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On the existence of arcs in rational curves
by

J. Grispolakis and E.D. Tymchatyn * (Saskatoon, Sasky)

Absftract. It is an open question whether curves of finite rim-type contain arcs. A. Lelek and
L. Mohler gave a positive answer for the case in which the curve is hereditarily unicoherent. In
this paper the question is answered in the affirmative.

1. Preliminaries. Rational curves which contain no arcs have interested top-
ologists for several years. First, Z. Janiszewski in 1912 (see [4]) constructed an arc-like
rational curve of rim-type « which contains no arcs. A. Lelek in [6] Problem 729
asked if it is true that every curve which contains no arcs has infinite rim-type. A. Lelek
and L. Mobhler in [7] Theorem 1.2 proved that if X is a hereditarily unicoherent
curve which contains no arcs, then X has infinite rim-type. B. B. Epps, Jr. in [2]
constructed an arc-like curve of rim-type n>1 all of whose subcurves are of rim-
type either 1 or n. J. Grispolakis and E. D. Tymchatyn gave another example in [3] of
an arc-like curve of rim-type 3 all of whose subcurves are of rim-type either 1 or 3.

Tn this note we answer Lelek’s question in the affirmative by proving that every
curve of finite rim-type contains arcs. Thus, Lelek’s question is settled completely.

2. Rim-type of rational curves. A continuum is a connected, compact, metric
space. A curve is a 1-dimensional continuum. If 4 is a subset of a topological
space X, let A’ denote the derived set of A. Let A® = 4 and by transfinite induction
define A for each ordinal «, by A®*" = (4®) and 4AY = ) {4®] a<i} for
a limit ordinal A. Let Cl14 and Bd 4 denote the closure and the boundary, respectively,
in X of a subset 4 of X. By Int4 we denote the interior of 4 in X. Let N denote
the set of natural numbers. If C is a compact, countable subset of a metric space,
then there exists a countable ordinal « such that C® = @. We call the smallest
such ordinal « the fopological type of C. A curve X is said to be rational if X admits
a basis of open sets with countable boundaries. Define the rim-type of X to be the
smallest ordinal @ such that X has a neighbourhood basis of open sets (Udien such
that the topological type of BAU; is <o for each ie N. 1t is well-known (see [5],
P- 290) that the rim-type of a rational continuum is an ordinal number strictly smaller
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than the first uncountable ordinal Q. By a mapping we shall always mean a continuous
function. ’

"The following theorem is & well-known result (see [5], p. 216) and it is stated
here in the form which we shall use.

2.1. THEOREM. If X is an irreducible, hereditarily decomposable continuum,
then there exists a finest monotone mapping of X onto the unit interval [0,1). The
Dpoint-inverses under this mapping are nowhere dense subcontinua of X and are called
the iranches of X.

2.2. THEOREM. Every curve of finite vim-type contains an arc.

Proof. The proof is by induction on the rim-type of the curve X, If rim-type
of Xis 1, then X has a basis of open sets with finite boundaries. It is well-known that
in this case X is locally connected, and hence, X contains an arc. Suppose that each
curve of rim-type <n—1 contains an arc.

Just suppose that there exists a curve X of rim-type # such that X contains no
arc. Then every non-degenerate subcontinuum of X has rim-type . We may suppose,
without loss of generality, that X is an irreducible continuum. Let 7: ¥ —» [0, 1]
be a finest monotone mapping of X onto [0, 1]. We may suppose since X is not an
arc that 7~ (1) is non-degenerate. Let Ty =n"(1) and let ¥, = X.

Let % be a countable basis of open sets for X whose boundaries are pairwise
disjoint and have topological type <n. This is possible since X is compact, % is
countable, and the boundaries of the members of % are zero-dimensional. We may
also suppose that if Ue# and x e B U, then x e Cl(X\CI U). Let {Uy, U, ..}
be the members of % which meet To-

For each m = 1,2, ... let D,, = (To N BAU,)\(BAU,)". Then D, is a discrete
set for each m = 1, 2, ... Let D,, = {x,.1, %5, .} foreach m = 1,2, ... Let ¥, be
the compactification of Yo\D, which is larger than ¥, and such that if gi: Yi— Y,
is the extension over ¥, of the inclusion of Yo\D;<=Y; into Y,, then g7 (x,,)
= {y1:,23;}. A basic open neighbourhood of yy; (respectively, zy;) is given by
g1 (Un Uy U {p,;} (respectively, gy "(UNCIUy) v {z,})), where U is a neigh-
bourhood of x,; in ¥,. Then Y, is an irreducible continuum. of rim-type » and
97 (T) =T, is a tranche of Y,. Notice that the topological type of
T, n BA[Clg7*(U,))] is. less than or equal to n—1 since g, maps
Ty 0 Bd[Cl(g7 *(U)] homeomorphically onto a subset of (Bd U,). Also gy maps
Bd[Cl(g5 *(Uy))] homeomorphically onto BdU,\D,. We identify points and
subsets of Y,\D, with their preimages in Y.

Suppose that m is a positive integer and ¥, ..., ¥,_, are irreducible continua
of rim-type n, g;: ¥, — Y., is a mapping of ¥; onlo Yi—1, g; maps
YNgi te.ogT (D) homeomorphically onto ¥;.,\gj Yo ..o 91Dy, g, is
two-to-one- at the points of g% o...og7%(D,) and the topological type of
T;n Bd[Cl(g; o... 091 '(U))] is at most n—1, where T; = g; Y(T}.,) for each
i=1,..,m—1 We identify points and subsets in Yo \giii oo g1 '(D) with
their preimages under gy foreach i=1,..,m—1.
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Let Y, be the compactification of Y- (\D,, that is larger than ¥,n~1 and such
that if g,,: Y,,— Y,,— is the extension over Y, of the inclusion of Yo \D,= Y,

into Y,,_y, then g, () = {¥,;, zZu}. A basic open neighbourhood of y,,
(respectively, z,;) is given by

grn:l(Um gn—t—ll ° Og;J(Um)) U { Vi) '
(respectively, gn *[UNCl(gy 2 0. 0 41 (U] U {2,,)), where Uis a neighbourhood
of x,; in ¥,,_;. We identify points and subsets of Y- 1\D,, with their preimages
in ¥, under g,. Then Y, is an irreducible continuum of rim-type » and
g '@p-1) =T, is a tranche of Y,. Notice that the topological type of
T,, 0 Bd[Cl(gyto.. o g1 ' (U,))] is less than or equal to n—1 since it is mapped
by gy © ... » g1 homeomorphically onto a subset of (BdU,)Y. Also g, 0...c g, maps
Bd[Cl(gy ' e ... o gTH(U] homeomorphically onto BdU,\D,,. By induction,
Y, and g, are defined for each m = 1,2, ...

Consider -the inverse system {Y,,, g, N} and let ¥, = {Y,, g, N} and
let g: Y, — Yo = X be the mapping induced by the inverse limit. Then g is one-
to-one except at the points x,,, for each m, i = 1,2, ..., where g is two-to-one,
and g maps g~* e n” ([0, 1)) homeomorphically onto n~*([0, 1)). We also have
that ™" o z7X([0, 1)) is dense in ¥, ¥, is irreducible, and T, = Lim {7}, g,,| T,n, N}
is a tranche of Y, -

If x& Y, \T,,, then a basic neighbourhood of x in Y, (see [1], p. 218) is given
by ¢~*(U) for some Ue % such that CIU T, = @. Then Bd(g~*(U)) is homeo-
morphic to BAU. If x e T, but x # x,,, for each m,i=1,2, .., then a basic neigh-
bourhood of x in Y, is of the form Int[Cl(g=*(U))] for some U,e%. Then

Bd [t(Cl(g~*(U))] = BA[Cl(g~"(U))]

is homeomorphic to BA[Cl(g;* « ... » g7 (U))] and the latter set has topological
type less than or equal to n. Also, T, A Bd[Cl(g~"(Uy)] is homeomorphic to
Bd[Cl(g;to...0 g U] N T If x = y,, (respectively, x = z,,;), then a basic
neighbourhood G of x is of the form Int[Cl(g~*(U,, n UN] Y {¥mi} (zespectively,
Int[Cl(g™ (UNCIU,))] w {z,}), Where U, is a basic neighbourhood of g(x) in ¥,
The boundary of this neighbourhood in Y, is contained in

Bd(g—l(Um M Uj)):Bd(g—l(Um)) 5 Bd(g—l(ljj))

(respectively, Be(g™'(UNCI U,))=Bd(g~"(U)) v Bd(g™(U,))). This shows that
the boundary of the neighbourhood G has topological type <n. Also T, nBdG
is mapped by g homeomorphically onto a subset of (Bd U,)' v (BAdU;y. Hence,
the rim-type of ¥, is less than or equal to n and the rim-type of T, is less than or
equal to n—1. Therefore, T,, contains an arc. Since g is at most two-to-one
Ty = g(T,) also contains an arc. This contradicts the assumption that X does not
contain any arc. The proof of the theorem is complete.
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On compact spaces which are
locally Cantor bundles

by

Andrzej Gutek (Katowice)

Abstract. The paper deals with what we call the local bundles over X, ie. with compact
Hausdorff spaces such that each point has a neighbourhood homeomorphic to the product XxJ,
where X is a given totally disconnected compact Hausdorff space and J is an open interval. It is
proved that each local bundle over X can be obtained from the disjoint union of some copies of
the bundle XX [0, 1] by identifying points <x, i> with h{x,i>, where / is a continuous involution
without fixed points on some copies of X {0, 1},

1. Preliminaries. If X is Hausdorff, J is the unit interval {re R: 0<r<1},
and 4 is a continuous involution on X'x {0, 1}, then we denote by X x I/h the quotient
of the product X x I, where points {x,i) and h{x,i) are identified.

If  has no fixed point, then each point of the space X x Ik has a neighbourhood
homeomorphic to the product XxJ, where J is an open interval {teR: 0<1<1}.
If the involution % is determined by a homeomorphism f: X — X in such a way that
hx, 00 = {f(x), Iy and i{x, 1) = {f}x),0), then we write XxI/f rather
than X'x I/h.

LemMa, Let X be a compact totally disconnected Hausdorff space, and let D be
a closed-open subset of X. Let Y be a compact Hausdorff' space each point of which
has a neighbourhood homeomorphic to X xJ, where J is an open unit interval. Let Z be
a closed ‘subset of Y homeomorphic to D x I under a homeomorphism f and such that
IntyZ = f~ (D x J). Then the quotient space Y|Dx I, which is obtained from Y by
collapsing each arc in Z to a point, is homeomorphic to Y.

Proof. For each point y of f~*(Dx{0}) take a neighbourhood ¥, homeo-
morphic to XxJ under a homeomorphism g,. Consider g,(Z V) and
g,(IntyZ n V). Since Y is compact and Hausdorff and ¥, is an open subset of ¥,
there exist a closed-open subset D, of X and points a,<b, of J such that
95 (D, x [a,, b,)) contains ¥ in its interior and has no point in common with
F Y X %[+, 1]) and the intersection of each arc of D, x [a,, b,] with g(Z N ¥)) is
a proper non-degenerate subinterval of that arc. Denote the set g, (D, % (a,, b))
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