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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIK

Weakly chainable circle-like continua
by

Gary A. Feuerbacher (Houston, Tex.)

Abstract. This paper investigates the problem of ascertaining which circle-like continua are
continuous images of chainable continua. {n the second section, the notion of the “revolving number™
of a map from S* onto S is introduced and used to classify the planar, non-chainable, circle-like
continua by structure: “self-entwined” (a concept introduced in Section 2); decomposable;
indecomposable, non-self-entwined. The main theorem in Section 3 is a characterization of weakly
chainable circle-like continua; the classification scheme of Section 2 is used to prove this result.

Section 1. Suppose that for each positive integer i, X; is a compact metric space
and f{*1 is a map from X, onto X;. Let M be the subset of the Cartesian product

space H X, consmtmg of the set of all sequences p such that for each i, p; is in X;
and f;, Y(pix1) = p;. Then M, with the relative topology from H X;, is called

the inverse limit of the inverse system (X;,fi*%), and denoted Lun(Xi, Y. 1f
m>n, £™ will denote the composition of the maps /"%, f t2, ..., fm_1; f™ will
denote the identity function on X,,. For each positive integer 7, PR; will denote the
natural projection of M onto X;.

DEFINITION (see [7]). Suppose each of 4 and B is a metric space and each of u
and v is a map from 4 into B. Suppose ¢>0. The statement that u = v means that
for each point x in 4, disty(u(x), v(x))<c.

The following theorem, a corollary to Theorem 3 of [7], will be used several
times:

THEOREM A. Let M = Lim(X,, fi*Y) and K = Lim(Y;, git%). Suppose e is

a decreasing sequence of positive numbers with sequential limit Q. Suppose h is a sequence
of maps such that
(1) for each positive integer i, hy; is a map from Y, onto X,; and hyyy is a map
Sfrom X,,_( onto Yy;_;
(2) for each triple (i, ], k) of positive integers with i<j and k<2i—1,
it haiey °fzzii:11 = g%j_] o hypy
e2im1
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and
2i-1 242 o 2j-2,
AN PYRVILY Sy Y e;;‘gk >

(3) for each triple (i, ], k) of positive integers with i<j and k<2i,

2i 2 2
i ohye gz{ eT{fkj" haj
and

21 2j-1 — F2-1
i ohgiogai™ o hyyy B—fkj .
21

Then M is homeomorphic to K. In case X; = Y, and h, is the identity map for each i,
it suffices that for each ordered triple (i, J, k) of positive integers with k<i<j,

giofiz ol and fiogl=fi
Jfor M to be homeomorphic to K. '

Section 2. In [1], Bing characterized the class of non-planar circle-like continua,
and in [3], Ingram characterized the chainable circle-like continua. In this chapter,
the class of non-chainable, planar, circle-like continua is subdivided into three
subclasses: the decomposable; the self-entwined (a concept to be introduced in this
chapter); the indecomposable, non-self-entwined. This classification scheme is used
to prove the main result of Section 3.

The “circle”, S, is the unit circle on the complex plane. If P and Q are two
non-antipodal points of the circle, and L the length (in the usual metric) of the minor
arc between them, then the distance from P to @, denoted |P— 0], is defined as
Lf2n. The distance between antipodal points is 1. The “wrapping function”, de-
noted ¢, is the map from the real line onto S which sends the number x to e2*,
Let S* be oriented so that o is order-preserving, If 4 and Bare points of S*, then
the arc {4, B] of S is the @-image of an interval [a, b, b—a<1, with p(@) = 4
and @(b) = B. If C is a point of S, then we. write A<C<B in case there is
a number ¢, a<c<b, with () = C. . )

The next two definitions are modifications of concepts developed by T. T. Rogers
in [9], approached here from a homotopy-theoretic rather than combinatorial point
of view.

Suppose f is a map from S* onto S, and degf>0.

DermviTION. Suppose T' is an arc in S, Let u be a lift of fIT, i.e., u is a map
from T into the real line, and f|T = ¢ o 4. Then deg(T, f) is defined as diamu(7);
this number is independent of which lift map is taken.

In case deg(T,f) is an integer, deg(T,f) is the number of times the arc T is
“wrapped around” the circle by f.

Using the uniform continuity of f, one establishes

LemMma 1. Suppose D is the number set to which a number r belongs if and only
if there is an arc Q in S* such that r = deg(Q.,f). Then D is bounded above.
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DerNITION. Suppose D is as in the hypothesis of Lemma 1. The revolving
number of f, denoted R(f), is supD. :

LEMMA 2. Suppose P and Q are points of S*. Let T be a point sequence with each
value in the interior of the arc [Q,P], and T converges to P. Let u be a sequence of
maps such that for each positive integer i, u; is a lift of f | [P, T3], andu,(P) = u;(P) = Z.
Then Limu (T,) = Z+degf.

i~roo
Proof. Suppose deg f = n. Let v be a lift of f/I". Then f = I"™ (¢ o v). Let m be
a positive integer such that |T,~P|<%. Let & = ¢ Y|[P, T,]. Then

@ty =[P, T,] = ¢ o (nh+1),
and ’
4u111(Tm)—um(P) = nh(Tm)+v(T,,,)-nh(P)——v(P)
= "(1 —-IP—-TmD‘FU(T,,‘)—O(P) .

Since T—P and v(T)—v(P), u(T)—u,(P)+n = Z+n.

Lemma 2 yields immediately R(f)>degf.

DEFINITION. If 4 is an arc in S, and ¢ is a lift of f|A4, then there is a subarc B
of A4 such that the map ¢ sends the endpoints of B to the endpoints of the inter-
val #(4). An arc with this property of B will be called zype 1.

LevMa 3. If R(f) > degf, then there is an arc D in S* such that deg(D,f)= R(f).

Proof. Let A be a sequence of arcs in S* such that (1) each value of 4 is of
type 1; (2) for each i, deg(A4;, f)<deg(d;.1,f); (3) deg(4,sf) converges to R(f);
(4) letting A4, = [P, O,], the point sequence P converges to a point ¢, and Q con-
verges to a point d. Let L be the limiting set of 4. Then L is the arc [¢, d], and
deg(L,f) = R(S). o ‘

DerNITION. Xf Pis an arcin 81, P is of type 1, and deg(P, /) = R(f), then Pis
called a defining arc for R(f).

LEMMA 4. Suppose each of f and g is a map from St into S*; deg f = degg = 1;
+>e>0; d is a positive number such that if |x—yl<d, then |g(x)—g(¥)|<e;
R(f)>2—d. Then R(g o f)>2—e.

Proof. Suppose 4 is a defining arc for R(f), and that R(f)>2. Suppose B is
a subarc of A4, with deg(B,f) = 2. Then f wraps B twice around S*. Lemma 2
yields R(g o f)=2. Appealing to the uniform continuity of g and to the local isometry
of ¢ yields Lemma 4.

Using the results of Ingram in [3] and .of McCord (page 29 of [6]), we have

THEOREM B. If C is a circle-like continuum, then C is planar and nonchainable if
and only if C is homeomorphic to Lim(X,,fi*Y), in which each X, is S*, and
degfit =1 for each i.

Notation. “p.n.c.c.l.” will mean “planar, non-chainable, circle-like”.

We are ready to prove the main result of this section.
1>
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DerNiTION. Suppose M is a p.n.c.c.l. continuum as in Theorem B. Then M is
said to be in class 1 if, for each positive integer i, there exists a number Z » 1<Z,<2,
such that for each positive integer j, R(f7")<Z,. We say that M is in class 2 if
for each 7, and each number y, 1<y <2, there is j such that R( SEYH > Similarly,
M is in class A if, for each i, there exists Z;, 1<Z,<3, such that for each positive
integer j, R(f{*)<Z,; also, M is in class B if for each i, and each y, 1<y <3,
there is j such that R(f}+)>y.

THEOREM 1. Suppose M is a p.n.c.c.l. contimium. Then either M is a member
of class 2 or M is homeomorphic to a member of class 1. Furthermore, either M is
a member of class B or M is homeomorphic to a member of class A.

Proof. Let M = Lim(X;, f{**) as in Theorem B. Suppose M is not in class 2.

Then there is a number Z, 1<Z<2, and there is a positive integer i such that for
each j, R(f;*1)<Z. Let D be the set of all ordered pairs (p, y) such that p is a posi-
tive integer, y is a number, 1<y<2, and for each positive integer j, R( f_‘}"”) <).

Case (1). The domain of the relation D is bounded. Let K be the greatest element
in the domain of D, and let (K, #) be an element of D. Let e — min(}, 2—1).
Since K+1 is not in the domain of D, by Lemma 4 there is an integer n such that
R(fD) = R(fE+ o fR+1)>2—e>1, a contradiction.

Case (2). The domain of D is not bounded. Let (ny, 1y, n3, ...) be an increasing
sequence of positive integers whose range is the domain of D, Let h be a function
whose domain is the domain of D, and % is a subset of D. Let C = Lim(X,,, fm*".

Then Cisin class 1. For: ifiis a positive integer, then /(n,) is a number, 1 <h(n) <2,
such that for each j, R( ot <h(n;). We have M homeomorphic to C. The second
assertion of Theorem 1 is proved similarly.

From now on, class 1'(4") will denote the class of all p.n.c.c.L continua homeo-
morphic to a member of class 1(4).

Trivially, class B is a subset of class 2. The collection of all p.n.c.c.l. continua
is class 1 U class B U (class 2\class B). We will see that if M is a p.-n.c.c.l. con-
tinuum, then M is indecomposable if and only if M is a member of class 2.

DEerNITION. The continua which belong to class B will be called self-entwined
(this notion is also a modified version of an idea in [9]).

We will see that the self-entwined continua have some of the properties of
non-planar circle-like continna (e.g., Corollary to Lemma 9; Theorem 5).

Application of Lemma 2 several times yields

LemMMA 5. Suppose f is a map from S* onto S, and degf>1. Suppose [a, b] is
a defining arc for R(f). Let t be a lift of f |la, b]. Then t(@)<t(b), and deg([b, al, )
= R(f)—degf.

The conclusion of Lemma 5 implies that the arc [5, a] is of type 1: v([b, a])
= [v(a), 2(B)], when v is a lift of £|[b, a].

Weakly chainable circle-like continua 5

THEOREM 2. If M is a p.n.c.c.l. continuum, then M is indecomposable if and only
if M is a member of class 2.

Proof. Let M = Lim(X;, f,"“) as in Theorem B. Suppose M is in class 2.

By a result of D. Kuykendall ([5, Theorem 2]), M is indecomposable if and only if
for each positive integer », and each number e>0, there are a positive integer j and
three points of X, such that if K is a subcontinuum of X, , ; containing two of them,
then dist,(x, /3 */(K))<e, for each point x in X,. Suppose n is a positive integer
and 4>e>0. Let j be such that R(f;™/)>2~—e. Let [4, B] be a defining arc for
R(fy*), and ¢ a lift for f;*/|[4, B]. Then t([4, B]) = [t(4), t(B)] = [a, b],
with b>a+1. Let Cbe a pointin [4, B], with 1(C) = a+1. Then [a, a+1]=t([4, C]),
and [a¢+1,b]=¢([C, B]). By Lemma 5, letting v be a lift of f77/|[B, 4] such that
v(B) = t(B), we have u([B,4)) = [a+1,b]. Now, ¢([z,a+1]) =51, .and
@([a+1, B]) is either S* or an arc of length greater than 1—e. For each point x
of S*,

[x—f (14, CDI = |x—f*(4, B)| = 0,

Px—f*(IC, 4D < Ix=f"(C, BD| < e,

le—f* (B, CDI < [x—f; (B, AD] < e.

By Kuykendall’s theorem, M is indecomposable. ; )

To prove the converse, suppose M is indecomposable. Then for each integer
K>2, there are K points of M such that M is irreducible between each two of them.
A corollary of [5, Theorem 2] is that M being indecomposable implies for each tl'il?le
(n, p, ), n a positive integer, p an integer, p>2, and >0, there are a posi.tive in-
teger j and p points of X, ; such that if L is a subcontinuum of X, ; contaimng-t\.?vo
of them, then dist,(x, f */(L))<e, for each point x in X,. Suppose » is a positive
integer and 1>e>0. Let N be an integer such that N—2>1/e. Let j be a positive
integer and W be a set of NV points of S* such that if 4 is an arc containing two of
them, then deg(4,f;*/)>1—e/(N—1) (similar to the previous paragraph). Fet
(p1s P25 .-, Py) be a reversible sequence of points of S*, ordered by the orientation
of S*, whose range is the set W. Let v be a lift of /77| [p,, py]. Let, for I<i<N—1,
[a;, b;] be a subarc of [p;, p;4,] of type 1. If, for some 7, v([a;, b;]) = [v(b;), v(a)],
then since v(a)=v(b)>1—e/(N—1), by Lemma 2, R(f;H>2—e/(N—-1)>2—e.
Similarly, if, for some i, v(b;)—v(a;4{)>1—e, then R(f'*/)>2—e. Assume that
for 1Si<N=1,v(b)—v(a)>1—&/(N=1), and for 1 <i<N—2,v(b)—v(a;. ) <1 —e;
then v(a;4)—v(a,)>e—e/(N—1). Therefore

N-2

. e
v(ay-)~v(a) = ZJ (v(ais ) —v(a))>(N-2) (e—N__ 1> .

i=1
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But

v(bN_l)—-v(aN_l)>1—N—i—I and  o(by_)—v(@)>1+(N—2)e—e.
Since (N—2)e> 1, we have R(fi )z v(by—,) —v(a,)>2—e, whence M is in class 2.

DErINITION. Suppose g is a map from a continuum X onto a continuum Y.
Then g is said to be weakly confluent if, for each subcontinuum K of Y, there is a com-
ponent C of g~*(K) such that g(C) =

LEMMA 6. If g is a map from a continuum X onto S1 and g is essential, then g is
weakly confluent.

Proof. Suppose g is a map from X onto S*, and g is not weakly confluent.
Let [p, 4] be an arc in S* such that no component of g~* of it maps onto it under g.
‘We may assume that [p, g] is properly contained in a semi-circle. Let W= g~ %([p, q));

= the set of all components of W; Y, = the set of components of W which contain

a point of g ~(p); ¥, = the set of components of ¥ which contain a point of g~ (g).

Then Y=Y, U Y,; W= Y§u Y§, with Y} and ¥Y¥ mutually exclusive, closed

point sets.

Let r be a function from X into §* such that r = g on the set X\W:; r(YF = (p);
r(Y3) = (g). Then r is continuous, and r (X) s S, thus 7 is inessential. Since r = g,
g is homotopic to r, and g is inessential. %

LemMa 7. Suppose each of f and g is a map from S* onto S*, and degg >0,
degf=1. Then R(g o f)=R(9).

Proof. In case R(g) = degg, we have R(g of)zdeg(g o f) = (degg)(degf)
>degg = R(g). Suppose R(g)>degg. Since f is essential, thus weakly confluent,
there is an arc in S* whose f-image is a defining arc for R(g). This yields
R(g > )= R(9).

LemMma 8. Suppose f is a map from S* onto S, degf =1, e is a number,
O<e<i, and R(f)>2—e. Then there is a map g from S* onto St such that
degg =1, R(g)>2, and f = g.

Indication of proof. If R(f)<2, and T is a defining arc for R(f), we may
“stretch” the-map f on T by letting v be a lift of /'| 7, p a homeomorphism from o(T)
onto an interval of length 2, and g = ¢ o p s v, Similarly we may “stretch” Sfon the
complimentary arc of T. Taking p to be such that p =1d, we have the lemma.

The following theorem, whose proof is technically complicated, is intuitively
an obvious consequence of Mioduszewski’s theorem.

THEOREM 3. If M is a p.n.c.c.l. continuum, and M is in class 2, then M is homeo-
morphic to le(Yl, 9i*Y) such that each Y, is S*, deggit! = 1, and R(gh=2,
for each pair of Dpositive integers i and j, i<j.

Proof. Let M = Lim(Xi,f“’l), each X; = S*, and M is in class 2. Let e be

the number sequence (1, 3,4, %, ..). Let p; = 1. Let p, be the first positive integer f
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such that R(f)>2~4%. Let }712 = f72. Let g7 be a map from S* onto §* such that

g1 T F, and R(g}>2.

We proceed by induction. Suppose py, Pz, ...» p,,, p,,,, . are defined; FZ,F3, ..., Fi*+t
are defined, with Fi*! = fI** for 1<i<n; g3, 93, .., gn*" are deﬁned, with
R(g*Y) 22, for 1<ign; for each triple (k,7,/) of positive integers with

gioFl = gl and Feg] = H.
(5] (1-z7=7)
Using the uniform continuity of the maps from S* into S*, let a>0 such that
if x and p are points of S* and x—y<a, then for ISk<i<j<n+1,

L e ; e,
‘.[g;caF.i,(x)—g;c°F‘ii(y)[<2_‘m':{ and |F£°£I{(x."‘Fk°g{(J’)]<.2T+—g_‘_—i-

Let d= min(a, }e,). Let p,,/+2 be the first positive integer j such that R(f},, )>2—%d.
Let Fpif = fhnr2 Let g5i7 be a map from St onto S such that git? = F,’:H and

Pn+1*

R(§"TH=2. Let x be a point of S. Suppose 1<k<i<n+1. Then

n+ 1
0 gk o (P12 (0)— gk o FrH{ghE109) | <o -
Also,
b FP(01100) -t a1 | < (15
Hence

1
b P 0) - 1 @) <(1- e

The last inequality implies

i +2
gioF7*r = gy™.
1
(1“5.747—1)
Similarly,
Fogi> =
1
(1“2»:4-2—-1)'”
e,
i 2 pm2 Al since —of the inequa-
NOW: since %'d<%9n+fl: In+1 %e_‘“ n+1- ’ - 2n+2——k 2
lity () yields
Fy*tognid - Fet2.
en+1
" Similarly,
n+1 Fai% — gz-!‘z_
fen+
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Thus, for each triple (k,7,j) of positive integers, with k<i<j<n+2,
gioFl = gl and Feg = H.
(t-57)

Recursively, there a exists sequence (FZ, F3, F3, ..) of rhaps, a sequence
(93,93, 93, ..) of maps, with R(gi*%)>2, and a decreasing sequence e of positive
numbers with sequential limit 0, such that for each triple (k, i, j) of positive integers,
with k<i<j,

gGioFl =gi and Fiogl=F.

i
Let K = Lim(X;, ¢i*Y). By Theorem A, K is homeomorphic to Lim(X;, Fl‘ 1y,
which is homeomorphic to M. Since R(gi™)22, for each i, Lemma 7 yields
R(g{)=>2 for i<j. This completes the proof.

A similar pattern of argument yields

THEOREM 4. If M is a p.n.c.c.l. contimum in class B, then M is homeomorphic to
Lim(Y;, 9i*Y) such that each ¥; = S, deggi*? = 1, and R(gl)=3 for euch pair of
positive integers 1 and j, with i<j.

D. R. Read proved in [8, Theorem 10] that each map from a continuum onto an
arc is weakly confluerit.

Levua 9. Suppose each of f and g is a map from S* onto S*; R(f)>degf>1;
R(g)>degg=>1; R(f)22. Then R(g o f)Z([R(f)1-2)degg+R(g), in which
[R(F)] is the greatest integer not exceeding R(S). :

Proof. Let [a, 5] be a defining arc for R(f), [c, d] a defining arc for R(g),
v a lift for f|[a, b], u a lift for gllc, dl. Now, v(b)—v(a)=2. Let ¢' be the least
number x, v(@)<x, such that ¢(x) = ¢, and d’ be the greatest number ¥, y<v(d),
such that @(y) = d. Let ¢’ be the greatest number x, x<d', such that ¢(x) = c.
Let z be a lift of go¢|[¢', d’]. Then 2(d)—z(c") = u(d)—u(c) = R(g), and by
Lemma 2, z(¢')~z(c) = (c"—c’)degg;([R(f)]—-z)degg. We have z(d")—z(c")
ZR(@)+([R(f)]—2)degg. Since v is weakly confluent, let 4 be a subarc of [a, b]
with v(4) = [¢', d']. Then

Rigeof)zdeg(d,gof) = z(d’)—z(c’)éR(g)+~([R( F1-2)degg .

COROLLARY. Suppose M is a p.n.c.c.l. continuum, M = Lim (S, fi*4), such
—

that for each i, deg f§+1.= 1 and R(f*%)23. Then for each positive integer j, the
sequence (R(fT1), R(fI*2), R(fI*93), ) increases without bound,

Section 3. In [2], Henderson proved that no non-planar circle-like continuum
is the continuous image of a continuum contractible with respect to the circle (c.r. S).
In [9], Rogers proved that no chainable continuum can be mapped onto a circle-like
continuum which is “self-entwined” (in his sense). In this chapter, Henderson’s
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result is extended to include the circle-like continua which are self-entwined (in my
sense). Also, two theorems are proved, each of which states necessary and sufficient
conditions for a circle-like continuum to be the continuous image of a chainable
continuum, '

Using Read’s theorem and Lemma 6, one easily shows

Lemma 10, If X is a continuum, and f a map from X onto S*, and 4 an arc in S1,
and B the complementary arc of A, then either there is a subcontinuum H of X such
that f(H) = A or there is a subcontimmum K of X such that f(K) = B.

THEOREM 5. Suppose M is a self-entwined p.n.c.c.l. continuum. Then M is not
the continuous image of a contimmm c.r.S*.

Proof. Suppose M is self-entwined, and X is a continuum c.r.S*. We may
assume, by Theorem 4, that M = Lim(S?, £7*%), with deg f{** = 1, and R(fi*1) =3,

for each i. Suppose g is a map from X onto M. Then PR, o g is inessential; let u be

_a lift of PR, o g. Let, by the corollary to Lemma 9, » be a positive integer such that

R(fD)>(diamu(X))+1. Let [a, b] be a defining arc for R(fY); ¢ a lift of f7][a, b];
valift of /7| [, a]. Suppose H is a subcontinuum of X such that PR, o g (H) = [b, a].
Then @ ou|H = PRyog|H =f{oPR,og|H =@ ovoPR,og|H By Lemma 5,

diamu(H) = diamv(PR,(g(H))) = diamo([b, a]) = R(f7)—1>diamu(X),

a contradiction. Similarly, if X is a subcontinuum of X such that PR,  g(K) = [a, b],
then

diamu(K) = diam?([a, b]) = R(f})>diamu(X),
a contradiction.

To prove Theorem 6, the main result, a technical lemma is required.

Lemma 11. Suppose each of f and g is a map from S* onto S* such that
degf = degg = 1, R(9)=2, and d is a number, 0<d<1, such that R(fo g)<2+d
and R(f)<2+d. Let [a, b] be a defining arc for R(g) and w be a lift of g|[a, bl.
Let w([a, b]) = [p—1, g]. The map fo ¢|[p, p+1] is inessential; let t be a lift of it.
Then diamt([p, p+1])<1+4d.

Proof. Let t([p, p+1]) = [4, B]. Suppose B—A>1+d. For each number x
between p and p+1 there is a lift z of f | [p (), ¢ (x)] such that z o | [p, x] = £|[p, x].
Let u be a map from the ray [¢(p), ¢(p+1))suchthatu o ¢ |[p, p+1) = t|[p, p+1).
By Lemma 2, Lim u(¢p(x)) = u(p(p))+1.

x=p+1 .

There is a proper subinterval ¥ of [p, p+1] such that #(¥) = [4, B]. For:
tp+1)= Lim 1(x) = Lim u(p(x)) = u(e(p))+1 = 1(p)-+1. Since B—A>1, it is
x-p+1

x=p+1
not true that both endpoints of [p, p+1] are mapped by 7 to the endpoints of [4, B].
Let [e¢, 7] be a proper subinterval of [p, p+1] whose endpoints are mapped by ¢ to
the endpoints of [4, B]. In case r = p+1, there is a map u’ from [ (€), ¢ (¥)] such
that #|[e,»] = v’ = ¢|[e, r]. Relabel u = u' if necessary. Either u(¢(e)) = 4 and
u(@ () = B or u(p(e)) = B and u(p() = A.
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Suppose u{¢(e)) = B. Let v be a map from the ray [p(e), p(e+1)) into the
numbers, v an extension of «, such that f][@(&), ¢(e+1)) = ¢ o v. By Lemma 2,
Lim v(p(®)) = v(p(e))+1 = B+1. Also v(e() = u(p(r)) = 4. Thus
x-+ret+1

deg(lo(M), (], f)=B+1—A>2+d,

contradicting R(f)<2+d. Therefore u(¢p(e)) = 4 and u(p () = B.

Now, [e—1,rl<[p—1, p+1l=w(la, b]). By an argument similar to that for
Lemma 9, there is an arc M lying in [a, b] such that deg(M, fo g)=B~(4~1)>2+d,
a contradiction. This completes the proof.

The following lemma is easily verified.

LemMa 12. If u is a map from a continuum A onto a continuum B, and v is a map
from B onto a contimuum C, and v o u is weakly confluent, then v is weakly confluent.

DEFINITION. By class W we shall mean the class of all continua ¥ such that
if X is a continuum, and f a map from X onto ¥, then fis weakly confluent.

Theorems 10 and 11 of [8] assert that arcs and arc-like continua are in class W.

THEOREM 6. If C is a circle-like continuum then C is the continuous image of a chain-
able continuum if and only if either C is chainable or C is not in class W.

Proof. Suppose C is a circle-like continuum not in class W. Let
C = Lim(S%, f#1), and let g be a non-weakly confluent map from a continuum X

onto C. Suppose that for all but finitely many positive integers i, PR, o g is essential.
Then for almost all i, PR; o g is weakly confluent. The argument for [8, Theorem 11]
implies that g is weakly confluent, a contradiction. Hence for infinitely many, and
therefore all, positive integers i, PR; o g is inessential. The argument for Theorem 4.2
and Corollary 4.3 of [4] implies that C is the continuous image of a chainable con-
tinuum. .

Suppose that C is the continuous image of a chainable continuum X under the
map g, and C is not chainable. By [2], C is planar, and by Theorem 5, C is not self-
entwined. Let C = I:_im(S L fitY), with deg fi** = 1, for each 7. Let, for each positive

integer j, ¢; be a lift of PR; o g. Now, there exist a sequence (d,, d,, ...) of numbers,
with 0<d;<I1, and a sequence (¥, V,,...) of intervals, with V;ct,(X) and
diam ¥V, = 1 for each i, such that if i and j are positive integers with i<j, and p is
a lift of f{ o |V, then diamp(V;)<1+d,. The proof of this assertion involves
two cases.

Case 1. Suppose C is decomposable. By Theorem 2, C is homeomorphic to
a member of class 1. Let, for each positive integer /, d; be a number, 0<d; <1 such
that for k>1, R(ff)<1+d;. Let, for each positive integer p, V, be any subinterval
of #,(X) with length 1. Suppose i and j are positive integers, i<j. For any proper
subinterval U of ¥;, ¢(U) is an arc in S*, and deg(p(U), /)< R(f})<1+d;; thus
if p is a lift of f{ e @|V;, diamp(U)<1+d;. Since this holds for each such U,
diamp (V) <1+d;.
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Case 2. Suppose C is indecomposable. By Theorem 2 and 3, we may assume
that for each i and j, i<j, R(f{)=2. Since C is not self-entwined, let, for each #, d; be
a number, 0<d; <1, such that for k>i, R(fF)<2+d;. Suppose j is a positive integer.
By Theorem 4.1 of [4] let u be a lift of /{1 o | £, 1(X) such that u(t;. (X)) = #;(X).
Let [a,b] be a defining arc for R(fj"!). Let 4 be the least number in
»™Ha) M 2;41(X), and let B be the least number in ¢ "1(B) N 1;,(X). Let r be a lift
of fI*1|[a, b] such that r(b) = r(¢(B)) = u(B). Let y be a lift of /J**|[b, a] such
that p(b) =r(). If A<B, then u([4,B]) = r(a, b)) = [r(a),r®d)], and
[F(@+1, r(@)+2lcty(X). If B<A, then u([B, 4]) = y([b, a]) = [r(a)+1, r(b)] by
Lemma 5, and [r(a)+1, r(@)+2]=t(X). Let V; = [r(a)+1, r(a)+2]. Suppose i
and j are positive integers, i<j. By Lemma 11, if p is a lift of fie @|V;, then
diam p(V))<1+4d.

Let (d,, d,, ...) be a sequence of numbers and (¥, V5, ...) a sequence of inter-
vals as described. Since each map ¢; is weakly confluent, let, for each positive in-
teger j, K; be a subcontinuum of X such that #(K;) = V. Let (K;,, K, K, ...) be
a subsequence of K with a sequential limiting set M. Then M is a continuum.

‘Now, g(M) = C. For: Let y be an element of C. Since, for each j,
PR;o g(K) = @ o ty{K)) = (V) = S*, let, for each n, x, be a point of K;, with
PR, o g(x,) = y,,. Let z be a cluster point of x, z in M. Suppose g(z) # y. Let n be
a positive integer such that PR; og(z) 5 y;,. Let U and D be disjoint open sets
in §* such that PR, (g (2)) isin Uand y,, isin D. Let Q@ = (PR;, o ¢)~*(U). Then Q is
open in X, and z is in Q. Hence there exists m>n with x,, in Q. Therefore

o = fim(vi,) = fin(PR, (g (%)) = PRy, o g (%)

which is in U, since x,, is in Q. This involves a contradiction.

Now, for each j, diam7{(M)<1+d;. For: Suppose n is a positive integer such
that diam?,(M)>1+d,. Let t,(M) = [p, q]. Let p’ and ¢’ be points of M such
that £,(p") = p, and t,(¢") = ¢. Let @ be a number such that 0<a<3(g—p—1—4d,).
Let b be a positive number such that if z is a point of X, with disty(p’, z) <b, then
1t,(p"V—1,(2)| <a, and if z is a point of X, with distx(q’, 2)<b, then [£,(g") —1,(D)] <a.
Let m be an integer, m >, such that if j3>m, then there are points x; and y; in X;; such

. that disty(p’, x;)<b and disty(q’, y)<b.

Consider 1, (K, ) = V;,. Let u be a lift of fi"c @|V;, . Then
¢ o 1| K, = PR, o g|K;, = fi"o PR, o glK;, = fy"o ¢ o 1;,|K,, = @ ouo £, |K,, .

Im im

Hence diam?,(K; ) = diamu(r, (K, ))<1+d,. Let x, and y, be points of K, such

that diStX(p/v xm)<b and diStX(q,: ym)<b' Then Ip"—ru(xm)l = lin(p’)'— n(xm)l<a
and |¢—t,(y,) <a. We have

[Y,,(.Xm)"" n(ym)l = (q "‘]7) - |]7_ tn(xm)l - |q" tn(ym)l > q——p—2a> 14+ dn .

Thus diam¢,(K;, )>1+d,, a contradiction.

Suppose j is a positive integer. Then 1<diam#;(M)<1+d;<2, and o|#,(M)
is not weakly confluent. Hence PR; o g|M = ¢ o ;| M is not weakly confluent by
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Lemma 12. Since deg i+1 = 1 for each i, PR; is an essential map from 'C onto S,
thus PR; is weakly confluent. If g|M were weakly confluent, then PR; o g|M would
be weakly confluent. Therefore g (M) is C and g|M is not weakly confluent, implying
that C is not in class W. This completes the proof.
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Extending a partial equivalence to a congruence and
relative embeddings in universal algebras

by

Isidore Fleischer (Waterloo, Ontario)

Abstract. i) The partial equivalences which extend to congruences on arbitrary finitary
universal algebras are characterized (as in [5] but with an additional particularization) freeing SC
of [3] from the requirement that the equivalence have an initial generating domain, and yielding
ii) the characterization of “admissible” subsets for semigroups developed in [1] as well as iii) a charac-
terization of the partial algebras relatively embeddable in the full agebras of an equational class,
which specialized to iv) a characterization of partial S-sets relatively embeddable in full ones,
leads to v) that exactly for the subsemigroups T right unitary in § can T-sets be relatively embedded
in .S-sets.

Let ¢ be a partial equivalence ([1], p. 43), i.e. a symmetric transitive relation,
on a finitary universal algebra A4: we ask when the classes of ¢ are (in their totality)
those of a single congruence on A4. It is clear that if this is so for any congruence,
then it will be so for the congruence § generated by (i.e. the smallest congruence
containing) g;.hence we investigate when strengthening ¢ to 6 does not enlarge its
classes.

The generation of 8 from ¢ may be effected in stages. First, one extends g to
the smallest containing equivalence on 4. Initially ¢ may only be defined on a proper
subset D of A4: it suffices to make it reflexive by augmenting it with the diagonal on
the complement D’ of D in A; in this process it loses neither its symmetry nor its
transitivity and so becomes an equivalence on 4. Its individual classes do not become
enlarged; the new classes are just the singletons of the complement D’.

The next stage is to strengthen the relation to one having the substitution property
for each of the operations which define the algebraic structure of 4. This means that
whenever an argument is replaced by an element modg-related to it, the value of
the operation is to change (at most) to an element modg-related to the value. We
must thus strengthen the equivalence to include the relation which holds between
(possibly inequivalent) operation values for equivalent arguments — and then iterati-
vely for arguments related in the so strengthened way. This strengthened relation turns
out to be still reflexive and symmetric but may fail to be transitive; however its
transitive closure is the desired congruence; and since the passage to this closure
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