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Contractibility and continuous selections
by

J. J. Charatonik (Wroctaw)

Abstract. Some relations are studied between the contractibility and the existence of a continuous
selection on the hyperspace of all subcontinua of a dendroid. Also some necessary conditions are
found for the existence of such a selection. .

In what follows a continuum means a nonempty compact connected Hausdorff
space. If X is a topological space, then 2¥ denotes the space of all nonempty closed
subsets of X with the Vietoris topology (see e.g. [11]; if X is a compact metric space,
then the Vietoris topology agrees with the topology induced by Hausdorff metric).
The subspace of closed and connected subsets of X is denoted C(X). A continuous
selection for a family & =2 is a continuous function ¢: & — X such that o(4) e 4
for each A4 e.o/. If, in addition, the condition ¢(B) € A< B implies o(4) = ¢(B)
for each A, Be &/, then o is called a rigid selection (see [14], p. 1041).

Kuratowski, Nadler and Young [10] have proved that if X is a metrizable con-
tinuum, then a continuous selection for 2% exists if and only if X is an arc. If one
seeks a continuous selection on C(X), however, then such a simple characterization
of those continua X is not known and it seems to be rather a hard problem. A very
important approach to solve this question was made by Nadler and Ward [13] who
proved that if a metrizable continuum X admits a continuous selection for C(X),
then X is a dendroid (recall that a dendroid means a metrizable continuum which
is both arcwise connected and hereditarily unicoherent). In the same paper they
shown that the class of metric continua X which admit a continuous selection
on C(X)is a proper subclass of the dendroids, but it is larger than the class of smooth
dendroids (sce [14] for details).

It is tempting — by examples showed in [I3] — to conjecture that among the
dendroids the existence of a continuous selection for the space of subcontinua is
related in some way to the property of being contractible. Nadler asks [12] whether
contractibility of dendroids implies the existence of a such selection. This paper does
not answer the question, however, it is a contribution to the attempt to find some
relations between discussed properties of dendroids.

For shortness we formulate the following definition. A continuum X is called
selectible if the hyperspace C(X) of its subcontinua admits a continuous selection.
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Thus the above mentioned result of [13], Lemma 3, p. 370, can be reformulated as

ProrosiTion 1 (Nadler and Ward). Each metrizable selectible continuum is
a dendroid.

PROPOSITION 2. Each selectible dendroid is a continuous image of the Cantor
Jan, and therefore it is uniformly arcwise connected.

Indeed, if X is a selectible dendroid, then it is a continuous image of the hyper-
spacc C(X) of its subcontinua under a selection ¢: C(X)— X. Further, C(X) is
in turn a continuous image of the Cantor fan F under a continuous mapping
S+ F— C(X) by the Kelley result ([8], Theorem 2.7, p. 25). The composite /& is the
required mapping. The second part of the proposition follows from the Kuperberg
result ([9], Theorem 3.5, p. 322).

Remark that Propositions 1 and 2 hold true if the term “a selectlble continuum”
is replaced by “a contractible curve” (here a curve means a continuum of dimension
one) — see [4], Propositions 1, 4 and 5.

PROPOSITION 3. There exists a non-contractible and selectible plane dendroid
having two ramification points.

Proof. Let 4, be the line segment joining (0, 1) and (27", 0) in the plane, where
n=0,1,2,.., and let T be the line segment joining (0, 1) and (0,0). Let
Dy =Tul{4,:n=0,1,2,..}and put D = D, U D,, where D, is the reflection
of D, about the origin (see Fig. 1). It is appearent that D is a plane dendroid with

N

Fig. 1
|
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two ramification points, and it follows that D is not contractible. In fact, either
observe that the origin in an R-point (i.e. a degenerate R-arc) for D and apply
Corollary 6 of [7], or apply the Bennett theorem ([1], Theorem 1, p. 47). We shall
now define a continuous selection on C(D). The idea comes from Nadler and
Ward’s proof of Theorem 3 of [13], and we include the description of the selection
in matter in order to make the exposition reasonably self-contained. Note first that D,
and D, are both smooth dendroids with initial points (0, 1) and (0, —1) respectively

" and thus they admit closed partial orders I'y and I',. Further, it is known that each

subcontinuum of D; has a (unique) least element with respect to I'; (where { = 1
or 2) (cf. [14], p. 1043) and hence according to Theorem 1 of [14], p. 1042, if
ot C(Dy)— D; (i =1 or 2) is defined by o,(4) = the least element of A4 (relative
to I'y), then o, is a continuous selection. Moreover, by Lemma 4 of [13], p. 371, we
have oy(T) = (0, 1) and 0,(T") = (0, —1), where T’ is the reflection of T about
the origin. For each 4 € C(T u T") let ¢,(A) be the second coordinate of o;(4 N T)
if A " T # @, and otherwise let ¢(4) = 0. Similarly, let ¢ ,(4) be the second coordi-
nate of g,(ANT") if AnT' # @, and otherwise let ¢,(4) = 0. Now define
8(4) = (0, ¢y () +¢,(A) for A€ C(T U T") and let § = o, for A & C(D;). Then 6 is
a continuous selection on C(D,)u C(D,) v C(I'w T’). The extension of § to
a continuous selection ¢ on C(D) is now straightforward. If

Ae C(DN(C(Dy) L C(D) L C(TUTY),

define o(4) = 6(4 n (T U T).

Let us recall that a dendroid with exactly one ramification point is called a fan.
The ramification point is called the top of the fan. If; moreover, the dendroid has
a countable set of its end points, then it is called a countable fan.

PROPOSITION 4. There exists a countable plane fan which is non-contractible and
selectible.

Proof. Let a point p be the pole (i.e. the origin) of the polar coordinate system
in the Euclidean plane. Put in the polar coordinates (g, ¢)

po=(1,0, p,=(1,2'77, =327 and =270

for n=1,2,.. and take

where ab stands for the straight line segment joining poinis a and b (see Fig. 2).
So we see that X is a countable plane fan with the top p and with end points
Pos Gans Tan—1 for n = 1,2, ... Let us observe that the midpoint s = (, 0) of pp, is
the common limit point of end points ¢,, and ry,—; if # tends to infinity, which
implies that s is an R-point ([7], Definition 4) and therefore X is non-contractible
([7], Corollary 6).

3%
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Before proving that X is selectible observe that if a point (g, ¢) is in X, then
0€[0,1]. Given any subcontinuum Y of X we put

x=min{g€[0,1]: (¢, @) ¥} and y=max{eel0,1]: (¢,p)e ¥},

-~

Fig. 2

and we denote by z the radius, i.e. the first coordinate, of the point 0(Y) € ¥, where
o: C(X)— X is the selection to be defined. To determine a point o(Y) we define
first z as a function of two variables x and y. Since ¢(¥) e ¥, we must have

1) O<x<zy<l,

and therefore, if x = y, that is, 1f Y is a point, say a, then z = x = y and conse-
quently ¢(Y) = a.

(2) If x =0, we admit z = 0.

It means that if p € Y, then o(¥)

= p. If x>0, then p ¢ ¥, that is Y=< X\{p},
and therefore Y is an arc.

(3) Ifi<x<y=1, we define z = 1.

In this case either Y is a straight line segment contained in sp, with pye ¥,
and we take o(Y) = p, then, or ¥ is a subarc of pp,, U pzmds, With pz,, € Y for
a natural n, and we take o(Y) = p,,. \

In the rest cases the arc Y is a straight line segment except for the case when,
for some n=1,2, ...,

Yn (m\{pm}) #d#Yn (panZn\{pmt}) .

This is the only case for which we can have two different points of ¥ with the
same radius-coordinate, Of two points of ¥ with the same radius-coordinate z we
let 6(Y) to be lying in pp,,. This condition guarantees to us that o(Y) is defined
provided its radivs-coordinate z is. Further, the continuity of z (as a function of
reals x and y) implies the continuity of o, since x and y are, by their definitions,
continuous functions of Y. So, to finish the proof, we ought to define a continuous.
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function z of twe variables x and y satisfying conditions (I‘), (2) and (3). We can
consider x, y and z as the rectangle Cartesian coordinates of a point belonging to
the graph G of the function z to be defined. This function is defined in the triangle
0<x<y<l, and, as it follows from (1), its graph G is situated in the unit cube
0<x<1, 0<y<l, 0<z<l, above the mentioned triangle 0<x<y<1, z=0,
above the plane x = z and under the plane y = z. Probably the simplest way to
guarantee conditions (2) and (3) is to take G composed of straight line segments
joining points (0, #, 0) with (1 —%#, 1, 1), where u runs over the closed segment [0, 1].
Elementary calculations show that the function z is then defined by the formula

z= x——%y-{?‘l—\/(x——%y+1)2—2x .

Therefore the continuous selection ¢: C(X)— X is defined.

The next problem, which we consider now, concerns relations between hereditary -
contractibility and selectibility of dendroids. First of all remark that selectibility is
a hereditary property, that is, if a continuum X admits a continuous selection on C(X)
and if Yis a subcontinuum of X, then ¥ also admits a continuous selection on C(Y).
Namely, if ¢ is a continuous selection on C(X), then ¢|C(Y) is a continuous selec-
tion on C(Y). In contrast to this, contractibility is not a hereditary property, even
for countable plane fans (see [7], Proposition 12). For fans, however, we have the
following.

PROPOSITION 5. A fan X is hereditarily contractible if and only if it admits
a rigid selection on C(X).

Indeed, for fans hereditary contractibility is equivalent to smoothness
([7], Corollary 17), which in turn is equivalent to the existence of a rigid selection
on C(X) ([14], Theorem 2, p. 1043).

The hypothesis that the continuum X under consideration is a fan is super-
fluous in one direction. Namely it follows from Theorem 2 of [14], p. 1043 and from
Proposition 14 of [7] that

PROPOSITION 6. If a dendroid X admits a rigid selection on C(X), then it is
hereditarily contractible.

It is shown by Proposition 3 that the hypothesis of rigidity of the selection is
essential in Proposition 6. Concerning the inverse to Proposition 6 let us note that
the dendroid D constructed in the proof of Theorem 3 of [13], p. 372-374, is heredi-
tarily contractible, selectible, but not smooth, and therefore it does not admit any
rigid selection. An open question is, however, whether hereditarily contractible
dendroids are always selectible, or, in other words, whether heredilary contractibility
implies selectibility not only for fans — as it is stated in Proposition 5 — but for all
dendroids. )

Nadler and Ward proved ([13], Lemma 4, p. 371) that if K is the limit segment
of the harmonic fan X with the top p and if ¢ is a continuous selection on C(X),
then (K) = p. We generalize this fact proving some necessary conditions of selec-
tibility of dendroids. To show these conditions we need a definition and a lemma. The
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author is indebted to the referee for pointing out a way of making the proof of
- the lemma much shorter than it was done in the previous draft of this paper.

Given two disjoint subcontinua P and Q of a dendroid X, an arc pg such that
pqgn P = {p}and pgn Q = {q} is called the irreducible junction between P and Q
and is denoted by L(P, Q). It is known ([3], T 20, p. 195) that such a junction always
does exist and it is uniquely determined.

LEMMA. Given two subcontinua Yy and Yy of a dendroid X, there exists an arc & in
the hyperspace C(X) of subcontinua of X having Y, and Y as its end points and with
the property that each member of & contains either Y, or Y, and is contained in
YouUL(Y,, Yy u Y. , .

Proof. X being a separable metric space, it is possible to define a real-valued
continuous function u on 2% (see [15], p. 245-247] having the following properties:

4 uX) =1 and u({x}) = 0 for every point xe X;
(5) if 4 and B are different elements of 2%, then A< B implies u(4)<u(B).

Let such a function u be fixed. Let Ay, 4; € 2¥. By a segment [4,, 4,] from 4,
to 4, in 2¥ we mean a continuous mapping from the closed unit interval [0, 1] of
reals into 2% which assigns to each number ¢ € [0, 1] a set 4, € 2¥ and which satisfies
the two conditions (see [8], p. 24):
©) ‘ #(d) = (1—t)p(do) +tu(4y) ;

()] if t'<t”, then Aycd..
Itis proved in [8], Lemma 2.3, p. 24 that given 4,, 4, € 2%, there exists a segment

4o, 4] from A4, to A, if and only if Agc=A; and every component of 4, inter-

sects Aq. It is also proved in [8], Lemma 2.6, p. 25 that if 4 € C(X), then every
segment with 4 as beginning is contained in C(X). Using these results we can redefine
a segment [4,, 4] between two subcontinua 4, and 4, of X with A,< 4, as the
maximal monotone family of continua which begins at 4, and ends at 4,, and we
sec that the segment is an arc or a point in C(X).

Let C = Y, v L(Y,, ¥;) U ¥;. Since Y, and Y, are subcontinua of C by
definition, there exist segments [Y,, C] and [Y;,C] in C(X). The union
U = [Yo, C]u [Y;y, C] is obviously an arcwise connected subset of C(X). Then
anarbitrary arc % in Uhaving ¥, and Y as its end points has the required properties.
Thus the proof of the lemma is complete.

THEOREM. Let a metrizable continuum X be selectible with a selection
61 C(X)— X. Let a non-degenerate contimuum K< X be the limit of a sequence of
subcontinua A, of X:
® K =Lim 4,,

n—+co

such that

(9)  the intersections A, N K either are empty or have diameters tending to zero
when n—c0.
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Let, for n=0,1,2, ..., points a,e A, and b,e K either be end points of
a,b, = L(4,, K) in the case when 4, n K is empty, or be arbitrary points of A,n K
in the opposite case. Further, assume that
(10) Ls L(4,, K)cK.

n—+w

Then the Jollowing statements hold true:
L If a=1lim a,, then o(K) = a.

n=wm

2. If b = lim b,, then o(K) = b.

o0
3. If U L(4,, K) is connected, then it is a locally connected continuum.
n=0

Proof. It follows from Proposition 1 that X is a dendroid; therefore the irre-
ducible junctions L(P, Q) between any two subcontinua P and @ are uniquely de-
termined in the case when P n Q = @. In the opposite case we agree to take
L(P, Q) = P~ Q in all formulas in the sequel.

We shall define now a continuous function « from the unit interval [0, 1] into
C(X). Put a(2™") = 4, where n = 0, 1, 2, ... For each such natural » there exists,
by the lemma, an arc %,=C(X) whose “end points are A4, = a(2”") and
A,y = a(27""") and such that each member of %, contains either A, or A4,
and is contained in 4, U L(4,, 4,+1) U 4,+;. We extend « to each closed segment
[2777%,27"] as a homeomorphism onto %,. Then for every real number 0<#<1
there exists a natural » such that either

11 Ayco()eA, U LAy, 4y 1) O Ay
or
(12) Appicat)cd, VLA, Apry) U Apyy -

Since the irreducible junction between some two continua in a hereditarily
unicoherent continuum is contained in every continuum which contains the two
continua (see [3], T22, p. 196), we have

L4y, Ays )= Ay U LAy K) U KU L(Ayq, K) U Ayyr s

and thercfore we conclude from (8) and (10) that Ls L(4,, 4,+1)cK. Thus we

n—m

infer from (11) and (12) that if #,e(0, 1] and ¢, — 0, then «(z,) tends to K. Hence
if we let «(0) = K, then the mapping «: [0, 11— C(X) is continuous.

It follows from the continuity of mappings « and o that for every k = 0,1, 2, ...
the set D, = o(x([0, 27¥]) is a locally connected subcontinuum of X that contains
points ¢(K) and o (4,) for every nzk. Since 0(K) € K and ¢(4,) € 4, by the defi-
nition of a continuous selection, we have

(13) DinK+# @ s D,n A, foreverynzkand k=0,1,2,..
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Further, observe that for K — which is considered as a point of C (X) — we
have

Kea@=a (0,27 e ) a(0,274).
k=0 k=0

Thus
oW eo( () #(0.2D)< ) o@10.274) = 0 De.
k=0 k=0 X k=0

Since D,,,=D, for every k =0,1,2,.. by the definition of Dy, and since

lim diam D, = O by the continuity of ¢, the intersection () D, is a one-point set.

ko k=0
Thus we have
(14) {a(K)} =kf10 Dy.

Decompose now the set N of all non-negative integers into two disjoint sub-
sets' Ny and N, taking ne N; if 4, n K = @ and ne N, in the opposite case. We
shall prove statements 1 and 2 separately for » € N; and for n e N,. In other words,

- we decompose the sequences {a,: ne N} and {b,: ne N} into two subsequences
each, depending on whether 7 is in N, or in N,. For every of these subsequences
we will show the limit properties of statements 1 and 2 separately, and so these state-
ments will be proved for the whole sequences {a,} and {b,}, where ne N.

Assume firstly that ne N;. Since the dendrite D, intersects both K and 4,
for nzk (see (12)), hence '

(15) L(4,,K)eD, for neNy, nzkand k=0,1,2,..

It follows that a, and b, as end points of L(4,,X) are in D, for ne Ny and
n>=k, where k =0, 1,2, ... Hence we conclude from (15) that

(16) o(K) is the common limit point of the subsequences {a,: ne N,} and
{b,: ne N}

Assume secondly that ne N,. Thus 4, n K # &, and it follows from (13)
that D intersects 4, n K for ne N,, n=k and k = 0,1, 2, ..., because otherwise
we would have a simple closed curve contained in the union 4, u K v D,. Thus
A nKn D, & for neN, nxk and k'=0,1,2,.. Since the intersection
A, " Kn D is connected by the hereditary unicoherence of X, since «, and b,
are — by the definition — in 4, n K and since lim diam (4, n X) = 0 by assump-

u-r
tion, the intersections 4, N K must tend to the same limit point to which D;’s tend.

Thus we conlude from (14) that -

f17) o(K) is the common limit point of the subsequences {a,: ne N,} and
{b,: ne Ny} :

.
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The points a and b as the limits of the whole sequences {a,} and {b,} respectively
are the limits of any subsequences, we conclude from (16) and (17) by the definitions
of the sets Ny and N, that statements 1 and 2 hold. .

Observe that the irreducible junctions L(4,, K) are defined only in the case
when 4, " K =@, ie, if ne N,. Thus it follows from (15) taking & = 0 that

o0
L(A,, K)= D, for every ne N, and hence U L(4,, K)= D,. Therefore if the set
n=0

of statement 3 is connected, it is a subcontinuum of the dendrite D, which is heredi-
tarily locally connected. Thus the proof of the theorem is complete.

Note that hypothesis (9) on the intersections A, n K is essential in the theorem.-
Namely, let X be the harmonic fan with the top p, with the lLimit segment K and
with segments K, emanating from p and tending to K. If we take 4, = K, U K,
we see that conditions (8) and (10) are satisfied, but (9) is not, and we have o(K) = p
according to Lemma 4 of [13], p. 371. Hence if we choose a, and b, as sequences
of points of 4, N K = K which convergent to a point different from p, we see that
neither 1 nor 2 is satisfied. '

Similarly one can observe that hypothesis (10) cannot be omitted in the theorem,
even if the dendroid X is a countable plane fan. To see this let us come back to the
exam;ilf_—”(«)’f tl’ui fan X described in Proposition 4. Taking K = sp; and
Ap = T24P2n Y P2nq3n We have (8), We see that 4, n K = @, thus (9) holds. Further,
a4y, =71y, and b, =5, whence a=b =35, but ¢(K) = p,. Moreovér, we have

L(A,, K) = r,p  ps, whence (J L(4,, K) is a harmonic fan. In this way we see
n=1
that neither of staiements 1, 2 and 3 holds.

As a consequence of the theorem observe that the fan X described in [6], p. 95
is not selectible. In fact, take the limit segment K of X as the limit of the vertical
segments A4,. Then we see that each b, is the top of X, while the sequence of a,’s
tends to the opposite end point of K, and therefore there is no continuous selection
on C(X).

In connection with the theorem let us recall the following concept due to
R. B. Bennett [2]. A point p of a dendroid X is called a Q-point if there exists
in X a point sequence {p,} such that (i) {p,} converges to p, (ii) the arcs pp, con-
verge to a non-degenerate limit continuum X, and (iii) if X n pp, = pg,, then the
point sequence {g,} converges to p. It is an unproved conjecture that if a dendroid
contains & Q-point, then it is not contractible. Let us note that if a dendroid con-
tains a Q-point p for which the condition
(18 lim diampg, = 0

n—roo
holds, then we can take the arcs pp, as the continua A4, of the theorem; thus (i)
gives (8), (iii) and (18) give (9), and assumption (10) trivially holds because we
have A, n K % @. Thus if we substitute ¢, and p for a, and a respectively, then
statement 1 gives by (iii) the following.
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COROLLARY. If a dendroid X contains a Q-point p such that (18) holds, then
for every continuous selection o: C(X)— X we have o(K) = p (here K denotes the
limit continuum mentioned in the definition of a Q-point).

The author does not know if condition (18) is essential in the corollary, i.e., if
there exists a selectible dendroid containing a Q-point p for which (18) fails and
with o(K) 5 p. Recently Mr. S. T. Czuba has found a dendroid (even a fan) with
a Q-point p for which (18) does not hold, but this example is not selectible.

Consider now the dendroid D, described in [5], p. 305. Let X be a continuum
obtained from D, by shrinking the horizontal straight line segment of D, to which
the points p,, p,, ... belong (see the picture of C,, Fig. ! on p. 305 of [5]) to a point p.
Itis evident that X is a countable plane fan with a Q-point p. As it was recently shown
by Dr. T. Mackowiak, the fan X is selectible. Thus the existence of a Q-point in
a countable plane fan X does not imply that X is not selectible.

References

[11 D. P. Bellamy and J. J. Charatonik, The set function T and contractibility of continua,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), pp. 47-49.

[21 R. Bennett, On some classes of non-contractible dendroids, Math. Institute of the Poiish
Academy of Sciences, Mimeographed Paper (1972) (unpublished).

[31 J.J. Charatonik, Two invariants under continuity and the incomparability of fans, Fund.
Math. 53 (1964), pp. 187-204.

(41 Problems and remarks on contractibility of curves, General Topology and its Relations
to Modern Analysis and Algebra IV, Proceedings of the Fourth Prague Topological Sym-
posium, 1976, Part B Contributed Papers, Society of Czechoslovak Mathcmahcmns and
Physicists, Prague 1977, pp. 72-76.

[51 — and C. Eberhart, On smooth dendroids, Fund. Math. 67 (1970), pp. 297-322.

[6] — — On contractible dendroids, Collog. Math. 25 (1972), pp. 89-98.

[71 — and Z. Grabowski, Homotopically fixed arcs and the contractibility of dendroids, Fund.
Math. 100 (1978), pp. 229-237.

[81 J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc, 52 (1942), pp. 22-36.

[91 W. Kuperberg, Uniformly pathwise connected continua, Studies in Topology (Proc. Conf.,
Univ. North Carolina, Charlotte, N. C. 1974; dedicated to Math, Sect. Polish Acad. Sci.),
pp. 315-324; New York 1975.

[10] K. Kuratowski, S. B. Nadler, Jr. and G. S. Young, Continuous selections on locally
compact separable metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.,
18 (1970), pp. 5-11.

[11] E.Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), pp. 152-182.

[12] 8. B. Nadler, Jr., Problem 906 in the New Seottish Book, dated December 13, 1974 (un~
published).

[13] — and L. E. Ward, Jr., Concerning continuous selections, Proc. Amer. Math. Soc. 25 (1970),
pp. 369-374.

[14] L.E. Ward, Jr., Rigid selections on smooth dendroids, Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astronom. Phys. 19 (1971), pp. 1041-1043.

[151 H. Whitney, Regular families of curves, Ann. of Math. 34 (1933), pp. 244-270.

INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIV).'RSITY
Wroctaw

Accepté par la Rédaction le 2. 1, 1978

icm

Fixed point theorems for i-dendroids
by

Roman Mafika (Wroctaw)

Abstract. Fixed point theorems are proved for functions whose values and the images as
well as the inverse-images of continua are continua.

§ 1., Introduction. Throughout this paper X will denote an arbitrary A-dendroid,
i.e. a hereditarily decomposable and hereditarily unicoherent metric: continuum.
We shall consider, under the name c-functions, functions having continua F(p)c X
as values, non-empty for all p e X. If p € F(p), then the point p will be called a fixed
point of F.

In [5] I proved that if F is upper semi-continuous, then

(D) there exists a fixed point of F.

With the aid of papers [5] and [6] we prove here that the fixed point theorem @
holds under the same remaining assumptions, even without the upper semi-continuity
of the function F.

First, a stronger fixed point theorem (§ 3, Theorem 1) is proved under the
following two conditions ([5], p. 113, (I) and (II)):

(1) for every continuum K< X the image F(K)<=X is a continuum,

(111) the property K o\ F(K) # @ is inductive for continua K< X, where the
image F(K) means the union ) {F(p): pe K}, and a property is called inductive
provided that for every decreasing sequence of sets having this property their common
part also has this property (see [4], p. 54). Then we prove a theorem stating exactly
that (1) follows from (1) and (III) (§ 3, Theorem 2), which is next applied to con-
sidering the following condition on the sets F™Y{(K) = {pe X: F(p) n K # @}:

(LV) for every contimum K<F(K) the set F~'(K) is a continuum.

Nameély, fixed point theorems are proved for ¢-functions satisfying (IV) or (ID)
(§ 4, Theorems 3 and 4), which imply a common generalization of the fixed point
theorems by Gray [1], by the present author [6] and by Smithson [9], [10]
(§ 4, Corollary).

Finally the following property of a non-degenerated subcontinuum E of X will
be consideved:
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