Greece

References

- S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton 1952.
- [2] B. B. Epps, Jr., Some curves of prescribed rim-types, Colloq. Math. 27 (1973), pp. 69-71.
- [3] J. Grispolakis and E. D. Tymchatyn, Confluent images of rational continua, to appear in Houston J. Math.
- [4] Z. Janiszewski, Über die Begriffe "Linie" und "Fläche", Proc. Cambridge Internat. Congr. Math. 2 (1912), pp. 126-128.
- [5] K. Kuratowski, Topology, Vol. II, New York-London-Warszawa 1968.
- [6] A. Lelek, Some problems concerning curves, Colloq. Math. 23 (1971), pp. 93-98.
- [7] and L. Mohler, On the topology of curves III, Fund. Math. 71 (1971), pp. 147-160.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CRETE Iraklion, Crete

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SASKATCHEWAN Saskatoon, Saskatchewan Canada

Accepté par la Rédaction le 7. 11. 1977

On compact spaces which are locally Cantor bundles

by

Andrzei Gutek (Katowice)

Abstract. The paper deals with what we call the local bundles over X, i.e. with compact Hausdorff spaces such that each point has a neighbourhood homeomorphic to the product $X \times J$, where X is a given totally disconnected compact Hausdorff space and J is an open interval. It is proved that each local bundle over X can be obtained from the disjoint union of some copies of the bundle $X \times [0, 1]$ by identifying points $\langle x, i \rangle$ with $h\langle x, i \rangle$, where h is a continuous involution without fixed points on some copies of $X \times \{0, 1\}$.

1. Preliminaries. If X is Hausdorff, I is the unit interval $\{t \in R: 0 \le t \le 1\}$, and h is a continuous involution on $X \times \{0, 1\}$, then we denote by $X \times I/h$ the quotient of the product $X \times I$, where points $\langle x, i \rangle$ and $h \langle x, i \rangle$ are identified.

If h has no fixed point, then each point of the space $X \times I/h$ has a neighbourhood homeomorphic to the product $X \times J$, where J is an open interval $\{t \in R: 0 < t < 1\}$. If the involution h is determined by a homeomorphism $f: X \to X$ in such a way that $h\langle x, 0 \rangle = \langle f(x), 1 \rangle$ and $h\langle x, 1 \rangle = \langle f^{-1}(x), 0 \rangle$, then we write $X \times I/f$ rather than $X \times I/h$.

LEMMA. Let X be a compact totally disconnected Hausdorff space, and let D be a closed-open subset of X. Let Y be a compact Hausdorff space each point of which has a neighbourhood homeomorphic to $X \times J$, where J is an open unit interval. Let Z be a closed subset of Y homeomorphic to $D \times I$ under a homeomorphism f and such that $\operatorname{Int}_Y Z = f^{-1}(D \times J)$. Then the quotient space $Y/D \times I$, which is obtained from Y by collapsing each arc in Z to a point, is homeomorphic to Y.

Proof. For each point y of $f^{-1}(D \times \{0\})$ take a neighbourhood V_y homeomorphic to $X \times J$ under a homeomorphism g_y . Consider $g_y(Z \cap V_y)$ and $g_y(\operatorname{Int}_Y Z \cap V_y)$. Since Y is compact and Hausdorff and V_y is an open subset of Y, there exist a closed-open subset D_y of X and points $a_y < b_y$ of J such that $g_y^{-1}(D_y \times [a_y, b_y])$ contains y in its interior and has no point in common with $f^{-1}(X \times [\frac{1}{2}, 1])$ and the intersection of each arc of $D_y \times [a_y, b_y]$ with $g_y(Z \cap V_y)$ is a proper non-degenerate subinterval of that arc. Denote the set $g_y^{-1}(D_y \times (a_y, b_y))$

by W_y . Since $f^{-1}(D \times \{0\})$ is compact, there is a finite collection $\{W_1, ..., W_n\}$ of sets W_y covering $f^{-1}(D \times \{0\})$. We may construct a collection of open subsets $U_1, ..., U_m$ of the sets $W_1, ..., W_n$ such that the collection covers $f^{-1}(D \times \{0\})$, the sets $\operatorname{cl}_Y U_1, ..., \operatorname{cl}_Y U_m$ are pairwise disjoint, each $\operatorname{cl}_Y U_i$ is homeomorphic under $f_i = g_y|_{\operatorname{cl}_Y U_i}$ to $D_i \times I_i$, where D_i is a closed-open subset of D_y and $I_i = [a_i, b_i] \subset (a_y, b_y)$ for a certain W_y containing U_i , and $U_i = f_i^{-1}(D_i \times (a_i, b_i))$. We can assume that $f_i^{-1}(D_i \times \{a_i\}) \subset Z$. Let $p_2(y)$ denote the second coordinate of $f_i(y)$ if $y \in \operatorname{cl}_Y U_i$. Let q(y) be the second coordinate of $f_i(f^{-1}(x, 0))$, where $f^{-1}(x, 0)$ and y lie on the same arc of U_i . The mappings p_2 and q are both continuous. Define a continuous mappings s from $A = \bigcup \{\operatorname{cl}_Y U_i \colon i = 1, ..., m\} - \operatorname{Int}_Y Z$ into the set of reals by setting $s(y) = q(y) - p_2(y)$. Let us observe that $A \cap Z = f^{-1}(D \times \{0\})$, $s|_{A \cap Z} \equiv 0$ and that $s(y) \leqslant 0$ for $y \in A$.

Using the same arguments, we can construct a finite collection of open subsets U_1', \ldots, U_k' covering $f^{-1}(D \times \{1\})$ such that their closures are pairwise disjoint and disjoint with A and are homeomorphic under f_j' to the sets $D_j' \times I_j'$, where D_j' are closed-open subsets of X and $I_j' = [a_j', b_j']$ are subintervals of I, and

$$U_j' = f_j'^{-1} \big(D_j' \times (a_j', b_j') \big).$$

We can assume that the common part of each arc of $\operatorname{cl}_Y U_j'$ and of Z is a proper non-degenerate subinterval of that arc, and that $f_j'^{-1}(D_j' \times \{a_j'\})$ are subsets of Z. Let $p_1'(y)$ be the second coordinate of $f_j'(y)$ if $y \in U_j'$, and let q'(y) be the second coordinate of $f_j'(f^{-1}(x, 1))$, where $f^{-1}(x, 1)$ and y lie on the same arc of U_j' . Define a continuous mapping s' from $B = \bigcup \{\operatorname{cl}_Y U_j' \colon j = 1, \dots, k\} - \operatorname{Int}_Y Z$ into the set of reals by setting $s'(y) = 1 + p_2'(y) - q'(y)$. The function p from the union of Z and of the sets $U_1, \dots, U_m, U_1', \dots, U_k'$ into the set of reals defined by p(y) = s(y) for $s \in A$, p(y) = s'(y) for $y \in B$ and p(y) being the second coordinate of f(y) for $y \in Z$, is continuous.

Denote by r(y) the real $s(f_i^{-1}\langle x, b_i \rangle)$, where $y \in A \cup Z$ and both y and $f_i^{-1}\langle x, b_i \rangle$ lie on the same arc of $A \cup Z$. Denote by r'(y) the real $s'(f_j'^{-1}\langle x, b_j' \rangle)$, where $y \in B \cup Z$ and both y and $f_j^{-1}\langle x, b_j' \rangle$ lie on the same arc of $B \cup Z$.

Let Q_Y be the quotient map from Y onto $Y/D \times I$. The map F from Y onto $Y/D \times I$ defined by setting

$$F(f^{-1}\langle x, \frac{1}{2}\rangle) = Q_{Y}(f^{-1}\langle x, \frac{1}{2}\rangle),$$

$$F(y) = f_i^{-1} \left\langle x, \frac{\frac{1}{2} - p(y)}{\frac{1}{2} - r(y)} r(y) \right\rangle$$
 if y is a point of $A \cup Z$ which lies on the arc

passing through $f_i^{-1}(x, b_i)$ and if $p(y) < \frac{1}{2}$,

$$F(y) = f_j^{\prime - 1} \left\langle x, 1 + \frac{2p(y) - 1}{2r'(y) - 1} r'(y) \right\rangle \text{ if } y \text{ is such a point of } B \cup Z \text{ that}$$

 $p(y) > \frac{1}{2}$ and both y and $f_j'^{-1}(x, b_j')$ lie on the same arc of $B \cup Z$,

F(y) = y if y do not belong to $A \cup B \cup Z$,

is the desired homeomorphism.

2. Basic theorem. We prove the following

Theorem. Let X be a compact totally disconnected Hausdorff space. If Y is a compact Hausdorff space each point of which has a neighbourhood homeomorphic to $X \times J$, where $J = \{t \in R \colon 0 < t < 1\}$, then there are a positive integer n and an involution h from $X' \times \{0, 1\}$ onto $X' \times \{0, 1\}$ with no fixed point such that Y is homeomorphic to $X' \times I/h$, where X' is the disjoint union of n copies of X.

Proof. Each point of Y has a neighbourhood whose closure is homeomorphic to $X \times I$, and if f is a given homeomorphism then that neighbourhood is equal to $f^{-1}(X \times J)$. So there is a finite irreducible cover $V_1, ..., V_n$ of Y such that $\operatorname{cl}_Y V_i$ are homeomorphic to $X \times I$ and, if f_i : $\operatorname{cl}_Y V_i \to X \times I$ are given homeomorphism, then $V_i = f_i^{-1}(X \times J)$. We shall construct a finite collection of open pairwise disjoint subsets $U_1, ..., U_n$ of Y such that each $\operatorname{cl}_Y U_i$ will be homeomorphic to $X \times I$ and the quotient space Y' obtained from Y by collapsing each arc outside the union $U_1 \cup ... \cup U_n$ to a point will be homeomorphic to Y.

Let us observe that there are such continuous mappings s_i from X into V_i that $f_i(s_i(x))$ belongs to $\{x\} \times J$ and the sets $s_1(X), \ldots, s_n(X)$ are pairwise disjoint. Since $f_1 \circ s_1$ is continuous, there exists an open subset U_1' of $X \times J$ containing $f_1(s_1(X))$ such that $\operatorname{cl}_{X \times J} U_1'$ is homeomorphic to $X \times I$ under a homeomorphism g_1' , $g_1'(U_1') = X \times J$ and $f_1^{-1}(U_1')$ has no point in common with $s_2 X, \ldots, s_n X$ in its closure, and each arc of $f_1^{-1}(U_1')$ contains a point $s_1(x)$. Let $U_1 = f_1^{-1}(U_1')$ and $g_1 = g_1' \circ f_1|\operatorname{cl}_Y U$. Clearly, g_1 is a homeomorphism from $\operatorname{cl}_Y U$ onto $X \times I$.

Suppose we have defined open subsets $U_1, ..., U_k$ of Y, k < n, the closures of which are pairwise disjoint and disjoint with $s_{k+1}(X), ..., s_n(X)$, such that $\operatorname{cl}_Y U_j$ are homeomorphic under g_j to $X \times I$ and $s_j(X) \subset U_j = g_j^{-1}(X \times J) \subset V_j, j = 1, ..., k$. Since $f_{k+1} \circ s_{k+1}$ is continuous, there is an open subset U'_{k+1} of $X \times J$ containing $f_{k+1}(s_{k+1}(X))$ such that $\operatorname{cl}_{X \times J} U'_{k+1}$ is homeomorphic under g'_{k+1} to $X \times I$, $U'_{k+1} = g'_{k+1}(X \times J)$ and the closure of $U_{k+1} = f_{k+1}(U'_{k+1})$ is disjoint with closures of the sets $U_1, ..., U_k$ and with $s_{k+2}(X), ..., s_n(X)$. The map

$$g_{k+1} = g'_{k+1} \circ f_{k+1} | \operatorname{cl}_Y U_{k+1}$$

is a homeomorphism from $cl_Y U_{k+1}$ onto $X \times I$.

Thus we have a collection of open subsets $U_1, ..., U_n$ of Y containing $s_1(X), ..., s_n(X)$ and such that their closures are pairwise disjoint and homeomorphic to $X \times I$ under homeomorphisms $g_1, ..., g_n$.

Denote by A the union of the sets $\operatorname{cl}_Y U_1, ..., \operatorname{cl}_Y U_n$. Clearly, A is homeomorphic under f_A to the disjoint union $X' \times I$ of n copies of $X \times I$.

Let $B = Y - \operatorname{Int}_Y A$. B is the complement of the union of the sets $U_1, ..., U_n$ and $A \cap B$ is the set of the endpoints of arcs of A; so $A \cap B$ is the union of images of $X \times \{0, 1\}$ under $g_1, ..., g_n$. For each point b of $A \cap B$ let us consider a subset V_b

of $A \cap B$ such that it is contained in an image of $X \times \{0\}$ or $X \times \{1\}$ under a homeomorphism g_i for a certain i, its inverse image under g_i is a closed-open subset of $X \times \{0,1\}$ and there is no arc in B joining any points of V_b . Let W_b be the set of arcs in B arising from V_b . The set W_b is homeomorphic to the cartesian product $D_b \times I$, where D_b is a closed-open subset of X and $\operatorname{cl}_Y \operatorname{Int}_Y W_b = W_b$. Since B is a compact subset of Y and each W_b is closed-open in B, there is a finite collection W_1, \ldots, W_k of these subsets covering the whole of B. The sets $W_1' = W_1$, $W_2 = W_2 - W_1, \ldots, W_k' = W_k - (W_1 \cup \ldots \cup W_{k-1})$ are pairwise disjoint and have the properties required in our lemma. Thus, using the lemma k times, we prove that Y is homeomorphic to the quotient Y' obtained from Y by collapsing to a point each arc outside $\operatorname{Int}_Y A$. But Y' is a quotient $X' \times I/h$ obtained from $X' \times I$, where X' is the disjoint union of n copies of X and where h is an involution without fixed points on the disjoint union of n copies of $X \times \{0,1\}$ defined by $h \langle a, i \rangle = \langle b, j \rangle$ if and only if $g_h^{-1} \langle a, i \rangle$ and $g_m^{-1} \langle b, j \rangle$ are the endpoints of the same arc in B, $\langle a, i \rangle$ and $\langle b, j \rangle$ being the points of the kth and the mth copies of $X \times \{0,1\}$, respectively.

This completes the proof.

3. Remarks. We cannot require n to be equal to one. To see that take as X a space consisting of one point and let Y be equal to the disjoint union of two circles.

Furthermore, we cannot require the involution h to be introduced by a homeomorphism from n copies of $X \times \{0\}$ onto n copies of $X \times \{1\}$. To see this, consider the following:

Let X be the space consisting of a sequence $x_1, x_2, ..., x_i \neq x_j$ for $i \neq j$, and of its limit x_0 .

Let $h: X \times \{0, 1\} \to X \times \{0, 1\}$ be defined by setting

$$h\langle x_0, 0 \rangle = \langle x_0, 1 \rangle,$$

$$h\langle x_0, 1 \rangle = \langle x_0, 0 \rangle,$$

$$h\langle x_1, 0 \rangle = \langle x_2, 0 \rangle,$$

$$h\langle x_2, 0 \rangle = \langle x_1, 0 \rangle,$$

$$h\langle x_n, 0 \rangle = \langle x_{n-2}, 1 \rangle, \quad n > 2,$$

$$h\langle x_n, 1 \rangle = \langle x_{n+2}, 0 \rangle, \quad \hat{n} = 1, 2, ...$$

The space $Y = X \times I/h$ is a planar continuum (see the figure).

This continuum has two arc-components, one being a circle and the other a line. The idea of the proof is the following. If the space Y is $X \times I/f$ for some homeomorphism f on X, then $f(x_0) = x_0$ and $\{x_1, x_2, ...\}$ is an orbit of f. Thus this homeomorphism induces an order on the arc-component which is a line in the following way: if $\langle x, t \rangle$ and $\langle y, s \rangle$ are different points of this arc-component, then if x = y then $\langle x, t \rangle$ is less than $\langle y, s \rangle$ if and only if t < s, and if $x \ne y$, then $\langle x, t \rangle$ is less than $\langle y, s \rangle$ if and only if x = f''(y) for some positive integer x, where x is a superposition of x maps each equal to x. This order coincides with the order of the set of reals, and induces an orientation of the arc component which is a circle.

This does not apply to the space $\mathcal{B} \times I/h$. If the arc-component which is a line has the order of reals, then this order cannot induce an orientation of the other arc-component.

Reference

[1] K. Kuratowski, Topology, Vol. II, New York-London-Warszawa 1968.

Accepté par la Rédaction le 14. 11. 1977