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It is easy to write formula W (x, p,z, X, Y, Z,,Z,,Z,) in the topological
language stating (in T) that x, ye X and XeZ}, YeZ3, x~z(modZ,) and there
exists ' e ¥ such that y~p'(modZ;) and y'~z(modZ,).

In order to interpret DL in T"it is enough to find X, ¥, 2,,2Z,, Z,c R? such
that | X| = 2" and ¥ defines 2 one-one correspondence between {{x, 10 x,pe X}
and {z: ze R*}. Let Q be the set of rational numbers, Choose X = Rx {0},
Y={0}xR, Z;=RxQ, Z,= QxR and Zy = {{a,b): a~be Q). Then
Wx,y,2,X,Y,Z,,2Z,,Z,) holds iff there exist a,be R such that x = (a, 0),
y=¢b,0) and z = {a, b).
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Borel sets with F,,-sections
by

J. Bourgain (Brussel)

Abstract. Let E, F be compact metric spaces, We characterize Borel sets 4 in ExF with
Fgs-sections,

Introduction. We consider two fixed compact metric spaces E and F. The
class % will consist of the Borel subsets A4 of Ex F such that for each x ¢ E the
section A(x) = {ye F; (x,y)e A} is closed in F. We will prove the following:

THEOREM 1. If' A is a Borel subset of Ex F such that each section A(x) is F,;
in F, then A belongs to the class 6,,.

This is an extension of the work of J. Saint-Raymond (see [13]), who established:

THEOREM 2. If a is a Borel subset of Ex F such that each section A(x) is F, in F,
then A belongs to the class 4,.

Theorem 1 is also related to my earlier paper [2].

Preliminaries. N will denote the set of all positive integers. Let' # = |J N¥,
k

taking N® = {@}. Thus # consists of the finite complexes of integers. If ce 4,
let |¢] be the length of ¢. If ¢,de %, we write ¢<d if ¢ is an initial section
of d. Let (p), be an enumeration of all prime numbers. If we associate O:
to & and the integer pi'.. pi¥ to the complex ¢ = (n,,..,n), & one-one map
of # into N is established. The induced ordering of # will be called the
standard ordering, Let A = NV, if ve # and ce @, we write c<v if ¢ is an
initial section of v,

If L is a compact metric space, then K(L) consists of all closed subsets of L and
is equipped with the exponential or Vietoris topology. This topology is compact
metrizable. I recall the following result (see [7]).

LeMMA |, Let P be a Polish subspace of the compact metric space L. Then the
subspace F(P) of K(L) consisting of those compact sets K in L such that K = K i P,
is Polish. . ‘ '
§ — Fundamenta Mathematicae T, CVIL/2
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A pavage & on a set @ will be a family of subsets of 2 containing the empty
set. A subset of @ is said to be #-analytic if it is the result of Souslin operation
performed on members of #. For more details, I refer to [7].

I also remember the separation theorem of Novikov, which will be often used
in this paper:

Lemma 2. Let (4,), be a sequence of analytic subsets of the Polish space P
satisfying (| Ay = @. Then there exists a Sequence (B,), of Borel subsets of P such

n

that A,cB, for each n and (\ B, = J.
n

The reader can find a prove of this result in [7].
If A is a subsel of £x F, let A° be the subset of Ex F defined by A%x) = A(x)
for x € E. Consider for each r € N a finite covering (U,;), of F by open sets with di-
ameter less than 27" Tt is easily verified that 4° = U A n(ExU )% T,
r ot

Therefore we obtain:

LemMa 3. If A is analytic in Ex F, then also A® is analytic.

Lemua 4. If A and B are analytic in Ex F and A° n B = @, then there exists
a member C of € such that AcC and B C = @.

Proof. Take the open set U,, as before. For each re IV the set

S, =BnU[nddn (ExUN)xU,]
i

is analytic in Ex F. Since () S, = @, a sequence (7;), of Borel subsets of Ex F is
obtained such that S, 7, for each r and )T, = &. Now, for each r and each i,

we have that [m(d N (Ex U))x Ul 0 (BNT) = @ and thus {4 n (ExU,)

and 7g((B\T,) 0 (Ex U,)) are disjoint analytic sets. Therefore there exist Borel

sets B, in E with 4 n (ExU)cB,x U, c((Ex F)\B)U T,. For cach reN,

take C, = | (B,;x U,), which belongs to 4. Then A=C, and C,n (B\T)) = @.
i

The set C = () C, satisfies the required propertics.

A result about transfinite systems. The proof of various results in the remainder
of the text is considerably shortened by the use of the following lemma:

Lemma 5. Let for each k € N a Polish space Py be given. Assume for all ke N
k

and a<w, a subset &y of || P, be defined, such that following conditions are satisfied:
1=1

k
1 If keN, then &} is analytic in []P,.
1=
2. If keN and a<p, then Ly,
[3
3. If keN, a<w; and oe [| P, satisfies o|lle F** for each 1 =1,..,k
=1 ,

then there exists 1€ Py, with o = 1]k.
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Suppose &5 # @ jfor every a<wy. Then there is some e[| P, such that
’
Hke &y for each ke N.
k
Proof. Ifne &, let A" () = {ve A"; m<v}. For each ke N, let g: & — [ P,
=1

be a continuous map with image 5.
By induction we will define for every ke IV elements my, ..., my, of N¥, such
that the following conditions are satisfied:
1wy = my gl 0 K21
‘ k
2. For each a<w,, there exists o e [JP; so that alle o, (# () N FF for
=1 .

each [ =1, .., k.

Since &% # @ for every a<w, and &S = |J @1(#(p)), there must be some
7,4 € N such that ¢,(A (n,)) 0 &5 # D for cacﬁ o< . ASSUMe NOW 7y, ..., Ty
obtained. If x <, then there exists ¢ elf[lf, sothato|l & p,(A"(my)) N &5 for each

I =1, .., k. Therefore there is 1€ &5, with 1]k = o and thus:(l € o,(# (my)) N &
for each / = 1, .., k. For [ = 1,..., k we have @,(A" (n})) = U oA (my, p)) and
r

also FP = U par@uri(A (). Again there must exist p,..,p;eN and
zaN
k+1
Typ 1, k01 € VFT 1 such that for eacha< o, thereis o e [] P, witholle p)(H (my, ) N
=1
A& for each [=1,...,k and 66 @pui( N (s .1r1)) N Fivy. For every
=1,k let w0 = (ny, p). Then the construction is complete. For each
leN, let m,& A" be defined by mjjk = my, if k=], Obviously ¢ () e SO kzl+1,
then [‘Pt(-/"ﬂ(ﬂm))xpnd NPy 1("V(nl+ 1,k)) # &, implying @y (74|l = @i().
Hence there is & &[] Py, satisfying &|k = @) for each ke N and the lemma is
3

established.

Results about closed coverings. Let & be the pavage on K(Zx F) consisting of
the open subsets of K(Ex F) which are of the form {Le& K(EXF); LnQ# @},
where 2 ranges over the open sets in Ex F. Let P* be the set of #~analytic subsets
of K(&ixF).

The following two lemma’s are obvious,

LEMMA 6, If A is an analytic subset of E x F, then the set {L e K(Ex F);L 0 4 # @}
is a member of #*, ' ‘
Lavmva 7. If I'e o, Lel and M e K(EXF) contains L, then MeT."

LEMMA 8. Let I' @ P and let A be an analytic subset of Ex F such that 4(x)
is closed for each x e E. Then {xe E; {x}x A(x)eI'} is analytic.

Proof. There is a system (£, of open subsets of Ex Fsuch that I'= 9 O Ty

where I, = K{Le (ExF); L0 £, # @}. For each re N, let X, be the subset
5%
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of # x ExF defined by Z,(v, x) = A(x) N Q,,(x). It is clear that X, is analytic in
N x Ex F. Hence ng([) 7y« x(Z,)) is analytic in E. But this set is precisely
r

{xeE; {x}xA(x)erl}.

If I'e #*, let 4(I') consist of the members 4 of & such that {x} XAX) ¢TI
for each x e E.

LeMMA 9. Let I'e 2* and let S be analytic in Ex F such that S(x) is closed and
{x}xSC)¢ T for each x € E. Then there exists Te 4(I) containing S.

Proof. There is a system (2,)pep Of open subsets of ExF such that
r'=UNT,,, where I, = {Le K(ExF); L n Q5 J}. We will consider the

v r

space F* = ] F,, where each F, =F. If re N and ne N, take
r Q= {(x,y) e ExF*; (x, ) e Q,}
and define Q* = {J () Q};, which is an analytic subset of £x F*. Let further for
each re N the setv Sr;“ = {(x,y) e ExF*; (x,y¥) e S} and let S* = N S* 1t is
r

easy to deduce from the hypothesis that S* N Q* = @.
It follows that there is a sequence (B}*), of Borel sets in £ x F* with S¥ N Q*cB¥
for each r and () B¥ = @&, Let e N be fixed. Since S¥ N (Q\B¥) = &, we obtain

that S and gy (Q*\B¥) are disjoint analytic sets. We now use the fact that each
section §(x) is closed to obtain a set 7, in % such that S T.and T, N np p (Q*\B¥)
=@ If T} = {(x, ) e Ex F*; (x,y") e 7.} then T* A (Q*\B}) = @, We claim
that the set 7' = (] 7, satisfies. We only have to verify that {x} x T'(x) ¢ I for each

.
x € E. Assume not, then there is ve 4 such that T() N Q) (x) # & for each
reN. Therefore T} N Q* # @, implying N BY # @, a contradiction.

We will use the following stability property of g%

LemMA 10. Let I' e 2* and let A be an analytic subset of E x F. Ifd={Le K(ExF);
A 0 L can not be covered by countably many closed sets not belonging to—I"}, then
A e P*,

Proof. Take a compact metric space G and a G,-subset H of Ex Fx G satisfying
A = n(H), where n: ExFxG— ExF is the projection. Let % be a countable
base for the topology of Ex Fx(G. Let LeK(ExF) be fixed. Remark that
AnL=n(Hnn"Y(L)), where H r z~'(L) is a Gy. It follows that Le 4 if and
only if there exists a nonempty closed subset ¥ of H = (L) such that if Ue %

and Un Y # @, then urcTYn U) = —7;( ¥n I;) el Hence L e A if and only if there

exists a nonempty set M in K(ExFx G) satisfying:
1. MeF(H),
2. (M U)eT whenever Ue® and M n U@,
3. n(M)cL.
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The set 5 (Ex F) consisting of the nonempty compact subsets of Ex F belongs
to 2. We will prove that the set o/ = {(L, M) e K(Ex F)x K(Ex Fx G); i )
and L, M satisfy (1), (2), (3)} is  x " -analytic, where 2" is the p?vage on K(Ex Fx G)
consisting of the closed sets, Because 4 = Tpax (), we will then obtain that Ais
P-analytic (see [7]).

1. Since F(H) is a Gy-subset of K(ExFx@G), F(H) is & -analytic.

2. Clearly {Me K(Ex FxG); M NU= @} belongs to #". Because the map
K(EXFxG)— K(EXF)! M+ra(MAU) is #-measurable, we obtain that
{MeKEXFxG); n(M n U)el} is A -analytic. ‘

3. Let (V)); be a countable base for the topology of ExF. For each ie N,
we have that I'y = {Le K(ExF); LNV, # @} e # and 4, = {Me K(ExFx G);
Mon~'(V) = @} e A But the set {(L, M) e K(Ex F) x K(Ex Fx G); n(M)<L}
is precisely O (M x K(Ex Fx G) U (K(ExF)x 4,)] and hence #x %" -analytic,

So the proof is complete.

COROLLARY 11, Let I' e P* and let A be an analytic subset of Ex F. Then the
set {x € E; {x} x A(x) can be covered by countably many closed sets not belonging to T}
is coanalytic in E.

Proof. The set A considered in Lemma 10 is an analytic subset of K(Ex F).
We must consider {x& £; {x}xF¢ A}. We only have to remark that the map
E— K(ExF): x -+ {x}x F is continuous to complete the proof,

Combining Lemma 6 and Corollary 11 we obtain immediately

COROLLARY 12. Let A and B be analytic subsets of Ex F. Then the set {xe E; A(x)
is contained in an Fy-set which is disjoint from B(x)} is coanalytic in E.

THEOREM 3. Let I' € 2% and let A be an analytic subset of ExF. Assume that for
each x & E the set {x} x A(x) can be covered by countably many closed sets not belonging
to I'. Then A is contained in a member of @ (r),.

Before we pass to the proof of the theorem, let us mention the following easy
corollary:

COROLLARY 13, Let A and B be analytic subsets of Ex F. Assume that A(x) is
contained in an Fo-set which is disjoint from B(x), Jor each xe E. Then A can be
separated from B by a member of @,.

This result is due to J, Saint-Raymond (see [13]).

The remainder of this section is devoted to the proof of Theorem 3. Let G be
& compact metric space and let M be a Gy-subset of £x Fx G such that 4 = n(H),
where m: Ex Fx (i~ F i the projection. If # is a subset of H, take D(s#)
= {(x,, z)e #; for each neighborhood U of (x, y, 7) the set {x}xn(# N U)(x)el}.

LeMma 14, If o is analytic, then D(H#) is analytic. If moreover B is a Borel
subset of H with D(#)=B, then n(H\B) is contained in a member of €(I),.
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Proof. Let (U); be a countable base for the topology of H. For cach ie N,
the set n(# n Uy is analytic by Lemma 3 and thus

= {xeE; {x}xn( n U)o ¢ T}
is coanalytic by Lemma 8. Hence D(#) = .#\L'J [(E;x FxG)n U] is analytic:
If D(#)< B, then .%”\BCU [(E;x Fx G) n U}, whete #’\B is analytic and each

set (E;x FxG)n U; cozmalytlc in Ex Fx G. Therefore there are analytic sets (D)),
so that D;c(E;xFxG)nU; and #\B= U D;. We obtain that w(#\B)

cU n(D,). If i € N is fixed, then n(D;) is an analytlc set contained in n( # A U,)*

s} (E % F). It follows from the definition of E; that {x} x n(D,)(\) ¢ forall xe E,
Applying Lemma 9 there exists 4,& 4([') satisfying 7r(D) «d;. The set U A;

satisfies.
Let (H,) <., be the transtinite system obtained as following:
Hy = H,

Hypq = D(H,).
If y is a limit ordinal, take H, = (| H,.
2

It is easily verified that the sets H,(x) are closed in H(x) for all x & E and the
system (H,),<o, i decreasing. Using Lemma 14, we obtain

LEMMA 15. For each a<wj the set H, is analytic.

LEmMA 16. If a<w,; and B is a Borel subset of H containing H,, then m(H\B)
is contained in a member of €(I),.

Proof. By induction on a<wm,. If o = 0, then the statement is obvious. Let
the statement be true for a<w; and let B be a Borel subset of A containing
H,., = D(H,). By Lemma 14, we obtain D’ in ('), with n(H,\B)<D’. Hence
H, is contained in B U (r~*(D’) n H), which is still Borel. By induction hypothesis,
there is D" in €(I), with D" >n{HN(B U 2~ (D).

Clearly ©(H~\B)= D’ u D". Finally let y be a limit ordinal and (,), an increasing
sequence of ordinals converging to y and satisfying the lemma. If B is a Borel set
containing H,, then ﬂ( w\B) = @. Thus therc is a sequence (B,), of Borel sets

such that H,\B<B, and N B, =@. Let ne N be fixed. Since H, =Bu B,, we

n
obtain D, in #(I), so that n(H\(B U B))<D,. If we take D = ) D,, we get
n

n(H\B)< D, completing the proof.

It follows from the preceding lemma that if H, = & for some a<w, then 4 is
contained in a member of % (I'),. Thus it remains to prove:

LemMA 17. There exists a<w, such that H, = &.

Proof. Assume H, # & for each u<w;. We take Q = {L e F(H); nyL) is
a unique point of E}, which is a Polish subspace of K(Ex Fx G). If keN and
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a<w,, define = {(Ly,...L)e 0% LinHaD(Ly, nH) if 1<i<k and
L, n HcH,}. We verify that the conditions of Lemma 5 are satisfied.
1. We show that Z = {(L, M) e 0*; L n H=D(M n H)} is analytic in Q2.
Let (U;); be a countable base for the topology of Ex Fx G. For each i € N, consider
Z,=[{LeQ; Ln U, =@} xQlu[@x{Me Q; n(M n UpeT}] which is easily
seen to- be analytic. Therefore Z is analytic, since Z = ) Z,.
i

2. This follows immediately from the fact that (F,),<,, is decreasing.

3. Suppose kelN, u<w, and (Ly,..,L)eFit . If my(L,) = {x}, then
L, He{x} % Hyyy(x) € D({x} x Hy(x)). The set L., = {x}x H/x) belongs to Q
and (Ly, ooy Ly Ly y) € Pray since Ly 0 H o= {x} X H(x). Thus the lemma
applies. For each a<w, the set & # @, because {x}x H{x) e % whenever
H(x) # @. Hence there exists a sequence (L), in Q so that (L, Ly.{) € Z for each
k & N. In particular there is x € £ with ng(Ly) = {x} for allk e N.If (F,), is a sequence
of closed sets not belonging to I" and covering {x} x 4(x), we obtain that {x} x H(x)

cUn U F). Let L = UZ,: , which belongs to F(H). By the Baire category theorem,
r k -
there is re N and ie N such that Ln U, # @ and L n Hn U;cn™!(F,).
Thus there is ke N with L, n U; # @ and therefore n(L;,H N 7]55]’, since
Ly Lisy) €Z;. But w(lyy, 0 Upen(Ln HA U)cF,, which is the required
(ontradiction.

F,;-sections of Borel sets. Let again E, F be compact metric spaces. In [3],
we obtained the following result: o

THEOREM 4. If A and B are analytic subsers of Ex F, then {x € E; A(x) is contamed
in an F,gset which is digjoint from B(x)} is coanalytic in E.

In this section, we will prove: .

THEOREM 5. Let A and B be analytic subsets of Ex F such that A(x) is contamed
in an F,g-set which is disjoint from B(x), for all x € E. Then A can be sepamted fram B
by a member of €,;. .

It clearly implies Theorem 2.

Assume B a fixed analytic subset of Ex F. Let B = U {‘1 By, be an aualytlc

representation of B, where the B, are closed in ExF and Byv1 =By, By
induetion on a<w,, we define for each ne # a class 2%(r) of subsets of ExF,
by taking: .
P%n) = {DcExF; D B, = @}
9%(n) = {DcEx F; for each p e NV there is a countable closed oovermg (F)
of D such that D F, e U D, p) for each re N}.

Lemma 18, Let A bean analytzc subset of Ex F. Then for each ¢<w, and 7 € 52
the set I*(m)(d) = {Le K(ExF); AnL¢ 2%m)} is a member of P*.

PTRTRS
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Proof. We proceed by induction on ¢ <w;. Let (0,), be a decreasing sequence
of open sets containing B, such that B, = ﬂ 0,. Then

{Le K(ExF); ANLA B, # @}
= ﬂ{Leé(ExF), LnAnO, @}

rmy(4) =

and hence £ -analytic by Lemma 6. Let now the property be established for all o< B.
Using the definition of @%(n), we obtain that I'*(n)(4) = U {Le K (EXF); AnL

can not be covered by countably many closed sets not belonging to () L*(x, p)(A)}.
a<f
Since by induction hypothesis ( I'(w, p)(4) € 2%, it follows from Lemma 10 that
a<f

also I'*(1)(4) € #*. This completes the proof.
COROLLARY 19. If 4 Is analytic in Ex F, then for each a<w, and w e & the set
{xe E; {x}x A(x) e 2*(m)} is coanalytic.
Proof. It is the same as that of Corollary 11.
For each n € 4, take B(n) = |J Q B, . We pass to the first step in the proof
<y

of Theorem 5.

LemMA 20. Let A be an analytic subset of Ex F and assume that there exist a<w,
and me R such that {x}x A(x) e Z%(n) for each x & E. Then A can be separated
from B(n) by a member of C,4.

Proof. If & = 0, then /T(x)‘n B,(x) = @ for all xe E. Hence, by Lemma 4,
there exists a set D in % so that 4= D and D n B, = @. Let the property be true
for all a<f and assume {x} x 4 (x) € D*(n) for each x € E. Take p € N fixed. The set
{x} x 4 () can be covered by countably many closed sets (F,), with 4 ~ Fe U Q"(n, p)

or F,¢I'y=
obtain by Theorcm 3 a sequence (47), in €(I",) with Ac:U AP, Let re N be also

ﬂI““(n p)(A) for each xe E. Because I', e #* by Lcmma 18, we

fixed. Since for each xe E, the set k\}xft”(x)gél“,,, thexe exists a<f such that
{x}x (47 0 A)(x) € 9°(x, p). Hence, using Corollary 19, the sets C(r,p, )
= {xe E; {x}x (4] n A)(x) & @*(n, p)} are coanalytic and they cover £. Therefore
there is a sequence (B(r,p,®)),<,, of disjoint Borel sets satisfying B(r, p, o)
cC(r,p,0) and E = UB(: p.o). For each a<fl, we introduce the set Aypa

=Al'nAn(B(rp, ot)>< F) which is still analytic. Because {x} % A,,,(x) & 9%, p)
for each x e E, the induction hypothesis applics. Thus we obtain a member D,
of ©,; separating A,,, from B(x, p).
If we define D,, = Uﬂ [Dype 0 (B(r, p, &) x F)], it is easily scen that D,, is also
a<

5o Dyy2 Al 0 A and D,, " B(n, p) = @. The set
=UAin N [(ExF)N4Y) v D,,]
r r
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belongs to %5, D,>4 and D, B(r,p) = &. We only have to take

D=[(D,.
4

The proof of Theorem 5 will be complete if the following property holds:

LemMA 21. If A is an analytic subset of E x F, then one of the following 2 alternatives
must, occur:

1. There exists a<w, such that {x}x A(x) e 9%(¢) for all xe E.

2. There exists x € E such that no F,psubset of F separates A(x) from B(x).

Proof. There is a compact metric space G and a Gy-subset H of Ex Fx G so
that 4 = n(H), where n: ExFxG— ExF is the projection. Take a countable
base (U,), for the topology of Ex Fx G. Let (c.), be the standard ordering of %.
We will again make use of Lemma 5. We introduce for each k & N and < w, a subset
S of [Nx F(H)]

&% consists of the elements (Py» K,) of Nx F(H) such that:

1. K, # @.

2. There is some x € E with K,={x}x FxG.

3. If Uis open in ExFxG and Un K, # @ then

n(UNK) N AED(p,) .
If ¢, =(d,n) with de Z# and neN, then &%
(Per> Kedr<rer OF [N% £(H)]" such that:
LUNK; #@ = K, # 9.
2. n(Ky)en(K, 0 T,
3. f Uis open in EXFxG and Un K, # @, then

consists of the elements

7?(?}_(\7{;5 NA ¢ 9“(17(,” '--1Pd1pdn) .

We claim that the conditions 1, 2, 3 of Lemma 5 are satisfied:

L In fact &, is closed in [Nx F(H)J :

2. Is obviously satisfied.

3. Assume o = (p,,, K. )1g1<x an element of [NxF(H)]" w:th alley’,“
for each I'=1,.., k. Now ¢, = (¢, n) for some 1= 1,.,k and neN. If
Unk, =@, let e [N x F(H)]** be given by i}k = o and 5., = (p, ¢), where

PEN is chosen arbitrarily Clear]y 16 Piey. Assume now U, n Kc, s @. Because

some p & N such that thcre is no countable cIosed covering (F,), of 1:(U nkK)n A

with n(U,, nK ) NANFe 9’(17,,,, vy Pepp) for all reN. Remark that
Tr(U,, P Kc,) ~ A is the image of n"‘(n(U nK, )) A-H by n. A standard argoment
yields us a nonempty closed subset Y of n‘l(n(U n K,)) N H so that

AUV AU, 0 Ky 0 AED(Pys s Pers P) »
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whenever U is open in ExFxG and UnY s @. It is clear that Ye F(H). Let
1€ [Nx F(H)**! be given by /k = o and 1,4, = (p, Y), which is in &%, .
Thus Lemma 5 applies and we have to distinguish 2 cases:

Case 1. There is n<w, with & = @.

Take o = 7+1 and assume the existence of xe £ with {x}x A(x) ¢ 2%(p).
Since {x}x 4(x) = n(({x}x FxG) n H), an integer p, and a_nonempty closed
subset ¥ of ({x} x Fx G) n H can be found with ({x} x A(x)) n z(Y A U) ¢ 2%(p,)
whenever U is open in ExFxG and UnY # @. It follows that (p,, V)e &,
a contradiction.

Case IL There is ¢ e [Nx F(H)]Y such that ¢k & &7 for each ke N,

Let & = (p,, K,)ceq and take x € E such that K, ={x} x Fx G. It is clear that ¢
satisfies the following properties:

1. VeeR: K.c{x}xFxG.

2. K, # @.

3. Yee &, YneN: n(K,)en(K, nU,).

4. Veed, YneN: U,n K. # 9B = B, ., . ~n«(K,) #* 0.

It is shown in [3] that under this hypothesis, no F, ;- subset of F separates A(x)
from B(x).

Acknowledgment. I am indebted to M. Talagrand, who brought [13] to my
attention and suggested a similar result in the F,, situation.
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