)

Abstract, The notion of Kan fibration of simplicial spaces is defined as a direct gznex;ghz—
ation of Kan fibration of simplicial sets. The covering homotopy property for these fibrations

is proved.

Introduction. The category of simplicial spaces Fsee § 1) has tvs{o h?;m:top}:
theories, which might be called, respectively, fcopollo.gxcal and algebrﬁm. The cngf
logical homotopy theory is based on the simplicial space j*, w ised sp;ierac
n-simplices is the unit interval I for each ‘n>0, and whose fa]cne.: an fe;m o ay1
operators are all identity maps. Thus, in ‘thI.S theory‘, two morp 1sn11)s- c} XXp_> o
spaces, f;: X - Y, i = 0, 1, are homotopic if there ‘1s a morphism h. ; - ei
such that, for each n20, F,|{i}x X = fi, for i = 0, 1. On the other . ailh, the fry
braic theory is the natural extension of the u§u.al hor'no.topy theory 1m e qrdeg o
of simplicial sets, and is based on the simplicial unit interval, 4[1], rega

iscrete simplicial space. ‘ o
: d]ST?.l;: (i)rséijllzllix1 [3],p11.9 and 11.10, that geom.etric reali_zatlon_ of sxmpixcnal fﬁ:g:; .
preserves both kinds of homotopies. Thus, in using tc'chm.ques. 1%1 homo opyld oy
which obtain results about spaces by first wor}<i11g with .snnpllcml spgceslzi | then
realizing (techniques which have beem much in vogue in lrec_ent yc:ils;e Sil f 13:; g
connection with infinite loop spaces), it is possible'to work with e%th;r ct) he st Eallcd
homotopy theories, whichever is the more convenient. The use ?I‘ w ?3 ]wHowever oy
the topological theory, has been fairly wides?read, for exampf} in th”;t o algel;raic
analogy with the category of simpliciz;l se'ts‘:l, it seems to the author tha '
homotopy theory should prove much richer. .

Thc? purpose of the present paper is to 'exteTxc'l some of t‘he Ziticular o fon
have been developed for simplicial sets, to simplicial spaces, Am p e fopo.
of Kan fibration. The corresponding notion of fibration 'Wlthg; resplezc o e
logical simplicial homotopy theory has been developed in [3], § 12,

5 — Fundamenta Mathematicae CVI

sic notions which
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called a simplicial Hurewicz fibration. In § 1 we give some preliminary topological
considerations about function spaces. In § 2 we define our notion of Kan fibration
via the notion of a lifting function. This is a direct and rather obvious generalization
of the usual notion of Kan fibration in the category of simplicial sets. In § 3 we
provide examples by showing that there is a “topological singular complex” functor,
adjoint to geometric realization, which sends. Hurewicz fibrations to Kan fibrations
in our sense. This parallels the discrete case in which the usual, discrete, singular
complex functor sends Serre fibrations to Kan fibrations in the category of simplicial
sets. In § 4 we prove our main theorem, which is that our Kan fibrations have the
covering homotopy property with respect to algebraic homotopies of simplicial
spaces. We have tried, as far as possible, to model our proof on the elegant method
of [1], chapter IV, § 2. However, the method used there, of comparing certain
classes of morphisms obtained from basic morphisms by a prescribed list of oper-
ations, does not carry over in a straightforward manner, primarily because the listed
operations are not strong enough to pick up anything other than a discrete topology.
The method we use, in fact, is something of a hybrid between the function space
method of [4] (see Corollary 7.12 to Theorem 7.8), and the method of [1]."

In this paper we are concerned, by proving the covering homotopy theorem, to
show that our notion of Kan fibration is the correct notion of fibration of simplicial
spaces for the algebraic simplicial homotopy theory. Elsewhere, we hope to discuss
these ideas in relation to geometric realization.

§ 1. Function spaces of simplicial spaces. Let ¢ denote the category of compactly
generated, weak Hausdorff spaces, with continuous maps as morphisms ([7]). It is
well known that this category has a product, namely the cartesian product with the
compactly generated topology associated with the product topology. Also, if
X, Y& %, then the function space, ¥* = Homg(X, ¥) with the compactly gencrated
topology associated to the compact open topology, is again in . With these top-
ologies understood, we have a law of exponential correspondence in &, namely, the
natural maps: :

Homy(X'x Y, Z) = Hom¢(X, Homg(Y, Z))
are inverse homeomorphisms ([7], Theorem 5.6). This implies that a function,
- . . ; . % 1] .
fi X—Z7%, is continuous if and only if the composite Xx Y — Z¥x ¥ — Z is
continuous, where E is the evaluation map.

As usual, we denote by 4* the simplicial category (see [4], p. 4; also [1], p. 23,
where the category is called 4). Let % denote the category of simplicial objects
. in @ (simplicial spaces) with simplicial maps as morphisms. Define a functor,
Homga(-, .): 44x%*— %, as follows. As a set, Homga(X, ¥) consits of all

morphisms: X — ¥ in %“. The topology on Homg.(X, Y) is the subspace topology
arising from the natural inclusion:

Homgu(X, Y)<= [] Home(X,, ¥,)
nz0

icm®
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given by f + [] f,. Here, TT denotes the product in %. As an immediate consequence
nz0

of this, we have:
1.1. PROPOSITION. A function f: Z — Homqa(X, X) is continuous if and only
ixf ) En i
if the composites: X,xZ ~ X,xHomga(X, Y) — Y,, are continuous for each
n20, where E, is the evaluation map, E,(x,f) = f,(x).

Let 4 [n] denote the standard simplicial #-simplex ([1], p. 25; [4], p. 14), regardec}
as a simplicial space with the discrete topology. We define function spaces in %
as follows. If X and Y are simplicial spaces, Y* is the simplicial space given by:

(Y%, = Homga(4[n]x X, ¥)

and, if 0: [n]~ [m] is a morphism in 4%, 0*: (¥*), — (¥¥), is the map induced
in the obvious way.
1.2. PROPOSITION. For X, Y,Z & %%, there is a natural exponential homeo-
morphism:
Homea(X % Y, Z) = Homga(X, zY.

Proof. Define 0: Homga(X x ¥, Z) — Homea(X, zZ" by: B(f),,(x)(A,J'z)
= fuA*(x), y), for x€ X,, y& Y,, and 1 € 4[n],. Applications of 1.1 show that 6 is

well defined and continuous. '
Define ¢: Homqa(X, Z") — Homea(Xx ¥, Z) by: @(g)(x; ») = 6:(0)lEn, ),
where g: X —Z¥ in 4%, xe X,, ye ¥, and i, 4[n], is the fu11§ame11ta1 simplex.
Again, applications of 1.1 show that ¢ is well defined and continuous.
It is clear that @@ = 1. That ¢ = 1 follows as below:

00 (D@, ) = @A), 3) = S A*C))nllms 3) -
Now, since f: X— Z¥ is a simplicial map, f,(A*(x)) = A¥(f(x)). Thus, since
2 (ZY), — (Z)n s given by, (), ) = kG, y) for he (Zy, (u, y) e A[m]x T,
we have .

00 (), 3) = £ ) (A, )

and hence 0¢ = 1, as required. B
1.3. COROLLARY. Let X, Y,Ze®* and f: X — Z¥ be a simplicial. function.
3. LLARY. . Y, z mplic '

Then f is continuous if and only if the composite: XX Y = Z¥xY > Zy is co();ttmuO;&

where ¢ is the evaluation map given by: &g, ¥) = guly, V) for g € (z ),,.cm ye Y,
Proof. a(fx 1) = @(f), where ¢ is the homeomorphism defined in the proof

of 1.2. . .
1.4. COROLLARY. For any X e %*, evaluation at. the Sundamental simplex is

a homeomorphism, €,: Homga(4[n], X)— X,. o
Proof. The identity on X“° is continuous, hence, by 1.3, so 15 &:

x 4[0] = X; i.e. &, is continuous for each n>=0.

Bk

x40y
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Let 6: X — X“I% be the map given by: 5(x)(1) = A*(x) for xe X, Ae A[n].
Then, if ¢: X'x A[0] — X is the projection, § = 0(c), where 0 is the homeomorphism
defined in the proof of 1.2. Thus, § is continuous. It is now straightforward to check
that ¢ and & are inverse homeomorphisms.

§ 2. Lifting functions and Kan fibrations in 4% Let p: E— B and gq: X~ ¥
be morphisms in “. Let py: Homya(~, E) — Homga(-, B) and ¢*: Homga(¥, _)
— Homea(X, ) be the induced maps, and I'(p) be the pullback in € in the
diagram:

I'(p)—— Homyu(X, E)
“‘Jr a* ‘1’17*
Homga(Y, B)~>Homga(X, B)

Clearly there is a unique map = = 7,(p): Homga(Y, E) — I',(p) such that un = p,
and vn = g* We say that ¢ admits a lifting function with respect to p, if there is
a map A: I'(p) — Homga(Y, E) such that mA = 1. Below we give some basic
properties of lifting functions.

2.1. PROPOSITION. (i) Let

X>x
4\1’ u J/q'
Y=Y

be a pushout diagram in 4. Suppose q admits a lifting function with respect to a mor-
phism, p. Then q' admits a lifting function with respect to p-
(ii) Lez
" v

X=Y »>X

ve An e

X/ -~ Y/ _+ XI
be a retraction diagram in °*; that is, v'v’ = 1 andvu = 1. T} hen, if'n admits a lifting
Junction with respect to p, so does ¢&.

(iii) Let {g,: X, — Y.} be a family of morphisms in @4, each of which admits
a lifting function with respect to p. Then 1 ¢.: x,— 11 7, admits a lifting function

o o o
with respect to p.

(v) Let &: X— Y and n: Y— Z be morphisms in €4, each of which admits
a lifting function with respect to p. Then n&: X—Z admits a lifting function with
respect to p.

SV) More generally, if g,: X, — X,.,, n=1, is a direct system of morphisms
in €°, each of which admits a lifting function with respect to p, then the inclusion,
q: Xy —1mX,, admits a lifting function with respect to p.

n
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(vi) Each of the claimed lifting functions in (i) to (v) is natural in the Sollowing
sense. Given a morphism between a situation of the prescribed type and another one of
the same type such that the maps induced by the morphism preserve the given lifting
functions, then the maps induced by the morphism preserve the constructed lifting
Sfunctions.

Proof. (i) Let A be the lifting function for ¢. Let (f, F) e I'y(p), so that
pf = q'F. Define Az I'y(p) — Homga(Y’, E) by: A'(f, F): Y'— E is the unique
morphisms satisfying, A'(f, F)q¢’ = f and X(f, F)u' = A(fu, F'). An application
of 1.1 shows that A’ is continuous, and it is clearly a lifting function for ¢'.

(i) Let 4, be the lifting function for #. Suppose (f, F) € I'(p), so that pf = F.
Define Ayt I'y(p) = Homga(X', E) by: A f, F) = w*A,(fo, Fv'). Again, by 1.1,
Ag is continuous, and is clearly the required lifting function.

(fii) A lifting function for ] g, is given by [] A,, where 4, is a lifting function

o 1

for q,.
(iv) Let Ay, 4, be lifting functions for ¢ and #, respectively. Define A,z Ie(p)
— Homga(Z, E) by: A, (f, F) = 3,(A(f, Fy), F). Again, it is easy to check that
this gives the required lifting function.
) Letj, = ¢ueqqyen - q1: Xj - X,. Thus, ¢ = lim j,. By induction from (iv),
n

there are lifting functions, A,, for j, with respect to p. Further, it is clear from the
construction of (iv), that we have commutative diagrams:

@n~1)*

Iy, () ————>TI,_,(p)

An i[?m—;.
(gn-1)*

HOH]WA(X;H E) — Honl‘ﬁ"‘(-Xr -1 E)

Let i,: X, — lim X, be the inclusion (so that g = iy). Define a lifting function, 4,
n L.
for g by: A(S, F) = limA,(f, Fi,). Again, by an application of L1, it is easy to see

n

that A is the required lifting function.

(i) Each of the above constructions is obviously natural in the stated sense.

Let 8¢ [n—~1]— [n] be the monomorphism in 4* whose image is [n]—{k},
and define 4%[n] to be the subcomplex of A[n] whose m-simplices are those mor-
phisms in 4%, A: [m]— [n], whose image does not contain the image of dy. Ijet
iy: 4%[n] — A[n] be the inclusion. We shall say that p: E— B is a Kan fibration
in %4 if, for each n and k, 0<k<n, i, admits a lifting function with respect tP p.
A simplicial space X is a Kan object in @4 if and only if the cons.tant morphism,
¢: X— 4[0], is a Kan fibration. The following are trivial to verify.

2.2. Basic prOPERTIES. (i) The composite of Kan fibrations in %4 is a I§an
fibration in @4, Hence, if p: E— B is a Kan fibration in ¢ and B is a Kan object
in %4, then E is a Kan object in %
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(i) If
E'—»E
" N4
B’ —>B
is a pullback diagram in %4, and p is a Kan fibration in %, then so is p'.
(i) Let E and B be discrete simplicial spaces. Then p: E — B is a Kan fibra-
tion in ¥4 if and only if it is a Kan fibration in the category of simplicial sets (see [1],
p. 65; [4], 25).

§ 3. An example: The topological singular complex functor. Let 4" be the standard
topological n-simplex. For a space X, define SX by: S, X = Homg(4", X) = X%,
with face and degeneracy operators induced from the usual operations on 4", Clearly,
S extends to a functor, S: @ — %4 Let | [: 4% — % denote the geometric realiza-
tion functor. We have an adjunction isomorphism:

3
Homga(A4, SX) Z Homg(l4], X)
¥
given, as usual, by:
S(f)(wu,a) = f(a)(w) for ac 4,, ue 4" and /1 4— SX,
(@) (@) @) = g(u,a) for ae A,, ue4” and g: |4| — X .

By the exponential correspondence theorem in 4 (see § 1), we see that & is continuous,
and, by an application of 1.1, ¥ is also seen to be continuous. Thus, ® and ¥ are
inverse homeomorphisms. Let 74: A — S|A4| and &y: |SX| — X be the unit and
counit morphisms defined by the above adjunction.

3.1. PROPOSITION. For any Xe ¥, ex: |SX|— X is a homotopy equivalence,

Proof. Let X, e %4 be the simplicial space whose space of n-simplices is X
for each #3>0, and whose face and degeneracy maps are all identity maps. It is easy
to see that the inclusion of the space of 0-simplices, X< |X,|, is a homeomorphism.
Thus we have the unit map, ny,: Xy — SX. Define v,: S,X— X by: v,(f)
=f(1/(n+1), ..., I/(n+1)). Then we have, Vlx, = ly and, for fe S, X, nyv,(f)
is the singular n-simplex given by: nx w,(f)W) = f(1/(n+1), ..., 1/(n+1)) for all
ued®. Let u(f)ed" be the point, u(t) = a+(1—-0)(1/(n+1),..., 1/(n+1)) for
0<r<l. Then h: IXS,X— S, X given by h(f)u) = f(u(t)), is a homotopy
between #x, v, and 1g,y. Thus fx, is a simplicial map which is a homotopy equiv-
alence in each dimension. Now, it is clear that ¥, and SX are proper in the sense
of [3], Definition 11.2, p. 102, and hence, by [5], Theorem A.4 (i), appendix,
lnx,]: X = |X,l— |SX] is a homotopy equivalence. Finally, by adjointness, the
composite:

I £1X4l

1 Xl —>[IS] Xy | =] X,,|

is the identity map. Hence, gy = €|x,| is 2 homotopy equivalence,

icm
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3.2. PrOPOSITION, Let p: E— B be amap in €. Then p is a Hurewicz fibration
if and only if Sp: SE— SB is a Kan fibration in @4, Hence, S maps € into the full
subcategory of %% whose objects are the Kan objects.

Proof. Let IT(p) = {(¢, w) e Ex BY p(e) = w(0)}, and {: E'—1II(p) be the
map, {(®) = (w(0), pw). Recall, [6], Theorem 8, p. 92, that p is a Hurewicz fibra-
tion il and only if p admits a lifting function; that is, if and only if there is a map
A: IT(p)— E* such that ¢{A = 1. Given such a A, define, for each n31,
Ay (M) = E™ by 40, 00ty oyt s) = AUty oo 1), @)(ty41), Where o B
is the path, a(f) = v(t)(ty, <, &), v € (B™) and ue E™. Then 1, is a lifting function
for p": E™ -+ B™. Thus, it follows that p isa Hurewicz fibration if and only if p""
is for each n30, if and only if p™" admits a lifting function for each n>0.

Choose a fixed homeomorphism, f,: {4 [n]| —1" such that 4 (4*[n]) = I"~*x {0}.
Then h, induces homeomorphisms, via the adjunction defined above:

Homga(d[n], SX) = Homy(I", X) = X*"; Homea(4"n], SX) = X", under
which the map (@i)*: Homga(d[n], SX)— Homga(4*[n], SX) induced by 'the
inclusion, 4%[n]< 4[], corresponds to the map X™ — X*™* induced by the inclu-
sion, 7"~*x {0}=I". These homeomorphisms induce a homeomorphism of pull-
backs, I',(Sp) = [1(p""™"), where I',(Sp)is defined as in §2. Further, we have
a commutative diagram:

I, (Sp) = (p™)
£ in
Homya(d[n], SE) & E"

where 7, and {, are the canonical inclusions. Thus, p admits a lifting function if and
only if Sp does. .

3.3. Remark. As a further example of a Kan fibration in @*, we offer the
following. Recall from [2], § 7, that, if G is a topological group, X a left G-space
and Y a right G-space, then we may form a simplicial space, B4«(Y, G, X), the so-
called 2-sided geometric bar construction. If , denotes a points, and p: B(Y,G, X)
— B(Y, G, *) is the simplicial map induced by the projection X — {}, then it is
easy to show that p, is a Kan fibration in %4, In particular, taking ¥'=* X = G
with left G-action given by multiplication, py is the universal fibration for G in #4;
its geometric realization is a universal principal G-bundle. We should note, however,
that, if group is replaced by monoid in the above, then p, need not be a Kan fibra-
tion in @4,

§ 4. The covering homotopy property. In this section we shall prove the following
theorem, )

4.1, TuroreM. Let p: E - B be a Kan fibration in @2 and K any simplicial space.
Then, p*: EX — B* is a Kan fibration in % .

As an immediate consequence of this theorem, we deduce that the following
covering homotopy theorem holds in @
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4.2. THEOREM. Let p: E— B be a Kan fibration in €%, and let i: 4[0]— 4 [1]
be the morphism induced by 8y [0]— [1]. Then, given any commutative diagram
in 4.

f
4[0]x K~ E

eyl
ey Fl"
A[l]x K-> B

there is a lifting, F: A[1]x K — E, which makes the diagram commute.

To prove Theorem 4.1, we shall first prove the theorem for K = 4[gq]. More
than that, we shall show that lifting functions can be chosen for p““ which are
natural with respect to morphisms [¢'] — [g] in 4%, This is done in Lemma 4.3 and
Proposition 4.4 below, and constitutes the main step in the proof of Theorem 4.1.
Finally, we show how Theorem 4.1 follows from this.

4.3. LemMA. Let X and Y be simplicial sets (i.e. discrete simplicial spaces),
U< X and V<Y subcomplexes. Consider the maps:

h: A[1]lxUu A[0]x X — A[1]1x X,
ki A[1Ix VU A[0]x Y — A[1]x ¥

induced by i: A[0]— A[1]. Let Z,(X, U) be the set of non-degencrate. n-simplices
of X which do not belong to U, and let &((X, U); (¥, V)) denote the set of mor-
phisms, f: (X, U)— (Y, V), in €4 such that T ZLX, DS ELY, V) for each nz0.
Then, if p: E~ B is a Kan fibration in €, there are lifting functions with respect

to p, Ax for h and Jy for k, such that the following diagram commutes Jor all
Fe& (X, U); (Y, V) \

Al
I'(p) *};Homm(d [l1x X, E)
f“T ) Tft

iy
I'(p) —Homya(4[1]x Y, E)

Prgof. Consider the inclusions, g,: 4[1]x 4[n] U 4 [0]x A[n] — 4[1]x 4[n]
where 4[n] is the boundary of A[n] ([1], p. 29). We first observe that, as in [1],
Chapter IV, 2.1.1, p. 61, these inclusions are obtained from the inclusion
A¥n] < 4[n] via the operations listed in Proposition 2.1 above. It therefore follows
from Proposition 2.1, that there are lifting functions for ¢, with respect to p for
each nx0.

Let Sk"X denote the n-skeleton of X ([1], 3.5, p- 29). As in [1], Fig. 31, p. 62,
we have a pushout diagram of simplicial sets:

L, @ A0, o 410] T Aln]) — A[1x (U L Sk"™1X) U A[0] x X
7emntd 1I an(o)
a ! 1n(X,0)

I (Allled[n]g)*A[I]X(Uu Sk"X) u 4[0]x X

aeZn(X,U):

icm
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where A[n], = 4[n], 4,(0) = qu for each o, i,(X, U) is induced by the inclusion
Sk"~! ¥<Sk"X and the horizontal arrows are induced by the singular simplices,
¢: Aln], — X. We also have a similar pushout diagram for (¥, ¥). Further, if
fe #((X, U); (Y, V), then f, maps Z,(X, U) to %,(¥, ¥), and hence induces a map
between the two pushout diagrams, since f& = f,(0) for each o & 2,(X, U). It now
follows from Proposition 2.1(i), (iii) and (vi), that the lifting functions for the g,
induce lifting functions, A% for i,(X, U)and A" for 1,(¥, V), with respect to p such
that the following diagram commutes for all fe &#((X, U); (¥, V)):

X,0)

A

I x0(P) ——> Homga(A[1] x (U U SK"X) U 4[0]% X, E)
g A

Ty 0r,m(p) —> Homga(4[1]x (¥ © Sk” Y)u d[0]x ¥, E)

Now A[l]xX = im(4[1]x(U v Sk"X) U 4[0]x X). It therefore follows
n

from Proposition 2.1(v) and (vi), that there are lifting functions, Ay for h and iy
for %, with respect to p, with the stated naturality property with respect to mor-
phisms in &((X, U); (¥, V).

4.4, PROPOSITION. Let p: E —» B be a Kan fibration in 4* and i,: 4*[n]— A[n]
be the inclusion. Then, for each q>0, there are lifting functions, 23, for

iyx1: 4 n]x A[g]— 4[n]x 4[q] ~
such that, if 0: [q')—> [g] is any morphism in A*, the Sfollowing diagram commutes:
a '
Fi,g(PA[q]) = I« 1(p) > Homga(d [n] x 4[q], E)
Jon ; ox
al )
Iy (p™) = Ty x1(p) — Homga(d[n] x 41g], E)

Proof. Let X = A[n]x 4[g'], U = AMnlxA[g'], Y = Aln]x Algl, V = A"[n']x
xAlql, Z = A[n]x4[q'1x A[g] and W = A[n] x A[g'] x 41q]. Define a morph.ls’m
of pairs, ! (X, U)— (Z, W), by o(h, i) = (4, p, 6p) for (A, ) e 4[n]x4[q')
We assert that «, maps IZ(X,U) to Z.(Z, W) kfor each rz0. Now
5(X, U) = Z(Z, W) = @ for r<n, since, in this range, 4'[n], = 4[n],. So suppose
r=n, then:

X, U) = {4y wlA: [r]1— [n], p2 [ = [¢'], ImA>Imd, -

and either A or p is a monomorphismy} ,

I(Z, W) = {(A, g, W22 [P = [nd, i 01— [g') vi [T [g), .
ImA>Imd, and at least one of 4, 1, v is a monomorphism} .

If (A, We 5(X, U), then it is now clear that ag(h, 1) = (4, u, 0) € Z‘,(Zlffz),
which proves our assertion. It now follows from Lemma 4.3 that tthre are Ii n; g
functions with respect to p for iz A[11x Uw 4[0]x A — A[1]% Xi_llld k: ./1 [1’] X [ \]J
w A[0] xZ'— A[1]x Z which are natural with respect to morphisms 8: [g']— lg]-
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Now, from [1], 2.1.3, p. 63, there is a retraction diagram:

AMn] - A[L] x 4n] U A[0] x A[n] > A¥[n]
‘k\l’ u ‘L‘ v wk
Aln] -~ A[1]x A[n] ——>4[n]

" Hence, taking the product with 4[¢’] and with A[g’1x4[g], we obtain that
iyx1: U— Xis a retract of £ and jix 1x 1: W Z is a retract of k. Further, any
morphism 0: [¢']— [g] in 4%, induces a morphism of retraction diagrams which
preserves the lifting functions for 4 and k. Hence, by Proposition 2.1(ii) and (vi)f
that there are lifting functions, 43 for 4 x 11 U~ X and AL for i, x I x 1: W2,
which are natural with respect to morphisms 0: [¢'] — [¢] in 4%,

Let Ay be the element of A[g’], whose image is {0}. Define y: ¥ Z by:
y(A,v) = (4, 4, V) for (,v) e A[n]x A[q]. We have a retraction diagram:

VoW V
kalJ/ ‘V"xj'tl \Lthl
Y
Y>Z——>Y

where & is the projection. It follows from Proposition 2.1(ii) that the lifting function
A% defined above, induces a lifting function, I, for #,x 1. Further, from the con-
struction of this lifting function in the proof of Proposition 2.1(ii), it is clear that the
following diagram commutes:
gy
Tiyx1(p) —>Homga(d [n] x 4[4], E)
e (s
at :
Q) Tyex 1x1(p) —=>Homga(d[n] x 4[q']x 41q], E)
. a*’r Vraﬁl
g
Tiyx1(p) —>Homea(4[n] x 4[q], E)
We shall show that 7 = A{, the lifting function for irx 1 constructed previously.
From this, and the diagram (x), it follows that AI*3* = 6*2%. Heonce, since
Oog = 1x0: A[n]xdlq')— Aln]x4[q], we have, for any 0: [¢']~ [q], 0*AL
= oy 0% AL = af M15* = 24 ¥ 5%, since we have shown that A and 29 are natural
with respect to morphisms 0: [¢']— [¢]. Thus, we conclude that 0% ¢ = M 0¥,
which will prove the proposition.

It remains to show that 7{ = Af. To do this, it is clearly sufficient to show that
Aiy* = y*21% For, since y* is an epimorphism the result follows from the dia-
gram (x). We first observe that, for each r>0, y maps S(Y, V) to X(Z, W). It
now follows from Lemma 4.3 that there are lifting functions for k: A[l]x Wy
©AQ]xZ— A[1]xZ and 1: A[1x ¥ U A[0]x Y— 4[I]x ¥ which arc natural
with respect to-y. Now, as above, hx1x1: W—Zand ix1: ¥~ ¥ are natural
retr'acts of k and 1, respectively. Further, 4 induces a map of retraction diagrams
which preserves the lifting functions for k and 1. Hence, by Proposition 2.1(ii)
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and (vi), there are lifting functions for i, x1x 1'and i,x 1 which are natural wi'th
respect to 9. But, by construction, these lifting functions are precisely Af and A",
respectively. This completes the proof of Proposition 4.4.

The proof of Theorem 4.1. Let 4, K and X be simplicial spaces. Define an
evaluation map, &,: K,x Homea(4d X K, X) — IonmW(A x 4[q], X) by

ek, f)(a, ) = f(a, A())

Applying 1.1 we see that g, is continuous. Further, it is easy to check that e, is natural
with respect to morphisms 0: [¢']— [g] in 4% ‘ :

Define a lifting function Jg: I”,k(p")—-»Homw(A [n]x K, E), as follows. Let
(f,Fe I",,c(p")gﬂomw(A"[n] x K, E)x Homga(d [n]x K, B) and suppose (4, k)
€ 4[n], x K,, then

LA B R) = ek, 1), eglle, F) (s i)
where A¢ is the lifting function of Proposition 4.4, and i, € 4[q), is the fundamental
simplex. We must check the following:
(i) A% is well defined; that is, for each (f, F) e I',(p"), IX(f, F) is actually

a morphism in @A,

(i) A¥ is continuous. ‘

(iii) If mX: Homega(4 [n]x X, E)— I',(p¥) is the natural map, then fr,:‘l,'f =1,
so that AX is indeed a lifting function for i, with respect to p*.

@) A(f, F), is continuous, since it is the composite of the following continuous

maps:
Allyx Ky 2L 4 ], % Ky x Homga(4n] x K, E) x Kyx Homya(d [n] < K, B)
X, ATn],x Homya(4'n] x A1q), E) x Homya(4[n] x Alg], B)

C 1xaf
Alnly% Ty (p™H —>

A [n], x Bomga(4 [n]x4[q], E)—~>E, - .
where a(f, F) is the map, af, F)4,k) = (4, k,f, k, F), and & is evaluation

at i,e 4[q],. N /
It remains to show that AX(f, F) is a simplicial map. Suppose 0: [g'1— 4]

is a morphism in 4* and that (A, k) € 4[n];x K, then:
X (f, F)YO¥1Q, B) = 25 (f, F)(A0, 0* (k) '
= 20 (e (0% (), f), £ 0% (), F)) (46, 1)
= 28 (0% 2,0k, f), 0% ek, F)(A0, i)

since the &, are natural with respect to morphisms . Now, by the naturality state-

ment of Proposition 4.4, we have: .
M (0% ey, [, 0%k, F)(18, ip) = [0* eyl 1)s 8,0k, N8, i)
= M(e, k. 1), gk, F))(9, 6)
= 0*[2(e . 1), 8l F)) (s ig)]
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since A(e,(k, 1), g,(k, F)) is a simplicial map. Thus, combining the above, we have
that A{(f, F)0* = 0*AX(f, F), showing that AX(f, F) is a morphism in %4,

(i) That Af is continuous follows easily by applying Proposition 1.1 and using
the fact that A} and e, are continuous.

(iii) Let (f,F)el(p"). Then, miA&(f,F) = (GI*CRCS F)), XS, F)
where (4)*: Homga(4[n] x K, E) — Homea(4*[n] x K, E) and

P« Homya(4[n]x K, E) — Homga(4 [n] x K, B)

are the maps induced by #,: 4*[n] — 4 [n] and p: E— B, respectively.
Now, for (4, k) e 4[], x K,, we have:

S PGy B) = 2y, 1), 24k, FY) (B i) = ek, £)(Ay )

since Af is a lift.ing function for 4, x 1: 4*[n]x A[g] — 4 [n]x 4 [g] with respect to p.
But, by definition of ¢, ¢, (k, £)(A, i) = f(4, k). Hence, (z‘k)*(/l,’f( Sy F)) =f.
Again, we have

Pde(f, DY, 1) = p(Ai(e,k, 1), e, )M, 1) = ek, F)(A

since A{ is a lifting function. Hence. P2 f, F) = F. This proves (iif) 0 com-
pletes the proof of Theorem 4.1.
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