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Subhomeotopy groups of the 2-sphere with 7 holes
by

David J. Sprows (Villanova, Penn.)

Abstract. Let Sy denote the 2-sphere with » holes and let H(Sy) denote the group of isotopy
classes (rel2.Sy) of homeomorphisms of §, onto itself which are the identity on 2Sy,. A classical
result of J. W. Alexander is that H(S,) is trivial. H. Gluck has shown that H(S;) =< Z and J. P. Lee
has shown H(Sy) 22 ZXZXZ. In this paper spin homeomorphisms and twist homeomorphisms
are used to obtain a presentation for H(Sy) for n>3. In particular, it is shown that H(S,) made
abelian is the free group on [(#—1)(n—2)/2]—1+n generators.

1. Introduction. Let X be a compact 2-dimensional manifold with boundary.
The group of isotopy classes (reldX) of homeomorphisms of X onto itself which
are the identity on 8.X is referred to by L. V. Quintas as a subhomeotopy group of Y.
In the case X" is a 2-sphere with 7 holes, J. W. Alexander [1] has shown this group
is trivial for n = 1. H. Gluck [3] has shown this group is isomorphic to Z for n = 2
and J. P. Lee [4] has shown it is isomorphic to Z* for n = 3. In this paper we will
investigate the structure of this group for n>3.

nj
2. Notation and preliminaries. Let S, = S?— |J Int(D,) where D,,.., D,
k=1

are disjoint closed disks in S2 Let G(S,) denote the group of homeomorphisms
of S, which leave a5, pointwise fixed. Let Gy(S,) denote the normal subgroup of
G(S,) consisting of those homeomorphisms which are isotopic to the identity.
Let G(S,) denote the normal subgroup of G(S,) consisting of those homeomor-
phisms, /, which are isotopic to the identity by an isotopy which leaves 05, pointwise
fixed (denoted & = 1 (rel S,)). Let H(S,) = G(S,)/G,(S;) and H'(S,) = G(S,)/Go(S,)-
Finally let K(S,) denote the kernal of the natural homomorphism d: H(S,) — H'(S,)-
Note that a typical non-trivial element in X(S,) is represented by a homeomorphism
of §, which leaves 85, fixed and is isotopic to the identity, but is not isotopic to the
identity by an isotopy which leaves 45, fixed.

The desired presentation for H(S,) will be obtained by first obtaining presen-
tations for K(S,) and H'(S,) and then showing that - H(S,) = K(S,)® H'(S,).

3. Presentation for K(S,). In this section we will show that for n>3, K(S,) = Z".
Let 4 be an annulus in the plane parametrized by (v, 6) where 1 <r<2and 0 is
a real number mod2n. Let s: 4 — 4 be defined by s(r, 6) = (r, 0 —2mr).
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LemMa 3.1. Let f: A — A be a homeomorphism of A such that f [04 is the identity,
then there is a unique integer r such that f is isotopic to s by an isotopy which is fixed
on 0A.

Proof. This is a consequence of Theorem 7.2 of [3].

Remark. s" can be considered as resulting from “spinning” one component
of 84 r-times while holding the other boundary component fixed.

- THEOREM 3.2. If n=3, K(S,) = Z™.

Proof. For each boundary component C;, 1<i<n, of Sy, let 4; be a collar
neighborhood of C; with 4; N 4; = & if i # j. Let 5,€ G(S,) be the homeomor-
phism obtained by letting 5,/4; = 5 and extending by the identity. s, is called a spin
homeomorphism of S,.

If f represents an element in K(S,), then there exists an isotopy H, of S, with
Hy =1and H, = f. Let h, = H;/3S, and extend h, to an isotopy G, of S, which

n
is the identity on S,— | Int4; for all ¢ and is such that G, = 1. To construct G,
. i=1
merely “unwind” the isotopy H,/C; across the annulus 4; for each i. More precisely,
if we let h(x) = x for <0, then G, can be defined by Gi(x, ) = (- 4(x), v) for
n

(¥, v) in C;xJ = 4, and G(x) = x for x not in ) 4;. Now G, f~1 =~ 1 (rel 3S,)
i=1
by the isotopy G, H,, hence we can take G, as a representative of the equivalence
n
class of f in K(S,). G, is the identity on S,— | Int4; and by Lemma 3.1
i=1

Gy/A; = 58 A, (reldd;) for each i Since A;nA; =@ for i#j we have
Gy U 4y = s 5§ (reld( U 4). Thus the equivalence class of G;, and hence
also that of f; in K(S,) can be represented by a product of spin homeomorphisms.
Next we show this representation is unique for 733,

Let n3 and assume si*.. 5% o 1 (reldS,) where k, # 0 for some p. Let
xo€C, and ¢ # p. Let a, be a simple closed curve based at x, which transverses
the boundary component C, once in a clockwise direction. Let o, be a simple closed
curve based at x, which loops once around the boundary component C, in a clockwise
direction and is such that &, and C, form the boundary of an annulus whose interior

n
is disjoint from {J C,. In addition, we assume o, is disjoint from A; for i # p.
k=1

Note that o, and «, can be considered as representatives of 2 of the n—1 generating
elements of the free group II,(S,, x,). Since o, is disjoint from A, for i p,
@5 55 () = (). Now s§7(,) Tepresents the. element o, 1 [er, ] [or,] %% i
(S5, Xo). On the other hand, since s} ... s =~ 1 (rel3s), s%°(c,) must also represent
the element [o,] in IT((S,, x,). This is impossible for n>3. Thus the representation
of elements of K(S,) as products of spin homeomorphisms is unique and the theorem
is proved.

Remark. Lemma 3.1 shows K(S,) & Zand clearly K(S,) = 1, since Hi Sy = 1.
The reason-we do not get Z" in these cases is that although the spin homeomorphisms
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still generate the given groups, in the case of the annulus we have sy = 5, (relds,)
while in the case of the disk we have s; =~ 1 (relaS,).

4. Presentation of H'(S,). Let py, ..., p, be points in S? with P in IntD; for
1gign. Let F, = {py, ..., p,}. Define H'(S2, F,) to be the group of isotopy classes
(rel F,) of homeomorphisms of §? which are the identity on F,. As shown in Parts 3.c
and 4 of the proof of Theorem 6 of [7], the function ¥: H'(S,) — H'(S?, F,) which
sends the equivalence class of a homeomorphism % in H'(S,) to the equivalence class
of the homeomorphism of S obtained by taking the “cone” of  is an isomorphism.

For 1<ix}, let «;; denote a simple closed curve in S? which encloses the

n
points p; and py, ..., p, and is disjoint from ) D;. That is, one of the disks bounded
i=1

by o;; contains {p;,p;, .., p,} and the other disk contains F,—{pi, Dy cevs Du}-
Let 4;; be an annulus in S? which has «;; as one boundary component and has its
other boundary component inside the disk bounded by a; ,; which contains p;. Assume
Aijn Dy =@ for 1<k<n. Let ¢;;:' 4 — A;; be an embedding of the annulus A
into §* which is such that e;(2, 6) = «;;(/2n). Define a;;: S* — S by letting
a;; = e;;se;* on A;, and extending by the identity. Note that the effect of a;; is to
give one twist to the annulus 4;;. A discussion of “twist” homeomorphisms is given
in [2]. In particular, the homeomorphism a;; corresponds to the “y-twist” homeo-
morphism of [2].

Let 4;; denote the equivalence class of a;; in H'(S*F). The following theorem
is an immediate' consequence of Lemma 3.14 and Theorem 3.15 of [6].

n
THEOREM 4.1. Let G, = | {@y: 1<i<k}. If n>3, then H'(S?, F,) is generated
k=3

by G, and in terms of these generators, H'(S2, F,) has a presentation in which a com-
plete set of relations is given as follows:
1. If p<q and i =r or if p<gq and i<rzp, then
A;pll,, a1, = T,y .
2. If p<q dand i>r, then

3,0,y 8ip" = (Tig(Tpg oo Bgm,0) Trg@ig(@pg v Tgmp, ) " -
3. If p<q and i<r<p, then
afp‘—quafpl = ((‘_’M ‘_’q-l,q)aiq)arq((‘_ipq aq—l.q)aiq)—l .
Moreover, all the isotopes used to establish the above relations can be taken to
be fixed on CJ D,.
Since eaZ}: 1a” is fixed on Q Dy, if we let b;; equal the restriction of a;; to S,

then b;; is a homeomorphism of S, fixed on 8S,. In fact a;; is the cone of b;;. This
means that the isomorphism ¥: H'(S,) — H'(S?, F,) sends the equivalence class
of b;; to the equivalence class of 4;;. Since the isotopies used to establish Theorem 4.1
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n

can be taken to be fixed on |J D,, ¥~* sends these isotopies onto isotopies of S, 31
k=1
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H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104
(1962), pp. 308-333.

which are fixed on 0S,. T%ms if _V\;e let bi.j denote the eql}lvalence cl:%ss of by; in [4] 1.'P. Lee, Homeotopy groups of orientable 2-manifolds, Fund. Math. 78 (1972), pp. 115124,
H'(S,), then the isomorphism ¥~ establishes the following result directly from [51 L.V. Quintas, Solved and unsolved problems in the computation of h v groups of
Theorem 4.1. 2-manifolds, Trans., New York Acad. Sci. 30 (1968), pp. 919-938,
" [6] D.J. Sprows, Isotopy classification of h 'phisms of multiply-punctured compact
COROLLARY 4.2. Let G, = U {by| 1<i<k}. If n=3, then H'(S,) is generated 2-anifolds, Ph. D. thesis, Univ. of Penna., 1972.
E=3

o ) [Tl — Homeotopy groups of compact 2-manifolds, Fund. Math. 90 (1975), pp. 99-103.
by G, and in terms of these generators H'(S,) has a presentation in which a complete

set of relations is obtained by replacing each @;; by by; in the presentation for H'(S*, F,). .
Moreover, the isotopies used to establish the relations in H'(S,) can be chosen so as Accepté par In Rédaction le 17. 10. 1977
to be fixed on 3S,.

5. Presentation for H(S,). ‘
THEOREM 5.1. If nz3, H(S,) = K(S),)x H'(S)).
Proof. Consider the short exact sequence

i d
1— K(S,) = H(S,) — H'(S,) = 1.

Let i be a homeomorphism of S, fixed on 8S,. Let [4] represent the equivalence
class of i in H'(S,). Let A be the subgroup of H(S,) generated by {[s,]] 1<r<n}

n

and let B be the subgroup of H(S,) generated by U {[byll 1<i<k}. Note that s,
k=3

and by commute for all choices of i, k, r because their supports are disjoint. Hence
the elements of 4 commute with the elements of B. Moreover, 4 n B = {1} as can
be seen by the following argument. Suppose wls,] = w'[b;;] where ws,] is a word
involving only elements of 4 and w'[b;;] is a word involving only elements of B.
Since 4 = I,(i), we have

1=dwls]) = dw®;)] = w(by)).

But by Corollary 4.2. the isotopies used to establish the relations in H'(S,) can be
taken to be fixed on 85, thus w(b;;) = 1 if and only if w[b,;] = 1. This shows that
An B= {1} and hence H(S,) = AxB. The proof is completed by noting that
A = K(S,) and B = H'(S,).

CoROLLARY 5.2. If nz=3, H(S,) abelianized is the free abelian group on
[(n—1)(n—2)/2] ~1+n generators.

Proof. This result follows immediately from the fact that K(S,) =~ Z" and
H'(S,) abelianized is the free abelian group on 2+3+..+(n—1) generators."
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