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Let C= U ({h(®)} U'h~10)}) and B’ = {bo, by, ...}. Notice that B and C do
. =0

not intersect. For example, if b, = h(b)), then n # j, else b,e N, and n}j, else
b, e {h(b)}, and n#j, else b; e {h~'(b,)}. B' is dense in S—C though, for it is dgnse
in I, and M n (S—C)* is closed (relative to (S—C)?) and still uncountable, but it is
forced to miss the B’-grid in (S—C)>.

The author is grateful to J. B. Brown and P. L. Zenor for their helpful sugges-
tions and advice, and especially to Zenor for first raising the question of the existence
of a v* space.
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Dimension of free L~spaces
by

Keié Nagami (Matsuyama)

Abstract. We introduce the class of free L-spaces which is countably productive and hereditary.
The class is an intermediate class between that of L-spaces and that of M,-spaces. The class has
excellent features in dimension theory a part of which is clarified in this paper.

0. Introduction. In a previous paper [6] we introduced the notion of L-spaces
which constitute an intermediate class between that of Lainev spaces and that of
M -spaces. As was noted there the class of L-spaces is not even finitely productive.
In this paper we introduce the notion of free L-spaces in Section 1 which generalizes
the notion of L-spaces. The class of free L-spaces is not only hereditary and coun-
tably productive but also has many excellent features in dimension theory. In Sec-
tion 2 we show that even the dimension-raising theorem is valid for the class of free
L-spaces. As trivial corollaries of this theorem there are the decomposition theorem
and the coincidence theorem for two basic dimensions. A characterization theorem
for a free L-space X with dim X = n is also presented. Our characterization assures
the existence of equi-dimensional Gj-envelopes as in Theorem 2.8 below. In
Section 3 we show that the universal space for free L-spaces is the countable product
of almost polyhedral spaces. As a special case we prove, in Theorem 3.8 below, that
each space X is a free L-space with dim X<0 if and only if it is embedded in the
countable product of almost discrete spaces. Thus a role played by Baire’s
0-dimensional spaces in the theory of metric spaces is done by the countable products
of almost discrete spaces in the theory of free L-spaces.

In this paper all spaces are assumed to be Hausdorff topological spaces, maps
to be continuous onto, and images to be those under maps. The letter N denotes
the positive integers. For undefined terminology refer to [2] and [6].

1. Definition of free L-spaces.

1.1. DerNITION. Let X be a space, F a closed set of X, and 4 an anti-cover
of F.If §is a subset of X, %(S) denotes the star U {Ue ¥: Un S # @}. X(S) is
defined inductively by the formulae: #*(S) = %(S) and %'(S) = %(U'~Y(S)).
A set V of X is said to be a canonical neighborhood of F (with respect to %) if V is
an open neighborhood of F such that, for each #, Cl#'(X—¥) does not meet F.
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1.2. DerNiTION. For a space X consider a pair 2 = (#, {%p: Fe F}) of

a o-discrete closed collection & of X and a collection of anti-covers % of Fe &.

# is said to be a free L-structure if for each point x € X and each open neighbor-

hood U of x there exist a finite subcollection {F;, ..., F;} of & and a canonical
k k

neighborhood U; of each F; with xe (| F;= () U;cU. Xis said to be a free L-space
i=1 i=1

if X is a paracompact space admitting a free L-structure.

If 2 is a free L-structure, the collection of all finite intersections of elements
of # is a o-discrete network of X. Thus each free L-space is a o-space. Each open
neighborhood of F is canonical with respect to % if and only if % is approaching
to F in the sense of Nagami [6].

1.3. THEOREM. To be a free L-space is hereditary and countably productive
property.

Proof. Let X be a free L-space, (%, {#z: Fe #}) a free L-structure of X,
and S a subset of X. Since X is a paracompact o-space, S is paracompact. Since the
restriction (F|S, {#)S: Fe #)}) is, as can easily be seen, a free L-structure of S,
then Sis a free L-space.

Let X;, i€ N, be a sequence of free L-spaces, and (%, {#y: Fe #}), ie N,
a sequence of corresponding free L-structures. Set X = [] X,. Since each X; is
a paracompact o-space, X is paracompact. Let ;: X' — X}, i e N, be the projections.
Set o = \J n; }(#)). Then # is a o-discrete closed collection. Let us see that
(#, {n; (Ug): FeF;,ieN)}) is a free L-structure of X. If Fe F,, n (%)
is an anti-cover of z; (F). Let x = (x,) be an arbitrary point of X, and U an arbitrary
open neighborhood of x. Choose a finite subset M of N and open neighborhoods U,
of x;, ie M, such that () {n; Y(U): ie M}<U. For each ie M, choose a finite
subcollection {F(#,j): j=1,...,,n()}=#,; and canonical neighborhoods U(i,j)
of F(i,j) with respect to %pq,j, j =1, ..., n(i), such that

x, e NV{FG jy:j=1,..,n®)}c N{UGH:F=1,.., n()}<U;.

Then =, '(U(i, /) is a canonical neighborhood of m; Y(F(@i, /) with respect
to n; '@y, ) and

xe N {n FEN) j=1,..,n(),ie M}
< N{m (UGN j=1,..,n(),ie M}
< N{='(U): ieM}.
That completes the proof.
2. Dimension for free L-spaces.

2.1. LEMMA. Let X be a hereditarily paracompact space. Let F, H be a disjonit
pair of closed sets of X. Let ¥ be a o-locally finite open cover of X with
V(F) n H = @. Then there exists an open set D such that FeDcDcX~H and
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0D< \J{aV: Vev'}. If each binary open cover of X can be refined by a o-locally
Jinite open cover ¥ such that InddV<n—1 for each Ve¥, then Ind X<n.

Cf. Nagami [2], Theorem 11.12.
2.2. LeMMA (Nagami [S], Lemma 4). Let X and Y be paracompact ¢-spaces

and f a closed map of X onto Y. If order f = n and, for each point ye Y, f~Y(y) con-
sists of exactly n points, then dim Y<dim X.

2.3. THEOREM. For a free L-space X the following four conditions are equivalent.
(1) dimX<n.

(2) X is the image of a free L-space Z with AimZ <0 under a closed map f of
order <n+1.

(3) X is the sum of n+1 subsets Z;, i = 1, ..., n+1, with dimZ;<0 for each i.
4 Ind X<n.

Proof. The implication (2) — (3) is a direct consequence of Lemma 2.2. The
implications (3) — (4) — (1) are already known (cf. Nagami [2], Theorem 12.6).

To prove that (1) implies (2) let (# =) &#,, {#y: Fe &), with each &, dis-
crete, be a free L-structure of X. Set #; = {F(i, o): w € 4;}. Let {U(@, 0): ae 4}
and {V'(i,0): xe 4,;} be discrete collections of open sets such that

Fl,)<=V(i,a)cClV(i,0)cU@, o) for each ae 4;.
Set

H; = {F@,®): xed;},

U; = U {U(@,0): ae 4},
and

Vi=U{V@, o): acAd}.

Then H,cV;c V,cU;. By the perfect normality of X there exists an anti-
cover ¥°; of H; consisting of X— ¥; and of open subsets of U;— H; such that V; is
a canonical neighborhood of H; with respect to ¥7;. Set

W= {X=V} U (U @r,ol(UG, )—FG, ) AV (UG, )~ F(, 0): o 4;)).
o
Then #; is an anti-cover of H;. Let |J #7;; be an anti-cover of H; refining #7; such
i=1
-]
that each #';; is discrete in X—H; and {J #7; is locally finite in X—H;. Set
j=1

Wij={Wyp: BeBy} and W= U {Wy: fe By} Set Wy =ky1KUk’ where

each K;; is a closed set of X.
By Lelbo [1] there exist a metric space ¢X with dimgX<dim X and a contrac-
tion (i.e. a one-one map) g: X — ¢X such that the images of all K, and X— W},
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under ¢ are closed in ¢X. Well order the collection of all disjoint pairs (X — Wiss Kiy)
as follows: . .

{(X—W;, Kip): 1,7, ke N} = {(P;, 0): ie N}.

Let g; = {G;;: Le A}, ie N, be a sequence of locally finite open covers of o.X satis-
fying the following four conditions for each ieN: ’

a) mesh¥;<1/i,

b) 1<%,

¢) order %;<n+1,

d) 9, <{oX—gP;, 0X—00}.

Let mj*': Ay —A; be a transformation such that m*'(A) = u yields

Gi+1,,=Gyy, and consider the inverse system {4;, ni+'}, where each 4, is endowed
with the discrete topology. Let oZ be the aggregate of all points (1,) of limA; with

0 =]
(1 Gy, # O. Let g: 0Z— X be a transformation defined by: g((4)) = () Gy,
i=1 =1 ’

Then g is a closed map onto with order g<n+1 and dimoZ<0 by Nagami [2],
Theorem 12.6. Let n;: 0Z — A; be the restriction of the projection of l[im4, to 4.
Consider the diagram:

I
Z—>X
¢ [
o
oZ —X

Let the set Z be identical with 0Z, o the identity transformation of Z onto ¢Z
and f: Z — X the transformation such that go = of. Give Z the minimal topology
among those which enable both fand ¢ to be continuous. By an argument which is
essentially the same as in Nagami [4], Theorem 6, we can see that [fis a closed map
onto. Since ¢ is a contraction, Z is Hausdorff. Since order f=orderg<n+1,Zis
a paracompact space as a perfect preimage of a paracompact space X.

Let us construct a free L-structure of Z. Set o# = {=7*A): Le 4, ie N}
Since # is o-discrete and each element of 2 is open and closed, o~ () is
o-discrete and each element of o™ !(2#) is open and closed. Set o = o~ 1) A
A fTNF). Then A is a closed collection which is o-discrete in Z. Let K be a generic
element of #". Then K = ¢~ n;1(A) A f~1(F) for some i, some Ae A;, and some
Fe%. Set

Lx={Z—oT 7D} v (f @) o~ n7 D).

Then &y is an anti-cover of X,
To see that # = (A", {Ly: Ke A}) is a free L-structure of Z let z be an arbi-
trary point of Z and U an arbitrary open neighborhood of z. Then

zeo™'n W n TP eU
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for some j, some pe 4;, and some open neighborhood ¥ of f(z). Choose a finite
subcollection {Fy, ..., F,} of # and canonical neighborhood D; of F;, i =1, ..., k,
such that

k k
f@eNFc \DcV.
i=1 i=1

Set K; = o™ n;i(u) 0 f~L(F). Then o™ 1n;Y(w) Af~Y(D,) is a canonical
neighborhood of K; with respect to %y, Since

! k
z E-QlKiC igl(a"‘nj’l(u) nf (DY)

= a5 0 7 ) D)
=o”in; () nf (M=,

then & is a free L-structure of Z.

To prove the final inequality dimZ<0 we need some assertions.

ASSERTION 1. f*(P) and f~Y(Q)) can be separated in Z by the empty set.

Proof. Set A= {le4;: Gy, neP; # B}, je N. Then by the condition d),
g7 ePien (A coZ—g 00, o™l g T oPc o ny (A eZ—0" g™ 0Q;, and
hence [~ (P)=a" n; (A= Z~f~1(Q,). Obviously o~ 1n;(4)) is open and closed.
That proves the assertion. )

ASSERTION 2. Let D, be a canonical neighborhood of H; with respect to W'y with
D;cV,. Then f~Y(H)) and Z—f~(D)) can be separated by the empty set.

Proof. Set E; = #3(X— D)) and @; = { f~X(D)—f"*(H)), f~*(E)}. Then 2,
is a binary open cover of the subspace Z—f~1(H,). For each j, k € N, there exists,
by Assertion 1, an open and closed set R;j, such that f‘l(Kijk)CRi,-k:f_l(W,j).
Set Siwg =S (Wyp 0 Ry Then S;ys is an open and closed set. Set

L= {Sijkﬂ: ﬁEBu}:
Then &, is discrete, covers R;;, and refines f~(#" 3)- Since
Z—f"YH) = U {f "Ky: j. ke N}
e U{Ry: j, ke N}
c U{f~(Wy: jeN} = Z—f"Y(H),

&, is a g-discrete cover of Z—f"1(H,) whose elements are open and closed. Since

Fi=U{P i jkeN}.

-]
i< UL N W ) <f~1 (W), there exists, by Lemma 2.1, a set D, being open and
=1
closed in Z~f~*(H,), such that

Z—f"YE, v H)=Def " (D)—f" H). .. .


GUEST


216 ; K. Nagami

Since Z—F~1(E,) is 4 canonical neighborhood of f~*(H) with respect to f~(#"),
D Uf YH) is a canonical neighborhood of f~Y(H,) with respect to f~(#").
The latter fact implies that D u f~(H;) is open and closed in Z. The inequalities
fUH)cZ~f~YE)=D uf Y{H)<f"*(D,) proves the assertion.

ASSERTION 3. For each point xe X and each open neighborhood U of x there
exist finite elements F(i, a;) € & ;, i€ M, and an open and closed set V of Z such that

e N fUEG a:))CVC(i (]Wf“(V(i, a))) nfHU) .
ieM &
Proof. Choose a finite set M <N, elements F(i, o)) € #;, i € M, and canonical
neighborhoods G; of F(i, a;) with respect to %pg,qy, i€ M, such that
xe (\ F,a)= () GicU.
ieM ieM
Notice that
Wil(UG, w)—F@, o)) <Urq,ap| (UG, ) —F (i, “i))
and V(i, o) is a canonical neighborhood of F(i,a;) with respect to
Wi|(U(i, a)—F(, “;)) s
then G;n V(i, o) is a canonical neighborhood of F(i, o) with respect to
W (U(, o) —F(i, o). Therefore, if we set
S;=(Gin V@, ) v (U {VE o a#a)),

S; is a canonical neighborhood of H; with respect to #°;. By Assertion 2 there
exists an open and closed set T; of Z with f~YH)cT,cf~X(S)). If we set
Ti=T;n fY(V(i, ), T; is still an open and closed set of Z with f~Y(F(i, o))
eTcf %G, n V(i,a). Set V= (] T;. Then

ieM

e ) HEG w) =V
=N fwl(Gi nV(Q, 0‘1))
ieM
G\(, NSV ) 0fO).

That proves the assertion.
ASSERTION 4. Let U be an open set of X. Then f~(U) admits a cover W which
is o-discrete in Z and each element of which is open and closed.
Proof. Set
N* = {McN: |Mj<w},
Ay =[1{4;: ie M}, MeN*
Fy = "{F(@,x): ie M}, y = (u;: ie M) e Ay, Me N*,
Vy=N{VG o) ieM}, y="(: ic M)e Ay, MeN*.
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Let By, be the aggregate of all indices y ¢ 4y, such that f ME)=W,f 1V, A U)
for some open and closed set W,. Set

W ={W,: ye By, Me N*},

By Assertion 3, {f"'(F)): ye By, Me N *} covers f~*(U) and hence %", consisting
of open and closed sets, covers f~1(U). Since {V;: 754y} is discrete in X for each
M e N* and N* is countable, {f~Yv,): yeB,, M e N*} is o-discrete in Z and
hence #" is g-discrete in Z. That proves the assertion.

ASSERTION 5. Let G be an open set of Z. Then G has a cover 4 which is o -discrete
in Z and each element of ‘which is open and closed.

Proof. For each i and each A€ A, let U, be the largest open set of X such that
o™ ' () nfT(U)<=G. Then G = | {677 ') n fY(UY: Led,, ieN}. By
Assertion 4 there exists a cover #, of f ~(U,) which is o-discrete in Z and each
element of which is open and closed. Set

b= Wio ' n "D nf YUY,
Then &, is still o-discrete in Z and each element of %, is open and closed. Set
9 =U{%: Aed,, ieN}.

Then % is a cover of G consisting of open and closed sets. Since ¢~ () is o -discrete,
% is also o-discrete. That proves the assertion.

By Assertion 5 each binary open cover of Z can be refined by a cover which is
o-discrete in Z and each element of which is open and closed. That implies
dimZ<0 by Lemma 2.1. The proof of the theorem is thus completed.

From the above argument and from the first half of Theorem 1.3 it can easily
be seen that the restriction of {(K;, X— Wi i,j,keN} to an arbitrary sub-
set S of X determines IndS. Thus we have the following which is a generalization of
Nagami [6], Lemma 3.5.

2.4. THEOREM. 4 free L-space X admits a countable collection of disjoint pairs
of closed sets determining Ind of all subsets of X.

2.5. DEFINITION, Let X be a space. Let &F,; = {F(i,0): ae 4;} be a discrete
collection of closed sets of X. Let ¥, = {V(i, ®): ae 4;} be a discrete collection
of open sets with F(i, )=V (i, «), « € A;. Let %; be an anti-cover of ’

Hy=U{F@,0): acd}.
Then (F = U &F,, U ¥, U %)) is said to be a free L-mesh of X if the following
two conditions are satisfied:
a) U {¥V(i,®): «e 4} is a canonical neighborhood of H; with respect to %;.

b) For each point x € X and each open neighborhood U of x there exist finite
elements F(i, a;)) € #, ie M, and canonical neighborhoods ¥; of H; with respect
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to %;, ie M, such that

xe () F,a)e N (Vio Vi a)<=U.
.ieM ieM .

A free L-mesh is said to be a strict free L-mesh if it satisfies one more condition:

) The intersection of all canonical neighborhoods of H; with respect to %,
is H;.

2.6. LEMMA. A paracompact space X is a free L-space if and only if X admits a
(strict) free L-mesh.

The necessity is essentially proved in Theorem 2.3. The sufficiency is an easy
exercise.

2.7. THEOREM. A paracompact space X is.a free L-space with dim X<n if and
only if X admits a (strict) free L-mesh () &, U ¥, U %)) such that each U, is locally
Jinite in X—H; and dimoU<n~1 for each element U of \J U,.

This is also an easy exercise by virtue of Lemmas 2.1 and 2.6, if we apply an
analogous argument to that in Assertion 4 of Theorem 2.3.

2.8. THEOREM. Let X be a free L-space and Y a subset of X with dim Y<n.

Then there exists a Gyset S with Y= S and dimS<n.

Proof. By Theorem 2.3 there exist subsets Z;, i = 1,..,n+1, of ¥ with
n+1

Y= | Z; and with dimZ;<0. Let (U #,, U¥";, U %) be a strict free L-mesh
. i=1

of X, where each %, is locally finite in X—H,. Set %, = {U(i, f): fe B}. Let
P, = {P(@i, f): Be B;} be a closed cover of X—H, with P(i, )= U(i, B) for each
B € B,. Since the mesh is strict, CLU(i, f) n H; = & and hence P(i, f) is closed in X.
Since dimZ; <0, there exists an open set Q(i,f) such that P@, B=Q(, B
=ClQ®, U, f) and 300, f) 0 Z; = B. Set

R, =U{0QG, p): BeB}.

-]
Then R, is closed.in X— H,. Since H,is Gy, R; is an Fs-set of X. Set §; = X— (J R,.

i=1
Then S; is a Gyset of X with Z;cS;. Set 2, ={Q(,p): fe B}. Let
7 =&, Ui, U &) bethe restriction of (U &, U ¥, U 2) to S. Then 7 is
a strict free L-mesh of S, such that Q' = @ for each element Q' of (J 2{. Thus

dimS; €0 by Theorem 2.6.
’ nd1

LetS;, i = 2, ..., n+1, be Gy-sets of X with dim S;<0and Z,=S,. Set § = S
=1

Then §'is Gy-set of X with dimS<n and Y= S. That completes the proof,

2.9. THEOREM. For a separable free L-space X the Sollowing four conditions are
equivalent.

(1) dim X<n.

(2) X is the image of a separable free L-space Z with dimZ<0 under a closed
map of order <n+1.
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3) Ind X<n. .

(4) ind X<n.

‘Proof. For a separable X, X in the diagram in Theorem 2.2 has to be sep-
arable. Then we can assume that ¢Z is separable. In that case the pullback Z in the
diagram has to be separable too. Thus the implications (1) — (2) — (3) — (1) are
true. When X is separable, X is Lindelsf. Hence for such X, as is well known,
ind X = Ind X That completes the proof.

2.10. THEOREM. Let X be a (separable) free L-space. Then X is the perfect image
of a (separable) free L-space Z with dimZ<0.

This is essentially proved in Theorem 2.3, where we have to assume that g in
the diagram is merely perfect. In that case fin the diagram has to be perfect.

2.11. ProBLEM. Is the perfect image of a free L-space again a free L-space?

2.12. PROBLEM. Let X be a Lagnev space. Is X the perfect image of a Lasnev
space Z with dimZ<0? If moreover dim X<n, is X the image of a Las¥nev space Z
with dimZ<0 under a closed map f of order <n+1?

3. Embedding theorems for free L-spaces.

3.1. DeriNITION. Let X be a space. The set of all points of X which have
metric neighborhoods is said to be the metric part of X, The complement of the metric
part is said to be the nonmetric part. X is said to be an almost metric space if the
following three conditions are satisfied:

a) X is- perfectly normal and paracompact.

b) The collection of points of the nonmetric part X, is discrete.

¢) X, has an anti-cover approaching to Xo.

An almost metric space is said to be an almost discrete space if its metric part
is discrete as a relative space.

3.2. LEMMA. An almost metric space X is an L-space.

Proof. Xis of course a g-space. Let X, be the nonmetric part of X. Let % be
an anti-cover of X, approaching to X,,. Let F be an arbitrary closed set of X. Let U/ be
anopen set of X with X,—FcUcUc X—F. Let¥ be an open cover of X—X,u F
approaching to F—X, in X~X,. Set # = % A¥". Then # is an open cover of
X=Xy U F. Set =% u{U}. Then ¢ is an anti-cover of X—F,

To prove that & is approaching to F let G be an arbitrary open neighborhood
of F. Since % is approaching to X, there exists an open neighborhood D of F A Xo
such that D N % (X—G) = @ and hence D n # (X—G) = @. Since ¥~ is approach-
ing to F'— X, in X~ X,, there exists an open set E of X~X, with F— Xy<E and
En?(X—~G)=@. Then En W (X—G) =@, Set T=D U E—T. Then T is
an open neighborhood of F with T'n ¥(X—G) = @, which implies that ¥ is
approaching to F. That completes the proof.

3.3. DerNitioN. In this paper polyhedra are simplicial polyhedra with the
metric topology. Let X be a polyhedron and A4 the vertex-set of K. Let the star of
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a € A, say St(x), be the set of all points of K whose baryceffl,tric weights on  are
positive. The star-cover of K is {St(«): « & 4}. An almost metric space X is said to
be an almost polyhedral space if the following two conditions are satisfied: .

a) The metric part of X _is a polyhedron K.

b) The star-cover of K is approaching to the nonmetric part of X.

3.4. THEOREM. For a space X the following four statements are equivalent.

(1) X is a free L-space.

(2) X is embedded in the countable product of almost polyhedral spaces.

(3) X is embedded in the countable product of almost metric spaces.

(4) X is embedded in the countable product of L-spaces.

Proof. That (2) implies (3) is clear. The implications (3) -+ (4) and (4) — (1)
are assured to be true respectively by Lemma 3.2 and by Theorem 1.3.

To prove that (1) implies (2) let (U &, U ¥, U %)) be a strict free L-mesh
of X, where

a) F; = {F(i,0): e A},

b) v = {V({,): xed},

o) %, ={U(G, B): Be B},

d) Hy =) {F(@i,0): aed},

e) %; is locally finite in X—H;,

f) H; is the countable intersection of its canonical neighborhoods with respect
to %;, :

g) {#%(V(,®): wed} is discrete.

Let K be the nerve of %; and f;: X— H;— K, be a Kuratowski map defined as
follows: The vertex-set of K; is B;. ¢;: X—H;— Iis a map such that ¢p(x)>0 if
and only if x e U(i, f) and such that {pz: § € B;} isa partition of unity. f(x) is the
point of K; whose barycentric weight on f € B, is @4(x), i.e. fi(x) = ¥ {p4(x)B: f & B;}.
Introduce K; the metric topology &;. Then as is well known f; is continuous.

Let X; be the disjoint sum of K;and 4;. Set &#; = {St(f): fe B}. Letg;: X— X
be a transformation defined by: :

gl X—H; = f;,

gx) =a, xeF(i,q).

To give X; a suitable topology we need some notations. Set
B(E) = {B& By Ui, )=E}, EcX,
(E]= (U {UG. B): BeBE}) L (EnH).
Let &; = {E;: Ae 4;} be the collection of all canonical neighborhoods of H; with
E, = [E;]. Set
Gy =4;0 (U {St(B): pe B(EY}),
g, ={G: le A},
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W, ={a} U (U {St(B): e B(V(, a))}), oe A
W= {W,: aed},
Bi=D;0(GAW).
Give X; the topology having #; as a base. Since 97 4Gy = E,, Aed,, and
- _ ) } . ’ i
gi "W = [V({i, )], «€ 4;, then g: is continuous.
ASSERTION L. If E is a canonical neighborhood of H,, then [E] is also canonical.
Proof. The assertion follows at once from the inequalities X—% (X - E)
c[E]cE. :
ASSERTION 2. W', is discrete.

Proof. Assume that there exist distinct elements o, o' € 4; and St(B) such
that St(B) n W, n W, # @. Then there exist §, e B(V(i,w) and B, e B(V(i, a’))
such that St.(ﬁ) N St(By) # @ and St(f) n St(B,) # @. Thus {8, B,} and {B, B,}
span 1-simplices of K; and hence U(i, 8) n U(i, B,) = @ and UE,PHnUGB,) # 9.
These two inequalities imply that %,(V(i, #)) n Vi, o) # B, which contradicts
to g).

ASSERTION 3. For each element E, e &, there exists an element E, e &; with
U[E;) U H,<E,.

Proof. Set E, = [X—Cl%(X—~E,)]. Then E, is the required.

ASSERTION 4. The inequality % (E;) L H,cE,, A, pe A;, implies that & (G,) U
v 4;<=G, and hence G,=G,.

Proof. Let f € B; be an index with St(8) n G, # &. Then there exists pi1eB(E))
with  St() N St(B,) # @. Hence U(i, f) n U(i, B,) # @, which implies that
U(i, p)=%(E,) and hence B e B(E,). Thus St()=G,.

ASSERTION 5. X, is Hausdorff.

The assertion can be seen by f), Assertions 1, 2, 3, 4 and by the fact that the
topology of X; does not disturb the topology of K.

ASSERTION 6. 4, is a Ggset of X;.

Proof. By f) there exists a sequence E,,, je N, of elements of &; such that

o

(2]

H; = () E,;,. By Assertion 3 we can pick E, e & with %(E,)=E,,. Let St(f) be
J=1 ’

an arbitrary element of &;. Then there exists & with U(i, B)—E,, # & and hence
with U(i, f) N E,, = @. Thus for each §' € B(E,), UG, B) n U@, p) = B. There-
fore St(B) n St(f) = @ for each p'eB(E,) and hence St(f) n G, = . That

proves the equality 4; = Gy,
J=1

ASSERTION 7. X, is paracompact and perfectly normal.

Proof. Let % be an arbitrary open cover of X;. For each a & 4; choose U, e %
with @€ U,, and then choose A(w) € A; with W, N G,y = U,."Set

E=U{gi'(Wen Gyt e d;}.
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Then E is a canonical neighborhood of H;. By Assertions 2 and 3, there exist el-
ements y, v e A; with E,cE and G,=G,. Let ¥ be a locally finite open cover of
X;—G, refining %. Set

W= {W,n Gy t€d}, D=W0V|(X-G).
Then by Assertion 2, 9 is a locally finite open cover of X; refining %. Thus X; is

a paracompact space by Assertion 5 and hence normal.
Let U be an arbitrary open set of X;. By Assertion 4 there exists a se-

o
quence G;, j € N, of open sets of X; with 4, = (| G;. Let Fy,, k e N, be a sequence
j=1

of closed sets of X; such that U~G; = |J Fjy. Then
k=1

o0 .

U=(U FpluUn4).

pk=1
Since U n 4; is closed, U is an F,-set of X;.

ASSERTION 8. &; is approaching to A;.
This is clear from Assertions 3 and 4.

ASSERTION 9. Let g: X — [ X; be a transformation defined by: g (x) = (g,(x)).
i=1

Then g is an embedding.

Proof. Since each g, is continuous, g is continuous. To prove g is one-one
let x, y be distinct points of X. Then for some j € N, some canonical neighborhood Vi
of H; with respect to %;, and some a € A4;,

xEF(j’ “)Can (V(]# a))C‘X—{y} *

When y ¢ V(j, @), g(y)¢ W, and hence g,(y) # o. Since g;(x) = «, g,(x) # g,(»)
and hence g(x) # g(»).
Consider the case when y¢ ¥;. Choose Aed; such that E,cV;. Since

951Gy = E;,4,(y) ¢ G,. Since g;(x) = o € G, g,(x) # g,(») and hence g (x) # g()).
"To prove the continuity of g~* let x be an arbitrary point of X and U an arbi-
trary open neighborhood of x. Choose finite elements F(i, «) e ) &, je M, and
elements A, e 4;, ie M, such that
xe ) Fi ape () (E;, N VG, a)])=U.

ieM ieM
Set

W=T] G Wyx T] X,.

ieM 1eN=M

Since :
GGy W) = E n[Vi,a)], ieM, g~ i(W)<U.

Thus g~* is continuous.,
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ASSERTION 10. X; is embedded in the countable Dproduct of almost polyhedral
spaces. ‘

Proof. If X; is not first-countable at any a € 4;, then X; itself is almost poly-
bedral and there is no problem. Let Aj be the set of all points a € A; at which X; is
not first-countable. Set 4;' = A;~4;. Then it can easily be seen that K,vd]is

- metric and 4; is the nonmetric part of X;. Let {P(j,®): xe4]’,je N} bea collection

of open sets of X; such that {P(j,®): je N} forms a neighborhood base of « e Ay,
P(j,®)=CIP(j+1,%) for each je N and each « €4, and {CIP(1,0): ac 4;}
forms a collection of subsets of X,— 4] which is discrete in X;. Let 7;; be an anti-
cover of A4; such that I ;<& U {P(j,q): ae 4;"}, 735 is locally finite in X,— 4],
and mesh 7 ;;<1/j. Let L;; be the nerve of 77;and g,;: X;—4;{—L;; be a Kura-
towski map. Let X;; be the disjoint sum of L;; and 4;. Define hy: Xi— X;; by:

hijl(X'—'Anf) = gij: hij(lx) =, OCEAI{.

Give X; the topology as follows, An open set of L;; is open in X;; and a set ¥ of X,
meeting A; is open if 4;;(¥) is open in X; and if V'~ 4, is the sum of some sub-
collection of the star-cover &y of Ly;.

Set P = {CIP(1,®): acd;'}. Let « be an arbitrary element of A4; and
{Qs: f € N} be an arbitrary collection of open neighborhoods of « in X;; such that
0> 0riy (ke N), 0, 0 4] = {a},and 0, n P = @. Since X, is not first-countable
at ¢ and & is approaching to 4;, there exists an open neighborhood U of « such that
CA&LUYn4d;={a}, LU)NP =@, and ki (@)~ (U) D for any ke N.
Set :

U= (U {Teg: TeF U} v {o}.

Then there exists a set @ of X;; such that k;(Q) = U’ and Q—4! is the sum of
some subcollection of &;. Since
T (X —P)< & |(X,—P), UcU'<%(U)

and hence U’ is an open neighborhood of o in X;. Thus Q is an open neighborhood
of « in X;; with
B (@) —h;3(Q) = (@) —U' > hjH QY —F(U) # B .

Therefore Q,—Q # @ for any ke N and {Q,: ke N} cannot be a neighborhood
base of « in Xj;. Since the first-countability does not hold at any aEed;in Xy, the
nonmetric part of X; is exactly 4;.

Using the fact that &, is approaching to 4; in X and that

Tl (= Py< | (X~ P),

it is easy to see that &;; is approaching to 4; in X; 1;+ Evidently X; is paracompact
and perfectly normal. Thus X;; is almost polyhedral,
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Define h;: X;— Y; = [] Xy by: h(p) = (hi(p): jeN). Then by the fact
j=1

that lim mesh I~ =0, h; is, as can easily be seen, an embedding.
j~eo

To complete the proof of the theorem define ¥;: X — ¥; by: ¥, = hyg;, and
v X— ﬁ Y, by: ¥ = (). Then ¥ is an embedding into the countable product .
i=1

of almost polyhedral spaces. The proof of the theorem is finished.

The author introduced in [3] the notion of u-spaces. A space is said to be
a-g-metric space if it is the countable sum of closed metric subsets. A space is said
to be a p-space if it is embedded in the countable product of paracompact o-metric
spaces. Since each almost métric space is ¢-metric, we get at once the following,

COROLLARY 3.5. The class of free L-spaces is a subclass of p-spaces.

Thus each La¥nev space Is a y-space, which is a new information about Lagnev
spaces. ;

When dim X<0, we can‘iﬁ assume without loss of generality that order %,<1
and order ;<1 in the proof of Theorem 3.4. Then X; is an almost discrete space.
Moreover if X is separable, the cardinalities of %;, 7 ;; and A4, are countable. Thus
we get the following.

LemMA 3.6. Let X be a free L-space with dim X<0. Then X is embedded in the
countable product of almost discrete spaces. Moreover If X is separable, then X is
embedded in the countable product of almost discrete countable spaces.

Lemma 3.7 (Nagami [5], Lemma 3). Let X be the countable product of paracompact
Z-spaces X;, ie N, with dim X;<0. Then dim X<0.

The following is a direct consequence of Theorem 3.5, Lemmas 3.6 and 3.7.

THEOREM 3.8." 4 space X is a (separable) free L-space with dim X<0 if and
only if X is embedded in the countable product of almost discrete (countable) spaces.
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