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Banach-Euclidean four-point properties
by

J. E. Valentine (San Antonio, Tex.)

Abstract. A metric space has the Banach-Euclidean four-point property at a point p provided
for each triple of its points ¢, r, and s, if my, my, ms, m, are respective midpoints of p and ¢, g
and », r and s, and s and p then mymy = mgm, and mym, = mym, and the quadruple m,, m,,
ny, my is congruent to a quadruple of points of the euclidean plane. The main result of the paper
is that a complete, convex, externally convex, metric space is a real inner-product space if and only
if it has the Banach-Euclidean four-point property at some point.

Let S denote a space which satisfies the axioms of Hilbert’s groups I, II, IIT
and V; namely, the axioms of connection, order, congruence, and continuity.
Young [6] proved S is cuclidean, hyperbolic, or elliptic, respectively, if and only if
there is one triangle such that the length of the line joining the middle points of two
sides is (1) equal to, (2) less than, or (3) greater than the third side, respectively.

Andalafte and Blumenthal [1] extended the notion of (1) above to metric spaces
in the following way.

The Young postulate. If p, ¢, and r» are points of a metric space M, and if g.
and r’ are the midpoints of p and g, and of p and r, respectively, then ¢'r’ = }gr

They proved a complete, convex, externally convex, metric space with the two-
triple property is a Banach space if and only if it satisfies the Young Postulate.

A direct analogue of Young’s result is: a complete, convex, externally convex,
metric space M is a euclidean (inner-product) space if and only if M contains one
triple of points which satisfies the Young condition. This is of course false, for every
rotund Banach space satisfies the Young Postulate. To make matters worse, there is
a complete, convex, externally convex, metric space which satisfies the Young
Postulate at one point, but is not a Banach space, see [4].

We focus our attention on an immediate consequence of the Young postulate.

The quadrilateral midpoint property. If p, ¢, r, and s are points of a metric space M,
and if my, m,, ms, m, are respective midpoints of p and ¢, g and 7, r and s, and s
and p, then ‘

mym, = mymy, and  m Mg = myms.
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Tt is not so immediate that conversely, if a complete, convex, externally convex,
metric space has the quadrilateral midpoint property, then it satisfies the Young
postulate, see [5].

Loveland and Valentine [4] have shown that the quadrilateral midpoint property
need only be valid for a particular point p, together with any other three points, We
now have half of the direct analogue to Young’s result in the setting of metric spaces.
It is clear that if we are going to obtain the other half; namely, euclidean space, we
are going to have to add to our hypotheses. We therefore introduce a hybrid four-
point property.

The Banach-Euclidean four-point property at a point. A metric space M contains
a point p such that for each triple of its points ¢, », and s, if my, n1,, my, m, are
respective midpoints of p and ¢, ¢ and r, r and s, and s and p, then

(1) mym, = mym, and m;m, = mym, and

(2) the quadruple my, m,, ms, m, is congruent to a quadruple of points of E,,
the euclidean plane.

THEOREM 1. A complete, convex, externally convex, metric space M is a real
inner-product space if and only if M has the Banach-Euclidean four-point property
at some point p.

Proof. First observe that (1) is the Banach four-point property at a point p;
and consequently, M is a rotund Banach space, see [4].

In order to simplify the proof, we will say that if x, y are distinct points of M,
then z is a reflection of the point x in the point y provided y is between x and z and
xy'= yz. Since M is rotund, the reflection of x in y is uniquely determined.

Suppose my, my, my, ¢ is a quadruple of points of M with ¢ the midpoint of m,
and m;. We show my, ms, my, t is congruent to a quadruple of points of the eucli-
dean plane E,.

First suppose p is distinct from my, ms, m,. Let ¢ be the reflection of p in m 1> 8 the
reflection of p in my, and then let r be the reflection of s in my. If m, is the midpoint
of g and r, then by the Banach~Euclidean four-point property at p: mMymy = mymy,
and mymy = mymy and my, my, my, m, is congruent to a quadruple wy, ly, ts, U
of points E,. Now py, iy, Us, fs are vertices of a parallelogram so the diagonals
8(uy; us) and S(us, 1) biseot each other in a point 7. But My, My, My, 02, are vertices
of a parallelogram in'a rotund Banach space, sce [1], p. 42 and consequently the
segments S(m;, my) and S(m,,m,) bisect each ather in the point r. Consequently,
the quadruple my, my, my, ¢ is congruent to the quadruple iy, pg, fas 7.

If one of the points m,, ms, or m, is p, then the preceding argument is invalid.
However, we may use a limit type argument to obtain the result, We treat only one
case, as the others are quite similar. Suppose for definiteness that p = my Let
{my;} be a sequence of points on the segment joining my and p with my; 5 p,
(i=1,2,3,..) and limmy; = p. Duplicating the preceding argument, we see that
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each of the quadruples my;, my, my, t,, where t; is the midpoint of m, and my;,
is congruent to a quadruple of points of E,. Since m;, m, appear in each quadruple,
we may assume we have a sequence {;;, fis, s, 7;} of quadruples of points of E,
with 45, 3, #a, T, cONgruent to my ;, ms, my, t,. Since the sequence {#1:} is bounded,
it contains a convergent subsequence which by relabeling if necessary we may assume
to be the original sequence. Let y; denote limpu,;. By the continuity of the metric
for E,, it follows that limt; = 7, the midpoint of x, and 5. Also since limmy; = p,
lim#; is the midpoint of p and m,. It is now clear that the quadruple p, my, m,, tis
congruent to the quadruple py, us, u4, 7.

We have now shown that each quadruple of points of M which contains a linear
triple with one of the linear triple a2 midpoint of the other two is congruent to a quad-
ruple of points of E,. The result of Blumenthal [3] shows that M is a real inner-
product space.

If we are willing to sacrifice the particular point p, we can use 2 formally weaker
hybrid property and still obtain a characterization of real inner-product spaces.

The Banach-Euclidean feeble four-point property. If p, g, r, and s are points
of M with s a midpoint of 4 and r and if my, m,, m,, and m, are respective midpoints
of pand r, r and s, s and ¢, and ¢ and p, then

(1) mymy = mym, and mym, = mym, and

(2) the quadruple m,, my, m;, m, is congruent to a quadruple of points of E,,
the cuclidean plane.

THEOREM 2. A complete, convex, externally convex, metric space is a real inner
product space if and only if M has the Banach-Euclidean feeble four-point property.

Proof. It is tasily seen that if A has the Banach-Euclidean feeble four-point
property, then M satisfies the Young postulate and M has the two-triple property.
Thus, M is a real rotund Banach space by the Andalafte and Blumenthal theorem [1].
Consequently the algebraic line determined by two distinct points of Af is the only
metric line joining those two points. Let p, ¢, m, and s be points of M, with m a mid-
point of ¢ and s If { = —p+2m, then m is the midpoint of p and z Letting
x = —[{(s+1)]+2t and y = —[F(s+1)]+2s, we have f(s+1) = L(x+y); that is
%(s+1) is the midpoint of x and p. Choosing z = —y+2p and w = —x+2¢q, we
see z = wand ¢, 1, 5, p are the respective midpoints z and x, x and 3(s+1), $(s+1)
and y, and p and z. Thus, by the Banach~Euclidean fecble four-point property,
pg = st and ps = gt and E, contains a quadruple p’, ¢, ', ¢’ which is congruent
to the quadruple p, g, s, ¢. Since the segment joining p and ¢ and the segment joining ¢
and s bisect each other in the point m and the segment joining p’ and ” and the seg-
ment joining ¢’ and s’ bisect each other in a point m’, the quadruple p, ¢, m, s is
congruent to the quadruple p’, ¢', m’, s'. Once again we apply the result of Blumen-
thal [3] to see that M is a real inner-product space.
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On k-regular embeddings of spaces in Euclidean space
by

David Handel (Detroit, Mich.) and Jack Segal (Seattle, Wash.)

Absiract. If k< n are positive integers, a continuous map f: X - R"is k-regular if whenever
X1, -, Xk are distinct points of X, then f(xy),...,f(xx) are linearly independent. Such maps are
of relevance in the theory of CebySev approximation. In this paper the question of existence of
k-regular maps from a gijven X into R" is considered. After discussing some elementary properties
of k-regularity, an algebraic-topological method is introduced to obtain negative results. This
method yields the fact that there does not exist a 3-regular map of the real projective plane into R®,
and this result is best possible, Finally, it is shown how to construct explicit 2- and 3-regular maps
on real projective spaces which, in terms of homogeneous coordinates, are given by quadratic
functions.

1. Introduction. If k< n are positive integers, a continuous map f of a space X
into Euclidean n-space R" is k-regular if whenever Xy, ..., x; are distinct points
of X, then f(x), ..., f(x;) are linearly independent. Closely related to this is the
concept of an affinely k-regular map f: X — R", where it is required that whenever
Xg, -, Xy, are distinct points of X, then f(x), ..., f (x,) are affinely independent
(i.e. they are the vertices of a non-degenerate k-simplex in R"). The latter concept
has been considered in [2], [1], and [9]. Clearly, a k-regular map is affinely
(k—1)-regular, and f: X — R" is affinely (k—1)-regular if and only if the map
g: X— R"*! = Rx R" given by g(x) = (1, f(x)) is k-regular.

k-regular maps are of relevance in the theory of Cebysev approximation. A set

. of n real-valued continuous functions on X is called a k- Cebysev set of length n if

these functions are the components of a k-regular map of X into R". The reader is.
referred to [10], pp. 237-242 for the significance of this concept.

The present paper is concerned with existence and non-existence of k-regular
maps. The following results are obtained:

THEOREM 2.1. X admits a 2-regular map into R" if and only if X admits an affinely
1 -regular map into R"™*. (Thus if X is compact, existence of a 2-regular map of X
into R" is equivalent to X being topologically embeddable in R 1Y),

THEOREM 2.2. If X admits a k-regular map into R", then each 0<i<k—1, and S
any subset of X with i points, X—S admits a (f—i)-regular map into R,
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