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Certain hereditary properties and
metrizability in generalized ordered spaces

by

H. R. Bennett and D. J. Lutzer (Lubbock, Tex.)

Abstract. Using Bennett’s theorem that a quasi-developable paracompact p-space must
De metrizable we prove that any generalized ordered space whose every subspace is a p-space must
be metrizable. In addition we sharpen a recent theorem of van Wouwe by showing that, in a gener-
alized ordered space, Morita’s M-spaces, Borges’ w.4-spaces and Creede’s quasi-complete spaces
are mutually equivalent notions.

1. Tntroduction. A completely regular space X is a p-space if there is a se-
quence (% (n)) of collections of open subsets of BX equivalently, of any compact-
ification of X, each covering X, and having the property that for every xeX,
N {St(x, ¢o))l n=1}=X. (As usual, St(x, %(n) denotes | {Ge¥ ()] xeG})
The sequence (% (1) is called a pluming of X in the compactification. Spaces of this
type were introduced in [1] as part of the characterization of perfect pre-images
of metric spaces; more recently they have played a role in other parts of topology,
perhaps most notably in metrization theory.

Several recent papers have involved hereditary p-spaces, i.e., spaces whose
every subspace is a p-space [2]. The elegance of the results obtained amply justifies
asking the question, “Which p-spaces are hereditarily p-spaces?” A moment's
reflection shows that any p-space with a Gy-diagonal is hereditarily a p-space, but
beyond that easy observation, conditions which are sufficient to force a space to be
hereditarily a p-space are hard to find. In this paper we study generalized ordered !
spaces which arc hereditarily p-spaces. '

Recall that a generalized ordered space (GO space) is a Ty-space (X, T equipped
with a linear ordering such that there is a base of open sets for 77 whose every member
is order-convex (V). 1t is known ([12], 2.9) that the GO spaces are precisely those
spaces which can be topologically embedded as subspaces of linearly ordered top-
ological spaces (LOTS), i.¢., linearly ordered sets equipped with the usual open interval
topology.

Our paper is organized as follows. In Section 2 we sharpen a recent r;sult due

() A subset C is order-convex (in (X, <)) if {x ¢ X] agx<}=C whenever a,b ¢ C...
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to van Wouwe, proving that in the class of GO spaces, Morita’s M-spuces, Borges’
wd-spaces and Creede’s quasi-complete spaces are mutually equivalent notions,
(See Section 2 for relevant definitions and references. Van Wouwe’s theorem estab-
lished the equivalence of M-spaces and wA-spaces in the class of GO spaces.)
In Section 3 we show that any GO space which is hereditarily a ff-space in the sense
of Hodel must be paracompact. (The definition of a f-space is reproduced in
Section 3.) Finally, in Section 4 we use the results ol Sections 2 and 3 to prove our
main theorem which asserts in part that any GO space X which is hereditarily
a p-space must be quasi-developable in the sense of Bennett [6] and therefore must be
metrizable because, as proved in [5], any quasi-developable paracompact p-space
must be metrizable.

Let us establish some terminology and notation. When considering GO spaces
our usage will follow that of [12]; in particular, given points x, y in a lincarly ordered
set X we write Jx, —[ for {ze X| x<z} and [x, y[ for {z e X| x<z<y}. A cardinal
is an initial ordinal. The cardinality of a set S is written |.S|. We identify an ordinal
with the set of its predecessors. Thus @, is identified with [0, w,[ where w, is the
first uncountable ordinal and w, is identified with the set [0, wy[ consisting of all
non-negative integers. For any cardinal x, the first cardinal greater than x is denoted
by x*. Let N = [1, w,l.

In Section 4 it will be necessary to analyze the pseudogap structure of a GO space.
Because the terminology to be used is not entirely standard we pause here to record
the relevant definitions. Suppose X is a GO space when equipped with the toplogy 7~
and the linear ordering <. By a gap of X we mean 2 pair (4, B) of convex subsets
covering X such that if e 4 and b € B then a<b and such that the set 4 has no
supremum in X and B has no infimum in X. Thus gaps are simply Dedekind cuts
in the linearly ordered set (X, <). By a pseudogap of X we mean a pair (C, D) of
nonvoid convex subsets of X such that

1) CuD=Z%,

2) if ceC and de D then c¢<d,

3) C and D are -open sets,

4) either C has a supremum p in X while D has no infimam in X (in which case p
is said to determine a right pseudogap of X) or clse C has no supremum in X while
D has an infimum ¢ in X (in which case ¢ is said to determine a left pseudogap of X).

In less technical terms, p determines a left pseudogap of X if the sct [p, —[
is 7 -open even though p has no immediate predecessor in the ordering of X. For
example, each point of the Sorgenfrey line determines a left pseudogap while each
irrational in the Michael line determines both a left and a right pseudogap.

It is known ([12], 2.9) that there is a cannonical way to embed a GO space X
into a compact LOTS X * in such a way that the ordering of X* extends the ordering
of X. Indeed, whenever ¥ is a compact LOTS which contains X and whose order
extends the ordering of X (in which case Y is called an ordered compactification of X)
it is clear that if p determines a left pseudogap of X, then there must be a point p~
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which is an immediate predecessor of p in the ordering of Y and which lies in ¥ —X.
Analogous assertions hold for right pseudogaps of X: each must have an immediate
successor in any ordered compactification of X,

2. An extension of van Wouwe’s theorem, Recall that Morita’s M -spaces may be
characterized as those Hausdorll spaces which can be mapped onto a metric space
by a quasi-perfect mapping [13]. In [7] Borges introdu'c‘ed a u?ore general class of
spaces, the wA -spaces, where a space X is a wd-space if there is a sequence (% (1))
of open covers of X such that if p & X and if x, e St(p, ¥ (n)) for each n>1, then the
sequence {x(n)y must cluster in X, Van Wouwe [16] proved

2.1, TuroreM. The following properties of ¢ GO space X are equivalent:

ay X is an M-space;

by X is a wA-space.

In [8] Creede introduced the notion of a quasi-complete space to aid in his
study of metrization theory. A space X is quasi-complete if there is a sequence {H(n)y
of open covers of X such that if 4g>A,;=... is & decreasing sequence of nonempty
closed sets such that for some p & X each # () coritains a set H, with {p} v 4,=H,,
then () {d,] n=1} # @. Such an {# (n)) is called 2 quasi-complete sequence for X.
Our first lemma gives an easy translation of that definition,

2.2. LeMMA. A regular space X i§ quasi-complete if and only if there is a fequence
CH ()Y of open covers of X such that if p € X and if a sequence {x(m) of points of X
has the property that for every n some member of # (n) contains {p} © {x(K)I k>=n},
then the sequence {x(k)y must cluster in X. B .

We can now give an extension of van Wouwe’s theorem, partially answering
a question of Creede [8].

2.3. THEOREM. Let X a GO space. Then the following are equivalent:

a) X is an M-space,

b) X is a wd-space;

c) X is quasi-complete.

Proof. The equivaience of a) and b)is T
We show ¢) implies b). Let (s (1)) be a sequence
in 2.2; clearly we may assume that the members h # (n) : e
and that # (n+ 1) refines & (#). Lel us say that a point p is right-improper if thel; is
a sequence x(1)<x(2)<... of points of X such that x(n) € St(p, # () for ;ac{ tr;
and yet the supremum of the sequence is a gap (or left-ps§udogap) of XI; t(;;r; :
which are left-improper are analogously defined, using decteas11?g sequerces. t: v
the set of all right-improper points of X and L the set of left-improper points Ol 4.

There are two main steps in the proof. The second is the left-hand analogue

i escribe i detail. We will construct open covers (A ()
of the first which we describe in some de juth St(p, i

4 . / P - if y
of X such that #'(n) refines (1) and such that i
p e X—L then ¢ y(n) clusters in' X. The second step of the proof would analogously

heorem 2.1 and b) obviously implies ¢).
of open covers of X as described
of each # (n) are order convex
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construct open covers #"'(n) of X which refine the covers 2'(n) and which would be

wd-sequences even at points of L. But then the covers #'(n) would constitute

a wd -sequence at all points of X, as required. We now turn to the first step of the

proof.

Consider a fixed pe R. Then:

1) I {x(m)) and {x'(m)) arc two increasing sequences of points such
that {x(n), x'(m)}=St(p, #(n)) and such that sup{x(m)| n=1} =0v and
sup{x'(n)| #>1} = v’ where both v and v" are gaps or left-pscudogaps of X,
then v = v'.

2) Let v, denote the unique gap or left-pseudogap whose existence is guaranieed
by (1) and the definition of R. Then [p, v,[=St(p, # (n) for every nx1.
Furthermore, if p<x<uv, then the set [p, x] is a countably compact subspace
of X because {4 (1)) is a quasi-complete sequence for X,

(3)  With v, as in (2) there is some n1 such that St(p, # (n))<]e, v,[. For
otherwise the sequence (x(n)), whose existence is guaranteed by the defi-
nition of R, would have to cluster in X becausc {#’(m)) is a quasi-complete
sequence of covers for X.

(4) For each pe R let n(p) be the first integer k having St(p, () S e, v, L.
Let R(k) = {peR| n(p) = k}. Define J(k,p) = U {lg, .| e R(k) and
v, =v,}. Let F(k) = {J(k,p)| pe R(k)}. Then cach #(k) is a discretc
collection of convex subsets of X because for ecach xe X the open set
St(x, # (k)) can meet at most two distinct members of # (k). And if J(k, p)
and J(k, q) are distinct members of # (k) meeting St(x, # (k)) then either
St(x, o# (k) ~J (k, p) or St(x, # (k))~J(k, g) is a neighborhood of x meeting
only one member of Z (k).

(5) - For each J e # (k) choose one p, & R such that J = J(k, p,) and then choose
a strictly increasing sequence {x(J,n)) of points of J having p<x(/, 1)
<x(/, 2)<... and which is cofinal in J, Let D(k) == {x(,m)| Je Fk),n=1}.
Then D(k) is a closed discrete subspace of X.

(6)  Because any GO space is collectionwise normal [14], for cach & there is

. . .y . ¢ k
a pairwise disjoint collection & (k) = {£(k, x)| xe& (J D(j)} of open convex
il
subsets of X such that ]
k
() xe E(k, x) whenever xe | D());
J=1

(b) &(k) refines the cover 2 (k).
(7} Foreach He (k) define a collection C(H, k)= {IlI is a convex com-
. !
ponent of the set H— () D(j)}. Then define
J=1

H(k) = (k) v (U {%(H, k)| He ().
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Each (k) is an open cover of X and #'(k+1) refines both 4 (k+1) and
H'(k).

We now prove that {#'(k)> acts as a wd sequence at all points of X—L. Fix
pe X—L and suppose yme St(p, #'(n)). The sequence {y(n)) has a monotonic
subsequence; without loss of generality we may assume ¢ y(n)) is itself monotonic.
Consider the case where y(n)<y(u+1). If y(n)<p for each n, then {y(n)> must
cluster because < (1)), and hence (#'(n)), is a quasi-complete sequence for X.
So suppose (1) > p for each nz Ny. If p ¢ R then < y(n)y must cluster in X, so assume
peR. Find k such that p e R(k). Then J(k,p)e f (k); for notational simplicity
write J, = J(k, 7). Then there is a py & D(k) with Jy = J(k, po) (see (5)). Let ny be
the first integer such that x (Jy , #) > p (see (5)). Then St (p, #'(k)) Yoy x(Jo, No+1)]
so that for 3> Ny, »(n) belongs to the set [p, ¥(Jy, no+ 1)] which is countably compact
(see (2)). Hence {y(n)) clusters in X. Finally consider the case where y(m)>y(n+1)
for each n. If y(n)=p for each n, then {y(n)> must cluster because {H#(n)y, and
therefore {A'(n)), is a quasi-complete sequence for X. Hence assume y(m)<p for
each nzNy. If {y(n)> does not cluster in X, then p & L contrary to our choice of p.
This completes the first step of the proof, and the second step is analogous, as ex-
plained above. B

We now describe an easy example to which later sections refer. Its properties
are eagsily verified.

2.4. ExAMPLE. Let X = ([0, w;) x o) U {(w;, 0)} be ordered lexicographically,
where ¥ denotes the set @, with the reverse ordering (i. e., the set of negative integers).
With the usual open interval topology of that ordering, X is not first countable
even though X is hereditarily a §-space [11] and is the union of two metrizable sub-
spaces, viz.,, X—{(w;,0)} and {(w;,0)}. Furthermore, no increasing sequence
in X—{(w,, 0)} can converge, so X is not quasi-complete. |

The following diagram summarizes the relationships among the various properti?s
considered in this section. Notations near arrows refer to results in this paper-or mn
another reference which establish the indicated arrows.

W (2.3) ,
P F'.’.;ﬁ. M w4 E2) quasi-complete
P
/l(/1.4)

B

3. Hereditary properties and paracompactness in GO spaces, Recall that a top-
ological space (X, 7" is a f-space [11] if there is a function B: Nx X—» 7, called
a f-function for X, such that:

(@) for each xe X and nz1, B(n,x) is a neighborhood of x; and

(b) if <x,> is a sequence of points of X such that () {B(1, %)l nzl} # 9,
then the sequence {x,» must cluster in X.

-
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From the definition of a w4 -space (presented in Section 2) it is clear that every
wd-space is a f-space; in particular, any countably compact space is a f-space.
Hence the space w; shows that the existence of a f-function does not yield covering
properties in an ordered space.

The main result in this section is

3.1. TueorREM. Let X be a GO space which is hereditarily a f-space. Then X is
(hereditarily) paracompact.

That theorem will be proved by contradiction based on the following result
in [10]:

3.2. THEOREM. A GO space X is not paracompact if and only if some closed
subspace of X is homeomorphic to a stationary subset (*) of a regular (*) uncountable
cardinal.

Thus the rest of this section is devoted to provingt hat no stationary set in a reg-
ular uncountable cardinal can be hereditarily a fi-space. Once that is established,
Theorem 3.1 follows from Theorem 3.2.

We begin with a lemma whose proof depends on the next well-known result;
short proofs appear in [9] and [4].

3:3. THEOREM (Pressing Down Lemma). Let S be a stationary subset of a regular
uncountable cardinal % and suppose f: S — % is a function such that f (x)<x whenever
xe S—{0}. Then for some yex the set f~*[{y}] is stationary in x.

3.4. LeMMA. Let S be a stationary subset of a regular uncountable cardinal »x.
If Sis a B-space, then there is a first countable subspace T of S which is also stationary,

Proof. Let Bbea §-function for S. We may assume that each B(x, n) is a convex
set. Let #(1) = {B(x, 1)] xeS}. Let $ be the set of non-isolated points of the
space S. Then for each x e 8¢ there is an ordinal J(x)<x such that f(x)e S and
[f(®), x]=B(x,1). The Pressing Down Lemma 3.3 yields a point p(1)e § and
a stanf)nary set.S; .8 such that Sy =1p (1), —[ and if x € S, then [p(1), x]< B(x, 1).
Apply‘mg the Pressing Down Lemma recursively, we obtain stationary sets S, and
points p(n) € S such that '

D Spe1= S0 lp(r+1), [;

2 if x& 8,.4 then [p(n+1), x]= B(x, n+1),

) Since cf(x)>w,, there is a point ¢eS with g>p(n) for cach n. Letting
Sy = S, 0 1g, #[ we obtain stationary subsets of $ such that

3) if n21 and xe S, then [q, x]=B(x, 1)
so that, from the definition of f-functions, :

4) if 5, €., then the sequence ¢s,> clusters to a point of S.

) '_(5) A set Cis a cubin » if Cis closed and unbounded
in % is SN C 5 @ for every set C which is a cub in 2.

() A cardinal » is regular if » is not the sum of fewer, smaller cardinals. Equivalently,
# == cf(x) where cf(x) denotes the cofinality of x.

(= cofinal) in ». A set S'ez s is stationary
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Let T = {x &S| x is a limit point of § and cf(x) = wp}. Certainly T'is a first-
countable subspace of S. To show that T'is stationary, let C be a cub in ». Choose
¢, € C. Since S7 and C are cofinal there are points 5, & S7and ¢y € Cwith ¢y <5, <c,.
Recursively find points ¢, &€ C and 5, & S, with ¢,<s,<¢,.1. By (4), there is a point
p &S to which the sequence Cs,» converges. Then p e 1. Andsince C is closed, pe C
so that T~ € % @. Thus 7' is stationary in %, as required, B

We can now prove Theorem 3.1, Suppose X is a non-paracompact GO space
which is hereditarily a f3-space. There is a stationary subset S in an uncountable
regular cardinal % which is homeomorphic to a (closed) subspace of X. In the light
of Lemma 3.4, we may assume that ' is first countable and hereditarily a §-space.
Find a subset 7' of § such that both T and S~ T are stationary in % (see [15]). Since T’
is a B-space we can construct (as in Lemma 3.4) stationary subsets To> 72T, ...
with the property that if #, & 7}, then {z,> must cluster in T. Let C = {se S| for some
t,eT,, <t,> converges to s}. As in Lemma 3.4 the set C is seen to be stationary in
and, since $ is first countable, C is closed in S. But then C n (§—T) # @ because
S—T is stationary in %, and that is impossible. B

Our next result is an immiediate corollary of Theorems 2.3 and 3.1 once it is
obscrved that every wd-space is & f-space. The result will be considerably sharpened
by Theorem 4,1 for which it is a lemma,

3.5. COROLLARY. Let X be a GO space whose every subspace is either a p-space,
an M-space, a wd-space or a quasi-complete space, Then X is (hereditarily) para-
compagct.

3.6. Remark. There are GO spaces which are hereditarily f-spaces but not
even quasi-complete spaces. The space described in Example 2.4 is one such space.

4. Metrizability of GO spaces with certain hereditary properties. In this section
we present our main theorem and its rather lengthy proof.

4.1, TagoriM. Let X be a GO space. The following properties of X are
equivalent: o

a) X is metrizable; :

b) X is hereditarily a p-space (i.e., each subspace of X is a p-space);

©) X is hereditarily an M-space [13];

d) X is hereditarily a wd-space;

e) X is hereditarily quasi-complete. , S

The implication a) — b) is well-known and the equivalence of ¢), d)-and €)
follows from Theorem 2.3. That b) implies c) follows from a delicate theorem .due
independently to van Douwen and van Wouwe [16] asserting that any generahze.d
ordered p-space is also an M-space. If X satisfies ¢) then every subspace of X is
a paracompact M-spacein the light of 3.1 and it is an easy part of .generall theory
that any paracompact M -space is a p-space. Thus ¢) implies b), and it remains only
to show that b) implies a). That proof requires a sequence of lemmas.
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4.2. LemMA. Let X be a linearly ordered set-and let Y« X. Then there are disjoint
sets D, EcY such that: ’

(@) if pe X and 1p,ql n Y is infinite for cach q>p, then for each q>p both
Ip, gl D and 1p,ql 0 E are infinite;

(b) if pe X and 1q,pl 0 Y is infinite for cach q<p then for each q<p both
la,pl 0 D and g, p[ n E are infinite.

Proof. We define D and E recursively. Let % = | Y| and say that a convex
set Jis Y-large if | ¥ n J|=2. Define d(x, 0) and e(x, 0) to be any two points of ¥
with d(x,0)<e(x,0) and let #(0) = {X}. Let D(0) = {d(x,0)}, EQO) = {e(x, 0))
and F(0) = D(0) u E(0).

Suppose a<x* and that for each f<a we have:

(1)  F(P), the set of Y-large convex components of X—) {F(y)| y<f};

(2)  for each /e J(B) two points d(, f)<e(I, f) chosen from J ~ ¥ in such a way
that if |7~ Y[>6 then I n 1, d(I, )l and I ~ Je(Z, B),—[ are both Y-large;

G D) =T, Pl Te SB)}. EPB) = {e(l, Bl Te S (M} and F(B) = DB) u
v E(B).

Let F(a) = {I| Iisa Y-large convex component of X~ |) F(P)}. For cach I'e # (o))
f<a X

choose points d(Z, @)<e(J, o) in such a way thatif I ~ ¥| 6 then both /A J«, d(T,a)f
and I'n Je(/, ),—[ are Y-large. Let D(a) = {d(/, o) Ie.# (@)}, E@) = {e(l, o)
ITe (@)} and F(o) = D(x) U E(x).

This induction terminates in case .# (x) = @; furthermore there must be some
a<x” such that #(x) = @ for otherwise ¥ contains a set of cardinality xt>7].
Let A be the first ordinal having # (1) = @. Let D = | {D()| a<A},

E={J{E@| a<l}
and F= DU E.
We assert that if J is an open interval which is Y-large, then J meets
F =) {F(B)| B<i}. For otherwise, there is a convex component I of X—~F
containing J. But then 7 is Y-large so /e.# (1) = @.

. Now suppose pe X and Y 1p, ¢[ is infinitc whenever q>p. Fix g>p. We
claim that ]p, ¢[ meets both D and £. Since |p, ¢[is Y-large, we know that ]p, ¢f
meets F. To obtain a contradiction, suppose 1p, g[ r £ = @, Lot « be the first
ordinal such that @ # F(@) n 1p, ¢l = D(0) A Ip, q[. Let 7e.9 (@) have d(I, o)
€1p, gl. Consider ]p, d(I, o)[; that set is Y-large. Let f be the first ordinal with
G # 1p, d, ) " FB) = 1p, d(l, )l N D(f). Necessarily fza. In case ff=a,
lgt I be the member of () having d(I', w) & |p, d(J, o)[. Because /' and I are
thtind, they are disjoint convex sets so each point of I’ lies below each point of I;
in particular p<d(I', 6)<e(I', ) <d(I, @) < g contrary to ]p, qln E = &. Next sup-
pose f>c. The set J = ]p, d(I, )[ is Y-large and convex, and J A (U {F(@)]| a<f})

= @ by minimality of f. Let I’ be the convex component of X () F(e) which
a<fl
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contains J. Then I’ is Y-large so that I' € /7 (f). Because J n D(p) # @ and because

distinet members of [(f) arc disjoint, the point of J D () must be d(I', f). Then

we have d(I’, py<d(I, ®). Because fi>a, d(/,0)e | F(a). Therefore the convex
a<f

set I’ must lic in Je=, (1, o)[. But then p<d(l’, Py<e(l’, By<d(I, w)<g showing
that 1p, gl N E # @. Hence 1p.g[ 0 E= @ is impossible.

Next, we show that 1p, gl n D # @. For contradiction, suppose 1p,g[n D =6@.
We know that 1p, gL F # @; let « be the first ordinal having |p, q[ 0 F() # @.
Then 1p, gl M E(@) # @. Choose Tes(m) bhaving e(l, a)elp,ql. The set
J=1p, e(], )] is Y-large - indeed & Yis infinite. Let § the first ordinal having
Jn F(B) # @. Necessarily fzo and J n E(f) # ©. Consider the case where f = o.
Let J'e #(«) have e(l’, )€ J. Since 1" # I are members of S(), Inl' =;
further, since one point of /’ lies below one point of 7, each point of I' precedes
each point of J and we have p<e(l’,e)<d(, a)<e(l,a)<q showing that
1p. gl D # @. Therefore f>a. By minimality of £, J 0 mgﬁF(rx) = . Let I' be
the convex component of X - |J F(a) containing J. Then /' Y>Jn Y is infinite

a<fl

so I' e #(f). Next observe that e(/, o) & {J F(e) so that the convex set I’ must be
o

<4
contained in J«~, e(, @){. Since J<= I, it follows that /' = Ir, e(I, o) for some point
or gap r<e(l,o) or I' = [r,e(l,a)[ for some r<e(l, o). Now some member
I"e £(B) has e(J", p) & J. Because Je:1’ and distinct members of £ (B) are disjoint,
it follows that 1" = I’. We have, therefore, e(/’, f) €J. But, as noted above, the
right end point of I’ must be e(/,«) so that, since [I' n Y| =8, >6, the set
K = leI', p), e(J, )] must be Y-large in the light of the second inductio‘n
hypothesis. Now consider the (f-+1) level of the construction. Because e(/, @) is

the right end point of //, K is a convex component of X— (%)H)F(:x) and K is
%<

Y-large, so K& #(f+1). But then there is a point d(K, f+1)e D(B+1) and we
have p<e(l’, B)<d(K, B+ <e(K, B+ 1)<e(l,0)<q, showing that D~ 1p, ql# D,
a contradiction.
An analogous argument shows that D and £ also satisfy assertion (b) of (4.2). W
4.3, LEMMA. Let X be a first countable GO space and let Z be a quasi-developable
subspace of X. Then there is a sequence <9 (n)) of collections of open subsets of X such
that if peZ U, where U is open in X, then for some n, St(p, $(m)<U. ‘
Proof. Since Z is a quasi-developable GO space it follows from ([12]’, ;.l‘l)
that Z has a a-point-finite base and then from (3], Thm, 2) that Z has a - disjoint
base % = \J {#(n)| nz1}. We may assume that members of # are Z-convex,
i.c., that if p<gq are points of Z belonging to some member B of 4 then
zeZ| p<z<q}cB. ,
{ Florpeach JIB}ew let B' = {xe X| for some p,q¢€ B, p<x<q). If the set B
are three cases: either (1) thereis a point p(B)eZ su.ch
—[ is not open in X, or (2) there is a pomt
Je—, g(B)] is not open in X,

is not open in X then there
that p(B) e B’ [p(B),—[ and [p(B),
q(B) e Z such that ¢(B) & B' <], ¢(B)] and such that
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or both (1) and (2). If case (1) holds, then there is a point p’<p(B) such that
[p(B)—[nZ =]p'—[nZ and because X is first countable, we may choose
a sequence {p(k, B)) of points of X which is strictly increasing and converges to
p(B) and for which Jp(k, B),~[nZ = [p(B),—[ n Z. And if case (2) holds, there
is strictly decreasing sequence {g{(k, B)> of points of X which converges to q(B)
and for which Z N J«—, q(k, B)[ = Z N J«—, ¢(B)].

For each Be #(n) define a set G(k, B) by

B’ if B' is open in X;

Ip(k, B), q(k, B)[ if both cases (1) and (2) occur;
[p(B), q(k, B)[ if only case (2) occurs;

1p(k, B), q(B)] if only case (1) occurs.

Gk, B) =

Let 4(n, k) = {G(k, B)| Be #(n)}. Observe that no point of X can belong to more
than two distinct members of #(n, k) and that a point p & Z can belong to at most
one member of ¥(n, k).

Now suppose p e U n Z where U is open in X. Shrinking U if necessary we may
assume U'is convex in X. Find an integer n3> 1 such that some member B, (necessarily
unique) of  (n) satisfies p e By U n Z. Since U is convex, By< U. Since U is open,
there is a sufficiently large % for which Gk, By)<= U. Since no other member of
%(n, k) can contain p, we have St(p, 9(n, k))<= U so that any re-indexing of the
countable family {%(n, k)| n,k>1} as a simple sequence is cnough to complete
the proof. @

4.4. CoROLLARY. Let X be a first countable GO space. If X is the union of
countably many quasi-developable subspaces, then X is quasi-developable.

Proof. This result follows immediately from 4.3. W

We remark that first countability cannot be deleted from the hypothesis of 4.4;
see Example 2.4. In order to apply 4.4 to our present problem we need:

4.5. LeMMA. Let X be a GO space which is hereditarily a p-space. Then X is
first countable.

Proof. Fix ge X and suppose [g, —[ is not open in X. Therc is a regular
cardinal » and an increasing net {x,| a< %} of points of ], g[ which converges
to g. We may suppose that for each limit ordinal A<x the set ) e A} is closed
in X. Let L = {i<x| A is a limit ordinal and X, s a limit point of {x,| x<A}}.
Let Y = X~{x;] AeL}and let X be any ordered compactification of X in the sense
of the Introduction. Then X is also an ordered compactification of Y. Let <))
be a pluming of ¥ in X by collections of convex open subsets of X. Now suppose
#>aqy. Then S = () {St(g, ()| n>1} is a convex subset of ¥ which is entirely
contained in Y. Bc‘:cause % >wmg and because the ordering of X extends the ordering
of ¥, there must bé-a point r & ¥ with r< g and such that the set T = {ze X|r<z<q}
is contained in S. Note that T'is a compact subsct of ¥, Let £ be the first ordinal such
that x; € Ir, ¢l. Let y, = x,,,. Then ¢ Yy is an increasing sequence in the compact
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set T and yet (> cannot have a cluster point in 7, which is impossible. Hence
%= Uy,

Similarly, if Je-, ¢] is notwopen in X then there is a decreasing sequence
{y(] nz1} in lq, =] which converges to ¢. Combining these two cases we see
that X is first countable. B

Having established those preliminary lemmas, we are ready to begin our proof
of Theorem 4.1 (b-—»a). Because of the length of that proof, the reader may find
a brief preview to be helpful. In the light of our earlier results, if X is a GO space
which is hereditarily a p-space, then X is both first countable and hereditarily para-
compact, In our proof we create various subspaces X, (0</<4) of X whose union
is X and such that the set of gaps and pseudogaps of X; has certain points of X,
as two-sided limit points. By embedding the GO spaces X; in ordered compacti-
fications, we can then obtain quasi-developments for the spaces X;. Then, in view
of 4.4, the following general metrization theorem can be applied.

4.6, THBOREM [5]. Any quasi-developable paracompact p-space is metrizable.

Proof of Theorem 4.1, Let X, be the set of isolated points of X. Let X; be
the set of (relatively) isolated points of X~ X, Both subspaces are quasi-developable;
by (4.4) so is X, u X,.

For p, g€ X define p ~ ¢ if and only if the closed interval between p and ¢,
i.e., either [p, g] or [g, p), is a metrizable subspace of X, Then ~ is an equivalence
relation on X (see below) and we denote the ~ equivalence class to which x belongs
by cls(x). Of course, once (4.1) is proved we will know that cls(x) = X, but until
then we can at least assert:

(1) each cls(x) is closed in X and is metrizable;

(2) distinct equivalence classes cannot abutt: indeed if x<y and cls(x) # ¢ls()
then there must be uncountably many points z e X satisfying x<z<y and
z ¢ cls(x) wcls(y); . ;

(3)  if [cls(x)| = 1, then, whenever p<x<g, both ]p, x[ and ]x, g[ are uncountable;

{(4) 1Fcls(x) has a right end point b in the space X then b e cls(x) and for every
¢>b the set Jb, [ is the union of uncountably many distinct equivalence
classes. An analogous statement applies to any left end-point of cls(x) wﬁi@h
may belong to X. o

To justify those assertions let us recall a few facts from general theory. If a space X
is the union of countably many closed, metrizable subspaces then X is semi-stratifiable
in the sense of Creede [8]. Furthermore, any semi-stratifiable GO space is mem*izayle
([12], 5.3). Those two remarks prove that ~ is an equivalence relation and-establish
(2), (3) and (4) once assertion (1) is proved. Metrizability of each cls(x) foll@ws from
Smirnov's metrization theorem since cls(x) is locally metrizable by definition: and
paracompact in the light of 3.1. To see that cls(x) is closed in X we nqte that el‘s(,x)
is convex so that if cls(x) is not closed then it fails to contain one of: its end-pOfnts,
say p. But the union of a metric space M and a single point p is metrizable provided

§ — Fundamenta Mathematicae T, CVII/L
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M U {p} is regular and first-countable; therefore by 4.5, cls(x) U {p} would be
metrizable, contradicting maximality of cls(x). Thus cls(x) is closed in X.

For each xe X let I(x) = Int(cls(x)) and let. X, = J {I(x)| x e X}. Because ‘

the I(x)’s are pairwise disjoint open metrizable subspaces of X, X, is quasi-develop-
able. By 4.4, so is Xo u X; v X,.

Let Y=X—(X,uUX;uUX,) and let X, = {xe¥| |ds(x)| =1}. Apply
Lemma 4.2 to the set Y to find disjoint sets D, Ec ¥ such that if pe X'is a limit
point of ]p, —[ n Y then p is also a limit point of ]p, =[N D and of ]Jp, »[n E
(and such that the left-hand analogue of that assertion also holds). Let X' = X—D
and X" = X—E. Let X" be any ordered compactification of X (in the sense of the
Introduction). Then

(5) each de D is a limit point in X of X' and each e e E is a limit point in X
of X".

To verify (5) fix de D. If dis in the closure of the set (X, U X; U X,)< X’ there is
nothing to prove, so suppose some open convex neighborhood U of d is disjoint
from (X, U X; U X;). Then Uc Y. Since d ¢ X, one of the sets ], d] and [d, —[
is not open. Assume [« d] is not open in X. (The other case is similar.) Then for
each b e X with b>d, the set [d, b[ n U is an infinite subset of ¥, showing that d is
a limit point of Jd, —[ n Y. Hence d is also a limit point of |d, —[ " Ec Ec X'. Thus
the first assertion in (5) is.established and the second is proved in an analogous way.

It follows from (5) that X* is an ordered compactification of both X’ and X"’
and that each d € D corresponds to a gap in the space X", while each e € E corresponds
to a gap in X".

Fix a pluming (2 (n)) of X' in X*. We may assume that 2 (n+ 1) refines P(n)
and that each collection 2(n) consists of convex open subsets of X*. Let
X;=X;n X' = X;—D and consider a fixed point pe X;. If there is a point
be X such that ]Jp,b[n ¥ = @, then ]p, b[= X, U X; U X, so that Ip, b[ is seen
to be a quasi-developable subspace of X. In the light of Theorem 4.6, ]p, b[ must be
metrizable whence so is [p, b]. But then {p, b} =cls(p) which is impossible because
pe X, forces |cls(p)| = 1. Therefore 1p,b[ N Y is infinite whenever 52> p and, similarly,
la, pl n Y is infinite whenever a<p. It follows from Lemma 4.2 that whenever
a<p<b, each of the sets Ja, [~ D, Ju, p[ " E, ]p, bl n D and |p, b[ ~ E is infinite.

Since p & X3, p¢ X, so that exactly one of the following cases applies to p:

(@) [p,—[ is open in X but J+, p] is not;

(b) J«—, p] is open in X but [p, —[ is not;

(©) neither J+, p] nor [p, —[ is open in X.

Consider case (a). Suppose p is not the left end-point of X. Then basic neigh-
borhoods of p in X have the form [p, &[. Because @ # Ja, p[ N Ecla, p[n X'
for each a<p, p has no immediate predecessor in X'. Therefore p defines a left-
pseudogap [(p) of the space X', i.c., a point /(p) of X — X’ which is the immediate
predecessor of p in the ordering of X*. Fix any b € X with p<b; there is a point
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de D with delp, b[, and D= X*— X', Because () {St(p, Z(M)| n21}= X' there
is an 31 having St(p, #(m) n {I(p), d} = @. Because the members of (1) are
convex subsets of X*, St(p, Z(m)={we X™| I(p)<w<d} showing that, if we
wiite 2'() = {Pn X'| Pe @)}, St(p, #'(n)<=[p,bl. Therefore the sequence
(P'(m)y acts as a quasi-development at cach point pe X; described in case (a).
(The case where p is the left end-point of X is analogous.) o

Case (b) parallels case (a) so we consider points p e X3 as described in case (c)
above. Then basic neighborhoods of p in X' have the form la, [ n X’ whci:re
a<p<b and where Ju, p[ n X" and ]p, bl n X’ are infinite sets, Fix « and Iithtf
a<p<bh. Choose points dy, d, € D with a<d; <p<d,<b. Since dy, zi? e X -w‘X
there is an integer n such that St(p, P () n {dy, dy} = B so that, with notatm.n
as in case (a), St(p, {ﬁf”(n))c:]u, bl n X', Therefore we see that X is‘ a quas.1-
developable subspace of X. A similar argument proves that Xy = X3~Ev1s a quasi-
developable subspace of X. Because D n E = @, X3 U X3’ = X3 so thatin the light
of 4.4 we now sec that (X, w X; U X, U X3) is a quasi-developable subspace of X.

Let X, = X—(Xou X, uX,u Xy If pelX, then lels(p)]=2 and
p ¢ Int(cls(p)) so that p is an end-point of cls(p). Let Xi = {pe Xl p = sup (cls(p))}
and Xb = {pe X,| p = inf(cls(p))}. For each pe X} let L(p) = {x & cls(p)| x<p}
and note that J«—, p] is not an open set in X.

Define Z = X—J) {L(p)} pe X4}, Then:

6 XicZ;

(7)  cach p e X} defines a left-pseudogap p of Z, i.e., [p, —[ N Zis open in Z and
yet if aeZ and a<p then la,pl N Z # O; -

(8 if peZ is not the right end-point of Z and if p<beZ then 1p, B[~ Z #

9) if pe X} and p<z, € Z then either ‘
a) 1p, zo[ contains a point ge X} in which case 1p, zo[ N Z contains the
left pseudogap ¢ associated with ¢ in (7); or ‘ .
b) 1p, zo[ A X, = @, in which case ]p, zo[ N Z must contain a gap or pseudo-
gap of the space Z.

One can justify the alternatives described in (9) as follows. By n?aximahty of thefset
cls(p), for each b in 1p, zol, the interval ]1p, 8] cannot be metrlza.b}e and therel er’e
cannot even be quasi-developable. Therefore, for each b in ]p, Zol, ;?.4 ~p, bl # 9.
Hence if we assume that 1p, 2ol N X4 = @, then 1p, 0l m’ Xy :& (%] whenevzer
belp, 2ol and we may choose distinct ¢, ¢” in X! having p<q’'<q <Zo. ICon31 er
the set cls(g’). If the supremum of cls(g’) is a gap of the set.X theg itisa sg a gap;
of the set Z and lies in ]p, zo[. And if sup(cls(g’)) %s a point se‘X t?len, ; e]:at;set
1, 2l N X} = @, s € Int(cls(g") and ]+, s] is open in X. By max1ri1a11ty o td: >
cls(g"), s cannot have an immediate successor in X. Hence s deﬁl}es a right pseu Tiu;;
of X, and also a right pseudogap of Z, which belongs to the interval 1p, zo[.
assertion (9) is established. Assertion (9) can be rephrased as:
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Yy if pe X4 and p<zyeZ then ]p, z,[ contains a gap or pseudogap of the
space Z. )

Now consider Z, any ordered compactification of Z, and let {Z )y be a pluming
of Z in Z by open convex subsets of Z such that 2(n+1) refines & (n). Fix p e X3
and b e X with b>p, and consider the open set [p, b[ n Z. Let p denote the left
pseudogap determined by p, i.e., p is the immediate predecessor of p in Z, and let u
be any gap or pseudogap of Z lying in [p, 5[ n Z. Then {p,u}y=Z~Z so that for
some n, {f,u} o St(p, #(n)) = &. Because the members of Z(m) are convex,
Zn St(p, Z@)<1p, ul 0 Ze[p, bl N Z so that {X5 n St(p, ZM)| n=1} is seen
to be a neighborhood base for p in Xj. Thus X} is 2 quasi-developable subspace
of X.
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3
An analogous argument proves that X\, is quasi-developable. Since X = |J X; v
i=0

U X, U XL, X is quasi-developable in the light of 4.4; hence X is metrizable. B
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