It is easy to write formula $\psi(x,y,z,X,Y,Z_1,Z_2,Z_3)$ in the topological language stating (in T) that $x,y\in X$ and $X\in Z_1^*$, $Y\in Z_2^*$, $x\sim z \pmod{Z_2}$ and there exists $y^1\in Y$ such that $y\sim y^1 \pmod{Z_3}$ and $y^1\sim z \pmod{Z_1}$.

In order to interpret DL in T it is enough to find $X, Y, Z_1, Z_2, Z_3 \subset \mathbb{R}^2$ such that $|X| = 2^{\aleph_0}$ and ψ defines a one-one correspondence between $\{\langle x, y \rangle \colon x, y \in X\}$ and $\{z \colon z \in \mathbb{R}^2\}$. Let Q be the set of rational numbers. Choose $X = \mathbb{R} \times \{0\}$, $Y = \{0\} \times \mathbb{R}$, $Z_1 = \mathbb{R} \times Q$, $Z_2 = Q \times \mathbb{R}$ and $Z_3 = \{\langle a, b \rangle \colon a - b \in Q\}$. Then $\psi(x, y, z, X, Y, Z_1, Z_2, Z_3)$ holds iff there exist $a, b \in \mathbb{R}$ such that $x = \langle a, 0 \rangle$, $y = \langle b, 0 \rangle$ and $z = \langle a, b \rangle$.

References

- A. Grzegorczyk, Undecidability of some topological theories, Fund. Math. 38 (1951), pp. 137–152.
- [2] Y. Gurevich, Monadic theory of order and topology 1 (Abstract), J. Symb. Logic 42 (1977), p. 141.
- [3] Monadic theory of order and topology 2, Israel J. Math. (1979).
- [4] G. W. Henson, C. G. Jockush, Jr., L. A. Rubel and G. Takeuti, First order topology, Dissertationes Math. 143 (1977), p. 44.
- [5] M. O. Rabin, Decidability of the second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), pp. 1-35.
- [6] S. Shelah, The monadic theory of order, Ann. of Math. 102 (1975), pp. 379-419.

Accepté par la Rédaction le 26, 9, 1977

Borel sets with $F_{\sigma\delta}$ -sections

1

J. Bourgain (Brussel)

Abstract. Let E, F be compact metric spaces. We characterize Borel sets A in $E \times F$ with $F_{\sigma\delta}$ -sections.

Introduction. We consider two fixed compact metric spaces E and F. The class $\mathscr C$ will consist of the Borel subsets A of $E \times F$ such that for each $x \in E$ the section $A(x) = \{y \in F; (x, y) \in A\}$ is closed in F. We will prove the following:

THEOREM 1. If A is a Borel subset of $E \times F$ such that each section A(x) is $F_{\sigma\delta}$ in F, then A belongs to the class $\mathscr{C}_{\sigma\delta}$.

This is an extension of the work of J. Saint-Raymond (see [13]), who established: THEOREM 2. If a is a Borel subset of $E \times F$ such that each section A(x) is F_{σ} in F, then A belongs to the class \mathscr{C}_{σ} .

Theorem 1 is also related to my earlier paper [2].

Preliminaries. N will denote the set of all positive integers. Let $\mathscr{R}=\bigcup_k N^k$, taking $N^0=\{\varnothing\}$. Thus \mathscr{R} consists of the finite complexes of integers. If $c\in\mathscr{R}$, let |c| be the length of c. If $c,d\in\mathscr{R}$, we write c< d if c is an intial section of d. Let $(p_k)_k$ be an enumeration of all prime numbers. If we associate 0 to \varnothing and the integer $p_1^{n_1}\dots p_k^{n_k}$ to the complex $c=(n_1,\dots,n_k)$, a one-one map of \mathscr{R} into N is established. The induced ordering of \mathscr{R} will be called the standard ordering. Let $\mathscr{N}=N^N$. If $v\in\mathscr{N}$ and $c\in\mathscr{R}$, we write c< v if c is an initial section of v.

If L is a compact metric space, then $\underline{K}(L)$ consists of all closed subsets of L and is equipped with the exponential or Victoris topology. This topology is compact metrizable. I recall the following result (see [7]).

LEMMA 1. Let P be a Polish subspace of the compact metric space L. Then the subspace F(P) of K(L) consisting of those compact sets K in L such that $K = K \cap P$ is Polish.

^{5 -} Fundamenta Mathematicae T. CVII/2

A pavage $\mathscr P$ on a set Ω will be a family of subsets of Ω containing the empty set. A subset of Ω is said to be $\mathscr P$ -analytic if it is the result of Souslin operation performed on members of $\mathscr P$. For more details, I refer to [7].

I also remember the separation theorem of Novikov, which will be often used in this paper:

LEMMA 2. Let $(A_n)_n$ be a sequence of analytic subsets of the Polish space P satisfying $\bigcap_n A_n = \emptyset$. Then there exists a sequence $(B_n)_n$ of Borel subsets of P such that $A_n \subset B_n$ for each n and $\bigcap_n B_n = \emptyset$.

The reader can find a prove of this result in [7].

If A is a subset of $E \times F$, let \overline{A}^s be the subset of $E \times F$ defined by $\overline{A}^s(x) = A(x)$ for $x \in E$. Consider for each $r \in N$ a finite covering $(U_{rl})_i$ of F by open sets with diameter less than 2^{-r} . It is easily verified that $\overline{A}^s = \bigcap_{r \in I} \bigcup_i [\pi_E(A \cap (E \times U_{rl})) \times \overline{U}_{rl}]$. Therefore we obtain:

LEMMA 3. If A is analytic in $E \times F$, then also \overline{A}^s is analytic.

LEMMA 4. If A and B are analytic in $E \times F$ and $\overline{A}^s \cap B = \emptyset$, then there exists a member C of $\mathscr C$ such that $A \subset C$ and $B \cap C = \emptyset$.

Proof. Take the open set U_{ri} as before. For each $r \in N$ the set

$$S_r = B \cap \bigcup_i \left[\pi_E (A \cap (E \times U_{ri})) \times \overline{U}_{ri} \right]$$

is analytic in $E \times F$. Since $\bigcap_r S_r = \emptyset$, a sequence $(T_r)_r$ of Borel subsets of $E \times F$ is obtained such that $S_r \subset T_r$ for each r and $\bigcap_r T_r = \emptyset$. Now, for each r and each i, we have that $[\pi_E(A \cap (E \times U_{rl})) \times \overline{U}_{rl}] \cap (B \setminus T_r) = \emptyset$ and thus $\pi_E(A \cap (E \times U_{rl}))$ and $\pi_E((B \setminus T_r) \cap (E \times \overline{U}_{rl}))$ are disjoint analytic sets. Therefore there exist Borel sets B_{ri} in E with $A \cap (E \times U_{rl}) \subset B_{ri} \times \overline{U}_{rl} \subset ((E \times F) \setminus B) \cup T_r$. For each $r \in N$, take $C_r = \bigcup_i (B_{ri} \times \overline{U}_{rl})$, which belongs to $\mathscr C$. Then $A \subset C_r$ and $C_r \cap (B \setminus T_r) = \emptyset$. The set $C = \bigcap_i C_r$ satisfies the required properties.

A result about transfinite systems. The proof of various results in the remainder of the text is considerably shortened by the use of the following lemma:

Lemma 5. Let for each $k \in \mathbb{N}$ a Polish space P_k be given. Assume for all $k \in \mathbb{N}$ and $\alpha < \omega_1$ a subset \mathscr{S}_k^{α} of $\prod_{i=1}^k P_i$ be defined, such that following conditions are satisfied:

- 1. If $k \in \mathbb{N}$, then \mathcal{S}_k^0 is analytic in $\prod_{l=1}^k P_l$.
- 2. If $k \in \mathbb{N}$ and $\alpha < \beta$, then $\mathcal{G}_k^{\beta} \subset \mathcal{G}_k^{\alpha}$.
- 3. If $k \in \mathbb{N}$, $\alpha < \omega_1$ and $\sigma \in \prod_{l=1}^k P_l$ satisfies $\sigma | l \in \mathcal{S}_1^{\alpha+1}$ for each $l=1,\ldots,k$, then there exists $i \in \mathcal{S}_{k+1}^{\alpha}$ with $\sigma = i | k$.

Proof. If $\pi \in \mathcal{R}$, let $\mathcal{N}(\pi) = \{ v \in \mathcal{N}; \ \pi < v \}$. For each $k \in \mathbb{N}$, let $\varphi_k : \mathcal{N} \to \prod_{i=1}^k P_i$ be a continuous map with image \mathcal{S}_k^0 .

By induction we will define for every $k \in N$ elements $\pi_{1k}, ..., \pi_{kk}$ of N^k , such that the following conditions are satisfied:

1. $\pi_{lk} = \pi_{l,k+1} | k \text{ if } k \ge l.$

2. For each $\alpha < \omega_1$, there exists $\sigma \in \prod_{l=1}^{\kappa} P_l$ so that $\sigma | l \in \varphi_l(\mathcal{N}(\pi_{lk})) \cap \mathcal{S}_l^{\pi}$ for each l = 1, ..., k.

Since $\mathscr{S}_1^n \neq \emptyset$ for every $\alpha < \omega_1$ and $\mathscr{S}_1^0 = \bigcup_p \varphi_1(\mathscr{N}(p))$, there must be some $\pi_{11} \in N$ such that $\varphi_1(\mathscr{N}(\pi_{11})) \cap \mathscr{S}_1^n \neq \emptyset$ for each $\alpha < \omega_1$. Assume now $\pi_{1k}, ..., \pi_{kk}$ obtained. If $\alpha < \omega_1$, then there exists $\sigma \in \prod_{l=1}^k P_l$ so that $\sigma|l \in \varphi_l(\mathscr{N}(\pi_{lk})) \cap \mathscr{S}_1^{n+1}$ for each l=1,...,k. Therefore there is $i \in \mathscr{S}_{k+1}^n$ with $i|k=\sigma$ and thus $i|l \in \varphi_l(\mathscr{N}(\pi_{lk})) \cap \mathscr{S}_1^n$ for each l=1,...,k. For l=1,...,k we have $\varphi_l(\mathscr{N}(\pi_{lk})) = \bigcup_p \varphi_l(\mathscr{N}(\pi_{lk})) \cap \mathscr{S}_1^n$ and also $\mathscr{S}_{k+1}^0 = \bigcup_{n \neq N} \sum_{k=1}^k \varphi_{k+1}(\mathscr{N}(\pi))$. Again there must exist $p_1,...,p_k \in N$ and $\pi_{k+1,k+1} \in N^{k+1}$ such that for each $\alpha < \omega_1$ there is $\sigma \in \prod_{l=1}^k P_l$ with $\sigma|l \in \varphi_l(\mathscr{N}(\pi_{lk},p_l)) \cap \mathscr{S}_{k+1}^n$ for each l=1,...,k and $\sigma \in \varphi_{k+1}(\mathscr{N}(\pi_{k+1,k+1})) \cap \mathscr{S}_{k+1}^n$. For every l=1,...,k let $\pi_{l,k+1} = (\pi_{lk},p_l)$. Then the construction is complete. For each $l \in N$, let $\pi_l \in \mathscr{N}$ be defined by $\pi_l|k=\pi_{lk}$ if $k \geqslant l$. Obviously $\varphi_l(\pi_l) \in \mathscr{S}_1^0$. If $k \geqslant l+1$, then $[\varphi_l(\mathscr{N}(\pi_{lk})) \times P_{l+1}] \cap \varphi_{l+1}(\mathscr{N}(\pi_{l+1,k})) \neq \mathscr{O}$, implying $\varphi_{l+1}(\pi_{l+1})|l=\varphi_l(\pi_l)$. Hence there is $\xi \in \prod_k P_k$ satisfying $\xi|k=\varphi_k(\pi_k)$ for each $k \in N$ and the lemma is established.

Results about closed coverings. Let $\mathscr P$ be the pavage on $\underline{\underline{K}}(E\times F)$ consisting of the open subsets of $K(E\times F)$ which are of the form $\{L\in\underline{\underline{K}}(E\times F);\ L\cap\Omega\neq\emptyset\}$, where Ω ranges over the open sets in $E\times F$. Let P^* be the set of $\mathscr P$ -analytic subsets of $\underline{K}(E\times F)$.

The following two lemma's are obvious.

LEMMA 6. If A is an analytic subset of $E \times F$, then the set $\{L \in \underline{K}(E \times F); L \cap A \neq \emptyset\}$ is a member of \mathscr{P}^* .

LEMMA 7. If $\Gamma \in \mathscr{P}^*$, $L \in \Gamma$ and $M \in \underline{K}(E \times F)$ contains L, then $M \in \Gamma$.

LEMMA 8. Let $\Gamma \in \mathcal{P}^*$ and let A be an analytic subset of $E \times F$ such that A(x) is closed for each $x \in E$. Then $\{x \in E; \{x\} \times A(x) \in \Gamma\}$ is analytic.

Proof. There is a system $(\Omega_n)_{n\in\mathbb{N}}$ of open subsets of $E\times F$ such that $\Gamma=\bigcup_{\nu}\bigcap_{r}\Gamma_{\nu|r}$, where $\Gamma_{\nu|r}=\underbrace{K}\{L\in(E\times F);\ L\cap\Omega_{\nu|r}\neq\emptyset\}$. For each $r\in N$, let Σ_r be the subset

of $\mathcal{N} \times E \times F$ defined by $\Sigma_r(\nu, x) = A(x) \cap \Omega_{\nu|r}(x)$. It is clear that Σ_r is analytic in $\mathcal{N} \times E \times F$. Hence $\pi_E(\bigcap \pi_{\mathcal{N} \times E}(\Sigma_r))$ is analytic in E. But this set is precisely

$$\left\{x\in E;\ \left\{x\right\}\times A(x)\in \Gamma\right\}\,.$$

If $\Gamma \in \mathscr{P}^*$, let $\mathscr{C}(\Gamma)$ consist of the members A of \mathscr{C} such that $\{x\} \times A(x) \notin \Gamma$ for each $x \in E$.

Lemma 9. Let $\Gamma \in \mathscr{P}^*$ and let S be analytic in $E \times F$ such that S(x) is closed and $\{x\} \times S(x) \notin \Gamma$ for each $x \in E$. Then there exists $T \in \mathscr{C}(\Gamma)$ containing S.

Proof. There is a system $(\Omega_n)_{n\in\mathcal{R}}$ of open subsets of $E\times F$ such that $\Gamma=\bigcup_{\substack{\nu\\r}}\bigcap\Gamma_{\nu|r}$, where $\Gamma_{\nu|r}=\{L\in\underline{K}(E\times F);\ L\cap\Omega_{\nu|r}\neq\varnothing\}$. We will consider the space $F^*=\prod F_r$, where each $F_r=F$. If $r\in N$ and $\pi\in N^r$, take

$$\Omega_{\pi}^* = \{(x, y^*) \in E \times F^*; (x, y_r^*) \in \Omega_{\pi}\}$$

and define $\Omega^* = \bigcup_{v \in \Gamma} \bigcap_{r \in I} \Omega^*_{v|r}$ which is an analytic subset of $E \times F^*$. Let further for each $r \in N$ the set $S^*_r = \{(x, y^*) \in E \times F^*; (x, y^*_r) \in S\}$ and let $S^* = \bigcap_r S^*_r$. It is easy to deduce from the hypothesis that $S^* \cap \Omega^* = \emptyset$.

It follows that there is a sequence $(B_r^*)_r$ of Borel sets in $E \times F^*$ with $S_r^* \cap \Omega^* \subset B_r^*$ for each r and $\bigcap B_r^* = \emptyset$. Let $r \in N$ be fixed. Since $S_r^* \cap (\Omega^* \setminus B_r^*) = \emptyset$, we obtain that S and $\pi_{E \times F_r}(\Omega^* \setminus B_r^*)$ are disjoint analytic sets. We now use the fact that each section S(x) is closed to obtain a set T_r in $\mathscr G$ such that $S \subset T_r$ and $T_r \cap \pi_{E \times F_r}(\Omega^* \setminus B_r^*) = \emptyset$. If $T_r^* = \{(x, y^*) \in E \times F^*; (x, y_r^*) \in T_r\}$ then $T_r^* \cap (\Omega^* \setminus B_r^*) = \emptyset$, We claim that the set $T = \bigcap T_r$ satisfies. We only have to verify that $\{x\} \times T(x) \notin \Gamma$ for each $x \in E$. Assume not, then there is $v \in \mathscr N$ such that $T(x) \cap \Omega_{v|r}(x) \neq \emptyset$ for each $r \in N$. Therefore $\bigcap T_r^* \cap \Omega^* \neq \emptyset$, implying $\bigcap B_r^* \neq \emptyset$, a contradiction.

We will use the following stability property of \mathcal{P}^* :

LEMMA 10. Let $\Gamma \in \mathcal{P}^*$ and let A be an analytic subset of $E \times F$. If $A = \{L \in \underline{K}(E \times F); A \cap L \text{ can not be covered by countably many closed sets not belonging to } \Gamma \}$, then $A \in \mathcal{P}^*$.

Proof. Take a compact metric space G and a G_{σ} -subset H of $E \times F \times G$ satisfying $A = \pi(H)$, where $\pi \colon E \times F \times G \to E \times F$ is the projection. Let \mathscr{U} be a countable base for the topology of $E \times F \times G$. Let $L \in \underline{K}(E \times F)$ be fixed. Remark that $A \cap L = \pi(H \cap \pi^{-1}(L))$, where $H \cap \pi^{-1}(L)$ is a G_{δ} . It follows that $L \in \Lambda$ if and only if there exists a nonempty closed subset Y of $H \cap \pi^{-1}(L)$ such that if $U \in \mathscr{U}$ and $U \cap Y \neq \varnothing$, then $\overline{\pi(Y \cap U)} = \overline{\pi(Y \cap U)} \in \Gamma$. Hence $L \in \Lambda$ if and only if there exists a nonempty set M in $\underline{K}(E \times F \times G)$ satisfying:

- 1. $M \in F(H)$,
- 2. $\overline{\pi(M \cap U)} \in \Gamma$ whenever $U \in \mathcal{U}$ and $M \cap U \neq \emptyset$,
- 3. $\pi(M) \subset L$.

The set $\underline{K}(E \times F)$ consisting of the nonempty compact subsets of $E \times F$ belongs to \mathscr{P} . We will prove that the set $\mathscr{A} = \{(L, M) \in \underline{K}(E \times F) \times \underline{K}(E \times F \times G); M \neq \emptyset \text{ and } L, M \text{ satisfy } (1), (2), (3)\} \text{ is } \mathscr{P} \times \mathscr{K} \text{-analytic, where } \mathscr{K} \text{ is the pavage on } \underline{K}(E \times F \times G) \text{ consisting of the closed sets. Because } \Lambda = \pi_{\underline{k}(E \times F)}(\mathscr{A}), \text{ we will then obtain that } \Lambda \text{ is } \mathscr{P}\text{-analytic (see [7])}.$

- 1. Since $\underline{\underline{F}}(H)$ is a G_{δ} -subset of $\underline{\underline{K}}(E \times F \times G)$, $\underline{\underline{F}}(H)$ is \mathcal{K} -analytic.
- 2. Clearly $\{M \in \underline{K}(E \times F \times G); \ M \cap U = \emptyset\}$ belongs to \mathscr{K} . Because the map $\underline{K}(E \times F \times G) \to \underline{K}(E \times F); \ M \to \overline{\pi(M \cap U)}$ is \mathscr{P} -measurable, we obtain that $\{M \in \underline{K}(E \times F \times G); \ \overline{\pi(M \cap U)} \in \Gamma\}$ is \mathscr{K} -analytic.
- 3. Let $(V_i)_i$ be a countable base for the topology of $E \times F$. For each $i \in N$, we have that $\Gamma_i = \{L \in \underline{K}(E \times F); L \cap V_i \neq \emptyset\} \in \mathscr{P} \text{ and } \Delta_i = \{M \in \underline{K}(E \times F \times G); M \cap \pi^{-1}(V_i) = \emptyset\} \in \mathscr{K}$. But the set $\{(L, M) \in \underline{K}(E \times F) \times \underline{K}(E \times F \times G); \pi(M) \subset L\}$ is precisely $\bigcap_i [(\Gamma_i \times \underline{K}(E \times F \times G)) \cup (\underline{K}(E \times F) \times \Delta_i)]$ and hence $\mathscr{P} \times \mathscr{K}$ -analytic.

So the proof is complete.

Corollary 11. Let $\Gamma \in \mathcal{P}^*$ and let A be an analytic subset of $E \times F$. Then the set $\{x \in E; \{x\} \times A(x) \text{ can be covered by countably many closed sets not belonging to } \Gamma\}$ is coanalytic in E.

Proof. The set Λ considered in Lemma 10 is an analytic subset of $\underline{\underline{K}}(E \times F)$. We must consider $\{x \in E; \{x\} \times F \notin \Lambda\}$. We only have to remark that the map $E \to \underline{\underline{K}}(E \times F)$: $x \mapsto \{x\} \times F$ is continuous to complete the proof.

Combining Lemma 6 and Corollary 11 we obtain immediately

Corollary 12. Let A and B be analytic subsets of $E \times F$. Then the set $\{x \in E; A(x) \text{ is contained in an } F_{\sigma}\text{-set which is disjoint from } B(x)\}$ is coanalytic in E.

THEOREM 3. Let $\Gamma \in \mathscr{D}^*$ and let A be an analytic subset of $E \times F$. Assume that for each $x \in E$ the set $\{x\} \times A(x)$ can be covered by countably many closed sets not belonging to Γ . Then A is contained in a member of $\mathscr{C}(\Gamma)_{\sigma}$.

Before we pass to the proof of the theorem, let us mention the following easy corollary:

COROLLARY 13. Let A and B be analytic subsets of $E \times F$. Assume that A(x) is contained in an F_{σ} -set which is disjoint from B(x), for each $x \in E$. Then A can be separated from B by a member of \mathscr{C}_{σ} .

This result is due to J. Saint-Raymond (see [13]).

The remainder of this section is devoted to the proof of Theorem 3. Let G be a compact metric space and let H be a G_{δ} -subset of $E \times F \times G$ such that $A = \pi(H)$, where $\pi \colon E \times F \times G \to F$ is the projection. If $\mathscr H$ is a subset of H, take $D(\mathscr H) = \{(x, y, z) \in \mathscr H; \text{ for each neighborhood } U \text{ of } (x, y, z) \text{ the set } \{x\} \times \pi(\mathscr H \cap U)(x) \in F\}.$

Lemma 14. If \mathcal{H} is analytic, then $D(\mathcal{H})$ is analytic. If moreover B is a Borel subset of H with $D(\mathcal{H}) \subset B$, then $\pi(\mathcal{H} \setminus B)$ is contained in a member of $C(\Gamma)_{\sigma}$.

Proof. Let $(U_i)_i$ be a countable base for the topology of H. For each $i \in N$, the set $\pi(\mathcal{H} \cap U_i)^s$ is analytic by Lemma 3 and thus

$$E_i = \left\{ x \in E; \ \left\{ x \right\} \times \overline{\pi(\mathcal{H} \cap U_i)(x)} \notin \Gamma \right\}$$

is coanalytic by Lemma 8. Hence $D(\mathcal{H}) = \mathcal{H} \cup [(E_i \times F \times G) \cap U_i]$ is analytic. If $D(\mathcal{H}) \subset B$, then $\mathcal{H} \setminus B \subset \bigcup_i [(E_i \times F \times G) \cap U_i]$, where $\mathcal{H} \setminus B$ is analytic and each set $(E_i \times F \times G) \cap U_i$ coanalytic in $E \times F \times G$. Therefore there are analytic sets $(D_i)_i$ so that $D_i \subset (E_i \times F \times G) \cap U_i$ and $\mathcal{H} \setminus B = \bigcup_i D_i$. We obtain that $\pi(\mathcal{H} \setminus B) \subset \bigcup_i \pi(D_i)$. If $i \in N$ is fixed, then $\overline{\pi(D_i)^s}$ is an analytic set contained in $\overline{\pi(\mathcal{H} \cap U_i)^s} \cap (E_i \times F)$. It follows from the definition of E_i that $\{x\} \times \overline{\pi(D_i)}(x) \notin \Gamma$ for all $x \in E$. Applying Lemma 9 there exists $A_i \in \mathcal{C}(\Gamma)$ satisfying $\overline{\pi(D_i)^s} \subset A_i$. The set $\bigcup_i A_i$ satisfies.

Let $(H_{\alpha})_{\alpha < \omega_1}$ be the transfinite system obtained as following:

 $H_0 = H$

 $H_{\alpha+1} = D(H_{\alpha}).$

If γ is a limit ordinal, take $H_{\gamma} = \bigcap_{\alpha < \gamma} H_{\alpha}$.

It is easily verified that the sets $H_{\alpha}(x)$ are closed in H(x) for all $x \in E$ and the system $(H_{\alpha})_{\alpha < \omega_1}$ is decreasing. Using Lemma 14, we obtain

LEMMA 15. For each $\alpha < \omega_1$ the set H_{α} is analytic.

LEMMA 16. If $\alpha < \omega_1$ and B is a Borel subset of H containing H_α , then $\pi(H \setminus B)$ is contained in a member of $\mathscr{C}(\Gamma)_{\sigma}$.

Proof. By induction on $\alpha < \omega_1$. If $\alpha = 0$, then the statement is obvious. Let the statement be true for $\alpha < \omega_1$ and let B be a Borel subset of H containing $H_{\alpha+1} = D(H_{\alpha})$. By Lemma 14, we obtain D' in $\mathscr{C}(\Gamma)_{\sigma}$ with $\pi(H_{\alpha} \setminus B) \subset D'$. Hence H_{α} is contained in $B \cup (\pi^{-1}(D') \cap H)$, which is still Borel. By induction hypothesis, there is D'' in $\mathscr{C}(\Gamma)_{\sigma}$ with $D'' \supset \pi(H \setminus (B \cup \pi^{-1}(D')))$.

Clearly $\pi(H \setminus B) \subset D' \cup D''$. Finally let γ be a limit ordinal and $(\alpha_n)_n$ an increasing sequence of ordinals converging to γ and satisfying the lemma. If B is a Borel set containing H_{γ} , then $\bigcap_n (H_{\alpha_n} \setminus B) = \emptyset$. Thus there is a sequence $(B_n)_n$ of Borel sets such that $H_{\alpha_n} \setminus B \subset B_n$ and $\bigcap_n B_n = \emptyset$. Let $n \in N$ be fixed. Since $H_{\alpha_n} \subset B \cup B_n$, we obtain D_n in $\mathscr{C}(\Gamma)_{\sigma}$ so that $\pi(H \setminus (B \cup B_n)) \subset D_n$. If we take $D = \bigcup_n D_n$, we get $\pi(H \setminus B) \subset D$, completing the proof.

It follows from the preceding lemma that if $H_{\alpha} = \emptyset$ for some $\alpha < \omega_1$, then A is contained in a member of $\mathscr{C}(\Gamma)_{\sigma}$. Thus it remains to prove:

LEMMA 17. There exists $\alpha < \omega_1$ such that $H_{\alpha} = \emptyset$.

Proof. Assume $H_{\alpha} \neq \emptyset$ for each $\alpha < \omega_1$. We take $Q = \{L \in \underline{F}(H); \pi_E(L) \text{ is a unique point of } E\}$, which is a Polish subspace of $\underline{K}(E \times F \times G)$. If $k \in N$ and

 $\alpha < \omega_1$, define $\mathscr{S}_k^x = \{(L_1, \dots, L_k) \in Q^k; L_1 \cap H \subset D(L_{l+1} \cap H) \text{ if } 1 \leq l < k \text{ and } L_k \cap H \subset H_n\}$. We verify that the conditions of Lemma 5 are satisfied.

- 1. We show that $Z = \{(L,M) \in Q^2 \colon L \cap H \subset D(M \cap H)\}$ is analytic in Q^2 . Let $(U_i)_i$ be a countable base for the topology of $E \times F \times G$. For each $i \in N$, consider $Z_i = [\{L \in Q \colon L \cap U_i = \emptyset\} \times Q] \cup [Q \times \{M \in Q \colon \overline{\pi(M \cap U_i)} \in \Gamma\}]$ which is easily seen to be analytic. Therefore Z is analytic, since $Z = \bigcap Z_i$.
 - 2. This follows immediately from the fact that $(H_{\alpha})_{\alpha < \omega_1}$ is decreasing.
- 3. Suppose $k \in \mathbb{N}$, $\alpha < \omega_1$ and $(L_1, \dots, L_k) \in \mathcal{S}_k^{\alpha+1}$. If $\pi_E(L_k) = \{x\}$, then $L_k \cap H \subset \{x\} \times H_{\alpha+1}(x) \in D(\{x\} \times H_{\alpha}(x))$. The set $L_{k+1} = \{x\} \times H_{\alpha}(x)$ belongs to Q and $(L_1, \dots, L_k, L_{k+1}) \in \mathcal{S}_{k+1}^{\alpha}$ since $L_{k+1} \cap H = \{x\} \times H_{\alpha}(x)$. Thus the lemma applies. For each $\alpha < \omega_1$ the set $\mathcal{S}_1^{\alpha} \neq \emptyset$, because $\{x\} \times H_{\alpha}(x) \in \mathcal{S}_1^{\alpha}$ whenever $H_{\alpha}(x) \neq \emptyset$. Hence there exists a sequence $(L_k)_k$ in Q so that $(L_k, L_{k+1}) \in Z$ for each $k \in \mathbb{N}$. In particular there is $x \in E$ with $\pi_E(L_k) = \{x\}$ for all $k \in \mathbb{N}$. If $(F_r)_r$ is a sequence of closed sets not belonging to Γ and covering $\{x\} \times A(x)$, we obtain that $\{x\} \times H(x) \subset \bigcup_r \pi^{-1}(F_r)$. Let $L = \bigcup_k L_k$, which belongs to F(H). By the Baire category theorem, there is $r \in \mathbb{N}$ and $i \in \mathbb{N}$ such that $L \cap U_i \neq \emptyset$ and $L \cap H \cap U_i \subset \pi^{-1}(F_r)$.

Thus there is $k \in N$ with $L_k \cap U_i \neq \emptyset$ and therefore $\pi(L_{k+1} \cap U_i) \in \Gamma$, since $cL_k, L_{k+1}) \in Z_i$. But $\overline{\pi(L_{k+1} \cap U_i)} = \overline{\pi(L \cap H \cap U_i)} = F_r$, which is the required (ontradiction.

 $F_{\sigma\delta}$ -sections of Borel sets. Let again E, F be compact metric spaces. In [3], we obtained the following result:

THEOREM 4. If A and B are analytic subsets of $E \times F$, then $\{x \in E; A(x) \text{ is contained in an } F_{\sigma \delta}\text{-set which is disjoint from } B(x)\}$ is coanalytic in E.

In this section, we will prove:

THEOREM 5. Let A and B be analytic subsets of $E \times F$ such that A(x) is contained in an $F_{\sigma\delta}$ -set which is disjoint from B(x), for all $x \in E$. Then A can be separated from B by a member of $\mathscr{C}_{\sigma\delta}$.

It clearly implies Theorem 2.

Assume B a fixed analytic subset of $E \times F$. Let $B = \bigcup_{\mathbf{v}} \bigcap_{k} B_{\mathbf{v}|k}$ be an analytic representation of B, where the $B_{\mathbf{v}|k}$ are closed in $E \times F$ and $B_{\mathbf{v}|k+1} \subset B_{\mathbf{v}|k}$. By induction on $\alpha < \omega_1$, we define for each $\pi \in \mathcal{R}$ a class $\mathscr{D}^{\alpha}(\pi)$ of subsets of $E \times F$, by taking:

 $\mathcal{D}^{0}(\pi) = \{ D \subset E \times F; \ \overline{D} \cap B_{\pi} = \emptyset \}.$

 $\mathcal{D}^{\beta}(\pi) = \{ D \subset E \times F; \text{ for each } p \in N \text{ there is a countable closed covering } (F_r)_r \text{ of } D \text{ such that } D \cap F_r \in \bigcup \mathcal{D}^{\alpha}(\pi, p) \text{ for each } r \in N \}.$

LEMMA 18. Let A be an analytic subset of $E \times F$. Then for each $\alpha < \omega_1$ and $\pi \in \mathcal{R}$ the set $\Gamma^{\alpha}(\pi)(A) = \{L \in \underline{K}(E \times F); A \cap L \notin \mathcal{D}^{\alpha}(\pi)\}$ is a member of \mathcal{P}^* .

Proof. We proceed by induction on $\alpha < \omega_1$. Let $(O_n)_n$ be a decreasing sequence of open sets containing B_n such that $B_n = \bigcap_n \overline{O}_n$. Then

$$\Gamma^{0}(\pi)(A) = \{ L \in \underline{\underline{K}}(E \times F); \ \overline{A \cap L} \cap B_{\pi} \neq \emptyset \}$$
$$= \bigcap_{\pi} \{ L \in \underline{\underline{K}}(E \times F); \ L \cap A \cap O_{\pi} \neq \emptyset \}$$

and hence \mathscr{P} -analytic by Lemma 6. Let now the property be established for all $\alpha < \beta$. Using the definition of $\mathscr{D}^{\beta}(\pi)$, we obtain that $\Gamma^{\beta}(\pi)(A) = \bigcup_{p} \{L \in \underline{K}(E \times F); A \cap L \text{ can not be covered by countably many closed sets not belonging to } \bigcap_{\alpha < \beta} \Gamma^{\alpha}(\pi, p)(A) \}$. Since by induction hypothesis $\bigcap_{\alpha < \beta} \Gamma^{\alpha}(\pi, p)(A) \in \mathscr{D}^*$, it follows from Lemma 10 that also $\Gamma^{\beta}(\pi)(A) \in \mathscr{D}^*$. This completes the proof.

COROLLARY 19. If A is analytic in $E \times F$, then for each $\alpha < \omega_1$ and $\pi \in \mathcal{R}$ the set $\{x \in E; \{x\} \times A(x) \in \mathcal{D}^{\alpha}(\pi)\}$ is coanalytic.

Proof. It is the same as that of Corollary 11.

For each $\pi \in \mathcal{R}$, take $B(\pi) = \bigcup_{\pi < \nu} \bigcap_k B_{\nu|k}$. We pass to the first step in the proof of Theorem 5.

LEMMA 20. Let A be an analytic subset of $E \times F$ and assume that there exist $\alpha < \omega_1$ and $\pi \in \mathcal{R}$ such that $\{x\} \times A(x) \in \mathcal{D}^*(\pi)$ for each $x \in E$. Then A can be separated from $B(\pi)$ by a member of $C_{\sigma\delta}$.

Proof. If $\alpha=0$, then $A(x)\cap B_{\pi}(x)=\varnothing$ for all $x\in E$. Hence, by Lemma 4, there exists a set D in $\mathscr C$ so that $A\subset D$ and $D\cap B_{\pi}=\varnothing$. Let the property be true for all $\alpha<\beta$ and assume $\{x\}\times A(x)\in\mathscr D^{\beta}(\pi)$ for each $x\in E$. Take $p\in N$ fixed. The set $\{x\}\times A(x)$ can be covered by countably many closed sets $(F_r)_r$ with $A\cap F_r\in \bigcup_{\alpha<\beta}\mathscr D^{\alpha}(\pi,p)$ or $F_r\notin \Gamma_p=\bigcap_{\alpha<\beta}\Gamma^{\alpha}(\pi,p)(A)$ for each $x\in E$. Because $\Gamma_p\in\mathscr D^*$ by Lemma 18, we obtain by Theorem 3 a sequence $(A_r^p)_r$ in $\mathscr C(\Gamma_p)$ with $A\subset \bigcup_r A_r^p$. Let $r\in N$ be also fixed. Since for each $x\in E$, the set $\{x\}\times A_r^p(x)\notin \Gamma_p$, there exists $\alpha<\beta$ such that $\{x\}\times (A_r^p\cap A)(x)\in \mathscr D^{\alpha}(\pi,p)$. Hence, using Corollary 19, the sets $C(r,p,\alpha)=\{x\in E;\ \{x\}\times (A_r^p\cap A)(x)\in \mathscr D^{\alpha}(\pi,p)\}$ are coanalytic and they cover E. Therefore there is a sequence $(B(r,p,\alpha))_{\alpha<\omega_1}$ of disjoint Borel sets satisfying $B(r,p,\alpha)\subset C(r,p,\alpha)$ and $E=\bigcup_{\alpha<\beta}B(r,p,\alpha)$. For each $\alpha<\beta$, we introduce the set $A_{rp\alpha}=A_r^p\cap A\cap (B(r,p,\alpha)\times F)$, which is still analytic. Because $\{x\}\times A_{rp\alpha}(x)\in \mathscr D^{\alpha}(\pi,p)$ for each $x\in E$, the induction hypothesis applies. Thus we obtain a member $D_{rp\alpha}$ of $\mathscr C_{\sigma\delta}$ separating $A_{rp\alpha}$ from $B(\pi,p)$.

If we define $D_{rp} = \bigcup_{\alpha < \beta} [D_{rp\alpha} \cap (B(r, p, \alpha) \times F)]$, it is easily seen that D_{rp} is also $\mathscr{C}_{\sigma\delta}$, $D_{rp} \supset A_r^p \cap A$ and $D_{rp} \cap B(\pi, p) = \emptyset$. The set

$$D_{p} = \bigcup_{r} A_{r}^{p} \cap \bigcap_{r} \left[\left((E \times F) \backslash A_{r}^{p} \right) \cup D_{rp} \right]$$

The proof of Theorem 5 will be complete if the following property holds: LEMMA 21. If A is an analytic subset of $E \times F$, then one of the following 2 alternatives must occur:

- 1. There exists $\alpha < \omega_1$ such that $\{x\} \times A(x) \in \mathcal{D}^{\alpha}(\varphi)$ for all $x \in E$.
- 2. There exists $x \in E$ such that no $F_{\sigma\delta}$ -subset of F separates A(x) from B(x).

Proof. There is a compact metric space G and a G_{σ} -subset H of $E \times F \times G$ so that $A = \pi(H)$, where $\pi \colon E \times F \times G \to E \times F$ is the projection. Take a countable base $(U_n)_n$ for the topology of $E \times F \times G$. Let $(c_k)_k$ be the standard ordering of \mathcal{R} . We will again make use of Lemma 5. We introduce for each $k \in N$ and $\alpha < \omega_1$ a subset \mathcal{S}_k^x of $[N \times F(H)]^k$:

 \mathscr{S}_1^{α} consists of the elements $(p_{\varphi}, K_{\varphi})$ of $N \times \underline{F}(H)$ such that:

- 1. $K_{\varphi} \neq \emptyset$.
- 2. There is some $x \in E$ with $K_{\varphi} \subset \{x\} \times F \times G$.
- 3. If U is open in $E \times F \times G$ and $U \cap K_{\varphi} \neq \emptyset$ then

$$\overline{\pi(U\cap K_{\varphi})}\cap A\notin \mathscr{D}^{\alpha}(p_{\varphi}).$$

If $c_k = (d, n)$ with $d \in \mathcal{R}$ and $n \in N$, then \mathcal{S}_k^{α} consists of the elements $(p_{c_l}, K_{c_l})_{1 \le l \le k}$ of $[N \times \underline{F}(H)]^k$ such that:

- 1. $U_n \cap K_d \neq \emptyset \Rightarrow K_{dn} \neq \emptyset$.
- 2. $\pi(K_{dn}) \subset \pi(K_d \cap \overline{U}_n)$.
- 3. If U is open in $E \times F \times G$ and $U \cap K_{dn} \neq \emptyset$, then

$$\overline{\pi(U\cap K_{dn})}\cap A\notin \mathscr{D}^{\alpha}(p_{\varphi},\ldots,p_{d},p_{dn}).$$

We claim that the conditions 1, 2, 3 of Lemma 5 are satisfied.

- 1. In fact \mathcal{S}_k is closed in $[N \times F(H)]^k$.
- 2. Is obviously satisfied.
- 3. Assume $\sigma = (p_{c_1}, K_{c_l})_{1 \le l \le k}$ an element of $[N \times \underline{F}(H)]^k$ with $\sigma | l \in \mathcal{F}_l^{+1}$ for each l = 1, ..., k. Now $c_{k+1} = (c_l, n)$ for some l = 1, ..., k and $n \in N$. If $U_n \cap K_{c_l} = \emptyset$, let $l \in [N \times \underline{F}(H)]^{k+1}$ be given by $l | k = \sigma$ and $l_{k+1} = (p, \varphi)$, where $p \in N$ is chosen arbitrarily. Clearly $l \in \mathcal{P}_{k+1}^{\alpha}$. Assume now $U_n \cap K_{c_l} \neq \emptyset$. Because $\sigma | l \in \mathcal{F}_l^{\alpha+1}$, we get $\overline{\pi(U_n \cap K_{c_l})} \cap A \notin \mathcal{D}^{\alpha+1}(p_{\varphi}, ..., p_{c_l})$. Therefore there must be some $p \in N$ such that there is no counted closed covering (F_r) , of $\overline{\pi(U_n \cap K_{c_l})} \cap A$ with $\overline{\pi(U_n \cap K_{c_l})} \cap A \cap F_r \in \mathcal{D}^{\alpha}(p_{\varphi}, ..., p_{c_l}, p)$ for all $r \in N$. Remark that $\overline{\pi(U_n \cap K_{c_l})} \cap A$ is the image of $\pi^{-1}(\overline{\pi(U_n \cap K_{c_l})}) \cap H$ by π . A standard argument yields us a nonempty closed subset Y of $\pi^{-1}(\overline{\pi(U_n \cap K_{c_l})}) \cap H$ so that

$$\pi(U\cap Y)\cap \overline{\pi(U_n\cap K_{c_1})}\cap A\notin \mathscr{D}^{\alpha}(p_{\varphi},...,p_{c_1},p)$$
,

whenever U is open in $E \times F \times G$ and $U \cap Y \neq \emptyset$. It is clear that $\overline{Y} \in F(H)$. Let $i \in [N \times F(H)]^{k+1}$ be given by $i | k = \sigma$ and $i_{k+1} = (p, \overline{Y})$, which is in $\widehat{\mathcal{S}}_{k+1}^{\alpha}$.

Thus Lemma 5 applies and we have to distinguish 2 cases:

Case I. There is $\eta < \omega_1$ with $\mathcal{S}_1^{\eta} = \emptyset$.

Take $\alpha = n+1$ and assume the existence of $x \in E$ with $\{x\} \times A(x) \notin \mathcal{D}^{\alpha}(\alpha)$ Since $\{x\} \times A(x) = \pi((\{x\} \times F \times G) \cap H)$, an integer p_{φ} and a nonempty closed subset Y of $(\{x\} \times F \times G) \cap H$ can be found with $(\{x\} \times A(x)) \cap \overline{\pi(Y \cap U)} \notin \mathcal{D}^{\eta}(p_{-})$ whenever U is open in $E \times F \times G$ and $U \cap Y \neq \emptyset$. It follows that $(p_{\alpha}, \overline{Y}) \in \mathscr{S}^{\eta}$. a contradiction.

Case II. There is $\xi \in [N \times F(H)]^N$ such that $\xi | k \in \mathcal{S}_k^0$ for each $k \in N$.

Let $\xi = (p_c, K_c)_{c \in \mathcal{R}}$ and take $x \in E$ such that $K_{\varphi} \subset \{x\} \times F \times G$. It is clear that ξ satisfies the following properties:

- 1. $\forall c \in \mathcal{R}: K_c \subset \{x\} \times F \times G$.
- 2. $K_m \neq \emptyset$.
- 3. $\forall c \in \mathcal{R}, \ \forall n \in \mathbb{N}: \ \pi(K_{cn}) \subset \pi(K_c \cap \overline{U}_n).$
- 4. $\forall c \in \mathcal{R}, \ \forall n \in \mathbb{N}: \ U_n \cap K_c \neq \emptyset \Rightarrow B_{p_n, \dots, p_c, p_{cn}} \cap \pi(K_{cn}) \neq \emptyset.$

It is shown in [3] that under this hypothesis, no $F_{\sigma\delta}$ -subset of F separates A(x)from B(x).

Acknowledgment. I am indebted to M. Talagrand, who brought [13] to my attention and suggested a similar result in the $F_{\sigma\delta}$ situation.

References

- [1] V. Ja. Arsenin, A. A. Liapunov, and E. A. Cegolkov, Arbeiten zur descriptiven Mengenlehre, Mathematische Forschungsberichte, Berlin 1955.
- [2] J. Bourgain, Decompositions in the product of a measure space and a Polish space, Fund. Math. 105 (1979), pp. 61-71.
- [3] $F_{\sigma\delta}$ -sections of Borel sets, Fund. Math. 107 (1980), pp. 129-133.
- [4] J. P. R. Christensen, Topology and Borel Structures, North-Holland, Amsterdam 1974, p. 133.
- [5] M. M. Coban, On B-measurable sections, Soviet Math. Doklady, 13 (1972), pp. 1473-1477.
- [6] C. Dellacherie, Ensembles analytiques. Capacités. Measures de Hausdorff, Lecture Notes in Math. 295, Berlin-Heidelberg-New York 1972.
- [7] Ensembles analytiques: Théorèmes de séparation et applications, Lecture Notes in Math. 465, Berlin-Heidelberg-New York 1975.
- [8] Une démonstration du théorème de Souslin-Lusin, Lecture Notes in Math. 321, Berlin-Heidelberg-New York 1973.
- [9] Les dérivations en théorie descriptive des ensembles et le théorème de la borne, to appear.
- [10] F. Hausdorff, Set Theory, New York 1962.
- [11] Hoffman and J. Jørgensen, The theory of analytic sets, Aarhus Universitet Mathematic Inst., Various Publication Series 10 (1970).

[12] P. S. Novikov, Generalization of the second separation theorem, Doklady Akad. Nauk USSR 4 (1934), pp. 8-11.

[13] J. Saint-Raymond, Boréliens à coupes Ko, Bull. Soc. Math. France 104 (1976). pp. 389-400.

W. Sierpiński, Les ensembles projectifs et analytiques, Mémorial des Sciences Mathématiques 112, Paris 1950.

VRIJE UNIVERSITEIT BRUSSEL

Accepté par la Rédaction le 6, 10, 1977