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Continua whose hyperspace is a product
by
Sam B. Nadler, Jr. (Morgantown, WV)

Abstract. Let X be a nondegenerate metric continuum, By the Ayperspace of X is meant C(X)
= {A: A is a nonempty subcontinuum of X} with the Hausdorff metric. An investigation is made
of when C(X) is homeomorphic to a cartesian product of nondegenerate continua. Some examples
are given using techniques in infinite-dimensional {topology and some unsolved problems are
stated.

1. Introduction. In [21] are some results concerning the structure of all
finite-dimensional continua whose hyperspace and cone are homeomorphic. Among
other results, I showed that there are exactly eight such hereditarily decomposable
continua [21, (1.1)] and that for such continua which are indecomposable, each
proper subcontinuum is an arc. In [25] we showed that any finite-dimensional con-
tinuum whose hyperspace and suspension are homeomorphic must be an arc.
Using [15, 5.4], 9.7 of [10] may be restated as follows:

(1.1) TueoreM [10]. Let X be a locally connected continuum. If C(X) is a finite-
dimensional cartesian product of (nondegenerate) continua, then X is an arc or a circle
(and conversely).

The above-mentioned results provide the principal motivation for the following
question:

(Q) For what continua X is C(X) homeomorphic to a cartesian product (of
nondegenerate continua)?

In this paper I give some answers to (Q). The next section is devoted to giving
some general results, and some complete answers to (Q) in some special cases. In
Section 3, I consider the situation when X is locally connected and C(X) is an
infinite-dimensional cartesian product. The section contains several examples and
Theorem (3.15) which hopefully [see (3.19)] will lead to a characterization com-
pletely answering (Q). )

I adopt the following notation. The term nondegenerate means consisting of
more than one point. The letters X, ¥, and Z always denote continua (a continuum
is a nondegenerate compact connected metric space). I refer the reader to [15] for
preliminary information about the space C(X ). Whenever I say C(X) is a cartesian
product, T mean that C(X) is homeomorphic to the cartesian product of
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(nondegenerate) continua. A simple triod is a continuum homeomorphic to
a figure “T”. For each n = 1,2, .., let R" denote Euclidean n-space,

n
B = {(x;, X3, v, X,) €ER™: 21 x<1y,
i
and

S = {(Xy, Xy, s XY ERY Y 2P =1},
151

Let I, denote the Hilbert space of all square-summable sequences of real numbers
o

and let 7, = J] [0,2"7], where [] denotes cartesian product. I consider I,, as
j=1

contained in I, by inclusion. The symbol “x” denotes cartesian product and
my: YxZ— Y denotes projection. The slash “\” denotes complementation for
sets. The symbol “=” means “is homeomorphic to”, and ¢l denotes closure. By
a free arc in X I mean an arc 4 < X such that 4\{end points of 4} is an open subset
of X. .

A dendroid is an arcwise connected hereditarily unicoherent continuum. In [6]
Borsuk observes that a one-dimensional acyclic continuum is hereditarily unicoherent.
Hence, we have the following lemma which we will use several times.

(Iv.2) LemMA [6]. If X is one-dimensional, arcwise connected, and acyclic, then X is
a dendroid.

2. General results and the finite-dimensional case. The main result of this section
is (2.13) where it is shown that if C(X) is a finite-dimensional cartesian product
and X is g-triodic, then X is an arc or a circle. I had hoped to give an affirmative
answer to the following question which, by (2.13), is answered affirmatively for the
class of a-triodic continua.

(2.0) Question. If C(X) is a finite-dimensional cartesian product, then must X
be an arc or a circle?

Since the cone and suspension of X are formed from X x [0, 1], perhaps the
question most closely related to results in [21] and [25] is: For what finite-dimensional
continua X is C(X)=Xx [0, 1]? The answer to this question is in (2.8). Many of
the results in this section bear specifically on. (2.0), though some give general infor-
mation [for example, (2.4) and (2.12)]. We begin with the following lemma.

(2.1) LemMma. If C(X)2 YXZ, then Y and Z are each arcwise connected and
acyclic.

Proof. Since C(X) is arcwise connected ([7] or [15]) and acyclic [30, 1.2],
Y'x Z is arcwise connected and acyclic. Thus, using projections, we see that ¥ and Z
are each arcwise connected and acyclic. :

(2.2) THEOREM. If C(X)= YxZ where X is chainable or circle-like, then X is
an arc or a circle.

icm
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Proof. By [11, Corollary 1], C(X) and, hence, ¥x Z is 2-dimensional. Thus,
[13, pp. 33-34], dim[Y] = 1 = dim[Z]. Therefore, by (2.1) and (1.2), ¥ and Z are
dendroids. Now, since X is an inverse limit of arcs or circles, C(X) [30, 1.1} and,
hence, YxZ is an inverse limit of 2-cells. Therefore, using the projections from
YxZ into the 2-cells and using basic properties of inverse limits (notably,
[8, 2.8(iD)]), it follows that:

For ‘each &0, there is an e-map of any subcontinuum of ¥x Z into R?
(recall that f: 4 - B is an ¢-map if and only if diam[f™*(f(@)]<e for
all ae A).

()

We show that Y and Z must each be arcs. Suppose Y is not an arc. Then, since ¥ is
a dendroid, ¥ contains a simple triod 7' [23, Lemma 2]. Let 4 be an arc in Z. There
is a continuum M in Tx A such that M is homeomorphic to

(G, 7,0 & R*: 2 4+)2<1} U {(0,0,2) € R®: 0<2<1} .

By (#) there is an s-map of M into R? for each £>0, but this contradicts
[3, Theorem 3]. Hence, Y is an arc. A similar argument shows that Z is an arc.
Thus, C(X) is a 2-cell and, hence [15, 4.4 and 5.3], X' is an arc or a circle (depending
on whether X is chainable or circle-like). :

Next I show that if C(X) is a cartesian product then X is decomposable and,
if C(X) is a finite-dimensional product. X is hereditarily decomposable. First, the
following lemma.

(2.3) Lemma, If C(X)= YxZ, then C(X)\N{4} is arcwise connected for any
Ade C(X). :

Proof. By (2.1), ¥ and Z are each arcwise connected. Thus it follows that for
any (y, 2) € [YxZ], [¥YxZN\{(¥, 2)} is arcwise connected. The lemma now follows.

(2.4) Turorem. If C(X)= YxZ, then X is decomposable.

Proof. The result is a simple consequence of taking 4 = X in (2.3) and
applying 8.2 of [15]. ‘

(2.5) Turorem. If C(X)= YxZ where ¥ and Z are each finite-dimensional,
then X is hereditarily decomposable and, hence, one-dimensional.

Proof, Since ¥ and Z are each finite-dimensional, ¥'xZ [13, p. 33] and, hence,
C(X) is finite-dimensional. Therefore, (2.3) above and Proposition 5 of [28] may.be
applied to show that X is hereditarily decomposable. Now, by a result of Bing
(4, Theorem 5], X is one-dimensional.

Kelley [15, 5.4] showed that for locally connected continua X, C(X) is finite-
dimensional i and only if X is a finite graph. The next lemma is an analogue of
[15, 5.4] for dendroids.

(2.6) Lomma. Let D be a dendroid. Then: C(D) is finite-dimensional if and only
if D is a finite graph.

o
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Proof. By the above-mentioned result [15, 5.4], we need only show that if C(D)is
finite-dimensional, then D is locally connected. To do this ‘assume D is not locally
connected. If D has only a finite number of ramification points, then one of them,
say p, is of infinite order. It then follows that C(D) contains a Hilbert cube (take ¥
in [22, Theorem 6]to be {p} and { ¥;}i2, to be a null sequence of arcs in D emanating
from p and disjoint except for p). Now, assume that D has an infinite number of
ramification points. Let » be a natural number and let py, p,, ..., p, be n distinct

ramification points of D. For each i = 2, 3, ..., s, let 4; be an arc in D with end-
n

points p; and p;. Let F = |) A;. We extend F to obtain a continuum F* as follows:
i=2 :

For each p; such that ord, [F] = j(/) e {1, 2}, let M, be the union of [{1, 2}\{j(D)}]
arcs which intersect F and each other (if j({) = 1) only in the point p,. Let

F* = FU[U{M,: ord,[F]<2}].

Evidently, F* is a finite connected graph and each p; is a ramification point of F*
such that ord, [F*]>3. Hence, by [15, 5.5] (see [10, p. 278]),

dim[C(FH]22+ Y (ordp[F*]~2)22+n.
i=1

Thus, dim[C(D)]>2+n. Therefore, since n was arbitrary, we have that C(D) is
infinite-dimensional. We have now proved the implication in the first sentence of
the proof, and the lemma follows.

(2.7) Tueorem. If C(X)x2XxZ where X and Z are each finite-dimensional,
then X is an arc.

Proof. By (2.1), X is arcwise connected and acyclic. Therefore, since X is one-
dimensional by (2.5), X is a dendroid by (1.2). Now, since X'x Z [13, p. 33] and,
hence, C(X) is finite-dimensional, we have by (2.6) that X is a finite graph. Thus,
by (L.1), X is an arc or a circle. Therefore, since X is acyclic, X must be an arc.

We mention the following corollary because of its natural relationship to
results in [21] and [25].

(2.8) CoroLLRY. If C(X)= X% [0, 1] where X js finite-dimensional, then X is
an arc.

“As a corollary to the proof of (2.7) we have the following result.

(2.9) CoroLLARY. If C(X)X YXZ where X is arewise connected and acyclic
and Y and Z are each finite-dimensional, then X is an arc.

Our final results, (2.13) and (2.14), are extensions of (2.2) (see (2.15)). The next
two lemmas will be used to prove (2.12).

(2.10) Lemma. Let X be an a-triodic continuim such that given any non-
degenerate proper subcontinuum E of X, there exists a subcontimmm Yo of X such

that Yo N E # @ # Yo [XNE] and Y,bE. Then, each proper subcontinuum
of X is unicoherent.
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Proof. Since X is a-triodic we have, by [14, Lemma 1], that

(2.10.1)  the intersection of any two subcontinua of X can have at most two

components.

Now, suppose P is a proper subcontinuum of X such that P is not unicoherent.
Let P, and P, be subcontinua of P such that P = P; U P, and P, n P, is not con-
nected. By (2.10.1), Py n P, has exactly two components Q and R, Let E, be a sub-
continvum of P; such that E, is irreducible (as a continuum) with respect to
intersecting Q and R. Let Qy = E; n Q and let Ry = E; n R. Let E, be a sub-
continuum of P, such that E, is irreducible with respect to intersecting @, and R,.
Let M = E, n Q and let N = E, n R,. We note the following facts, each of which
is easy to verify:

(2102) E nkE,=MUN;

2.103) MnN=@ (since Mc=Q and NcR);

(2.10.4) M and N are the two components of E; n E, (this follows from (2.10.1)
through (2.10.3));

(2.10.5) - for each ie {1, 2}, E is irreducible with respect to being a subcontinuum

of P; which intersects M and N.

Now, let E = E; U E,. Then, since E is a nondegenerate proper subcontinuum
of X, there exists a subcontinuum Y, of X such that ¥ n E # & # ¥, n [X\E]
and Y,-b E. Let K denote a component of ¥, n E. Recall that, by (2.10.1), Yon E
has atmost two components; hence, using [16, p. 172], we see that there is a sub-
continuum Z of ¥, such that Z n E = K and Z n [Y,\E] # &. Now we verify (a)
through (c) below.

(a) K ¢ E, for any ie{l,2}.

Proof of (a). Suppose K<E, for some #, say i = 1. Using [16, p. 172], there
are disjoint subcontinua 4, and 4, of E, such that 4y N M # O # A, N [ExNEq]
and 4, " N # @ # A, 0 [E;NE,]. Then, since [ZUE U4 U A,INE; is t]‘ne
union of three nonempty mutually separated sets, Z' U Ey U A; U A, is a triod in
the sense of [5, p. 653]. This contradicts the a-triodicness of X.

(b) K$E, for any ie{l,2}.

Proofof(b). Suppose K= E; for some i, say i = 1. Then note that Ko[M v J\{’].
Suppose K n E, were connected. Then, by (2.10.5), K n E, = E, which imphe.s
K= E. Thus, since YooK, Y,oE. This is a contradiction and, hence, K N E, is
not connected. By (2.10.1), X n E, has exactly two components B, and B,. Now,
using [16, p. 172], there are disjoint subcontinua C; and C, of E, such that
C,nB, %@ # C;n[ENK] for each i€ {1,2}. Tt is easy to see that
[Z U €, U C,INK is the union of three nonempty mutually separated sets. Hence,
ZuCyuC, is a triod [5, p. 653], a contradiction.

© KnM=@ or KnN=49.
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Proof of (c). Suppose Kn M # & # Kn N. If Kn E; were connected for
some i € {1, 2} then, by (2.10.5), K n E; = E;. Hence, K> E; which contradicts (b).
Therefore, K n E, is not connected for any ie{l,2}. Thus, by (2.10‘;1), Kn E,
has exactly two components S; and T; for each ie{l,2}. Now suppose
Sin M # @ # S;n N for some fixed ie {1,2}. Then, by (2.10.5), S; = E; and,
thus, K> E;. This contradicts (b). Therefore, S; " M = & or §;n N = @ for each
ie{l,2}; similarly, T;n M = @& or T, n N = @ for each ie{l,2}. Thus, since
KnM+#D # KnN, we assume by renaming if necessary that S;n M # @
#SnNand T;n M £ #T;nN,ie{l, 2}, Then, K = [S; U S,] U [T, u T,]
and [Sy U S;]1n [Ty U T,] = &. This contradicts the connectedness of XK. There~
fore, (c) is proved.

Now, by (c), we assume without loss of generality that K n M = @. By (a) there
exists a point x; € [K\E;] for each ie {1, 2}. Therefore, since X is connected and
KnM=0, KnNs#@. Let Ube an open subset of £ such that U> M and
cl[U]l n [K v N] =@. For each ie{l,2}, let D; be the component of ENU
containing x;. By [16, p. 172], D; n cl[E;n U] # @ for éach ie{1,2}. Hence,
DK U N # & for each ie{1,2}. It now follows easily that

[ZUNU D, U D,NK U N]

is the union of three nonempty mutually separated sets. Therefore, since K u N

is a subcontinuum of Z U N U Dy U D,, we have that Z U N U D, U D, is a triod

[5, p. 653]. This contradicts the g-triodicness of X, and the lemma is proved,
The following lemma is part of (4.4) of [18].

(2.11) Lemma [18]. Let E be a nondegenerate proper. subcontinuum of 'X. If
C(X)N{E} is arcwise connected, then there exists a subcontinuum Yo of X such that
YonE#D # Yyn [X\E] and Y, E.

The next theorem states nothing about products. It gives some facts about
a-triodic continua X such that C(X) is not arcwise disconnected by (removing)
any of its points (# X). In [18, Section 4] an extensive study is made of points
of C(X) which do, or do not, arcwise disconnect C(X). We include (2.12) because
it seems to- be of interest especially in relation to results in [18]..

(2.12) THEOREM. Let X be an a-triodic continuum such that C(X)N{E} is arcwise
connected for each proper subcontinuum E of X. Then:

(2:12.1) - Each proper subcontinuum of X is unicoherent.

(2.12.2)  If each proper subcontinuum of X is clecamposable, then each proper sub-
continuum of X is chainable and, hence, X is either chainable, circle-like,
or indecomposable.

(2.123)  If X is hereditarily decomposable, then X is chainable or circle-like.

Proof. From (2.10) and (2.11) we have (2.12.1). The first part of (2.12.2) follows
from (2.12.1) and [5, Theorem 11]: The second part of (2.12.2) follows from the first
part of (2.12.2) and [14, Theorem 4). Finally, (2.12.2) implies (2.12.3).
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The next result answers (2.0) for the case of a-triodic continua.

(2.13) TreOREM. If C(X)= Y X Z where Y and Z are each finite-dimensional and X
is a-triodic, then X is an arc or a circle.

Proof. By (2.3) and (2.5), all the hypotheses of (2.12.3) are satisfied and so X
is chainable or circle-like. Henee, by (2.2), X is an arc or a circle.

(2.14) TreOREM. If C(X)= Y% Z where dim[C(X)] = 2, then X is an arc or
a circle.

Proof. By [29, Corollary 1], X is a-triodic. Hence, by (2.13), X is an arc or
a circle.

I mention that C(X) can be two-dimensional without X being chainable or
circle-like. For example, such is the case for any compactification of a half line with
a circle as the remainder.

(2.15) Remark. In [11, Corollary 1] we showed that if X is chainable or circle-
like, then dim[C(X)] = 2. Hence, (2.14) is an extension of (2.2), as is (2.13).

(2.16) Remark. I mention an application of (2.12) outside the realm of hyper-
spaces. Assume X is an arcwise connected a-triodic continuum. Then it is easy to
show that all the hypotheses of (2.12.3) are satisfied and, hence, it follows that X'
is an arc or an arcwise connected circle-like continuum. This is a different proof,
than that given in [27], for an important special case of Theorem 2 of [27].

3. The infinite-dimensional case. In this Section 1 consider the problem of de-
termining when C(X) is an infinjte-dimensional cartesian product. T will restrict my
attention to the case when X is locally connected.

First observe that if X is a (nondegenerate) locally connected .continuum
(.e., a Peano continuum) such that X contains no free are, then A C:‘(X)glm
[9, Theorem 2]. Now, I give an example of a Peano continuum X’ contammg.a free
arc L such that C(X)= ¥ [0, 1] where Y is infinite-dimensional. For use 1n'thc
example, I adopt the following notation. Eet 1;: I, — [0, 277] denote projection,
let0 = (0,0,..,0,..)el,andlet J, = jl:[l[aj, bjlcl, where [ag, by] = [—2-1, 0]
and [g, 8] = [0, 277] for each j>1. We say that a function f iin?o homeomorphism
of (Ay, Ay, ..vr Ay onto (By, By, ..., By), written f: (A1, 45,0, 4,,) — (By, Ba, s By
if and only if f maps 4, onto B, homeomorphically for each i = 1,2, ..., n. I refer
the reader to [1] for definition of and some facts about prope;-ty Z.

(3.1) Exampig. Let X =B*UL where L= {(x,0)e R*: 1<x<2}. Let
Q={deC(L): (1,0)ed}, I'= C(B%), C(X;A) = {KeC(X): KnL = A} for
cach AeQ, and 4 = U {C(X); 4}: 4e@}. Note that I nd = CX; {1, 0.
We first prove (i) through (iii) below.

. @ I n A has property Z in I (see [I, p. 366]. ,

Proof of (i). Let U be a homotopically trivial, nonempty open subset of I',
note that UN[I'n A) # @ (because I'n 4 is nowhere dense in ‘T, and let
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fi S~ U\[T' n 4] be continuous. Since U is homotopically trivial, there is an
extension F: B**'— U of f. For each &, O<e<l, let

10“10 2 2
1yt B> B2N\{(x, ) € B*: [(x—1)*+3?]'? <5}

be a retraction; for each r,, let #,: I'— I' be the “induced” map given by
P(M) = {r(m): me M} (=r[M]) for each MeTl. Now, since F(B**!) is
a compact subset of U and f(S¥) is a compact subset of UNIT" n A], it is easy to
see that there exists &, such that £, [F(B**Y]cU and #,,(M) = M for each
M e f(S"). Hence, f,, » F'is an extension of £ and Py o F maps B! into UN[I ~ A].
This proves (i) [1, p. 366]. ' :

(i) There is a homeomorphism

onto

hy: (T, T oA, {(1,00)) > (1, 1740), ) .

l?roof of (ii). By [9, Theorem 2], there is a homeomorphism k, : l‘o:::[w.
By (i), &4[I' n A] has property Z in I,. Therefore, since k,[I" n Al=rTH0)
[9, Theorem 3] and 77 %(0) has property Z in I, [1, Theorem 8.2 with K = 7],
there is a homeomorphism k,: (I,,, k,[I" A A])oﬁo(lw, ©7 }(0)) [1, Corollary 10.3].
’ Now, by the homogeneity of the cube 71 X(0), there is a homeomorphism
_ [t
st (€710), &y o ki({(1, 0)) 57400, 0)
onto :
Let ky: I, - I, be the extension of k3 given by:

Ky(Gxy, 25, o, X, ) = (g, P, Vi )

where
©, y2,y3, ..
Let by = Kyo0kyok,.
(iii) Let & = hy|[I" ~ A] (the restriction of hy to I' A) and let

s Yy ) = ks((O, X35 X35 eeey Xy )) .

a={(t0,0,.)eJl,: ~271<tg0} .

Then h can be extended to a homeomorphism /,: (4, Q)Oio(Jw, o).
Proof of (jii). It is easy to see that Q is an arc and that {(1, 0)} is an end point

of Q; hence, there is a homeomorphism ¢ (@, {a, O)})oio(a, 0). Now note that
for each Ke A, [Kn B e[l n A]

and the function g,: Ao-“-iol" N A, given b
9,(K) = Kn B? o o 1o, 500

for each Ke 4, is a continuous retraction. Also, it is easy to see

that the functi g
at the function g3: 4 —a, given by g4(K) = g((Kn L) for each Ked, is

continuous. - Define h,: A —J, by hy(K) = g5(K)+ho g,(K) for cach Ke A,

where + means vector addition in I,. Since g, is a retraction of A onto I' A A
and! gx(K) =6 .whenever Ke[I'nA], A, is an extension of 4. It is also easy to
verify that /i, is a homeomorphism of (4,9Q) onto (J,,a). This proves (iif).
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Now, let
h(K), Kel,
G,(K) = 1(K) €
h(K), Ked.

on

Then, we have from (i) and (iii) that G;: (I'v 4, Q) ‘:D(]nc W J,, ) is a homeo-
morphism. Let
B=1{t0,0,.0el, vl =27 <127},

Since « and f each have property Z in the cube I, U J,, (use [1, Theorem 8.2 with
K = @), there is I, Corollary 10.3] a homeomorphism
onto
Gy (I V0= (g Ty, B).

Let G = G, o G,. Now note that C(X) = I' U 4 U C(L), C(L) is a 2-cell such that
CLyn[I'vAl=Q, and Q is an arc in the manifold boundary of C(L). Let
4 ={(t;,1,0,0,.) €l —27'g <27t and —1<1,<0}. Let g denote the
restriction of G to Q. We note the following simple consequence of the Schonflies
theorem [16, p. 535]: If 4 is a 2-cell in R?, B is any 2-cell, 4 is an arc in the manifold
boundary of B, and fis a homeomorphism of 4 onto an arc in the manifold boundary

of 4, then f can be extended to a homeomorphism of all of B onto 4. Hence, since 4
onto

may be considered as in R?, g can be extended to a homeomorphism G*: C(L) - 4.
o
Now, define e: C(X) = [y, U Jo U 4] by
G(K),
0= {G*(K),

1t is easy to verify that ¢ is a homeomorphism of C(X) onto I, uJ, u 4. Therefore,
letting v = {27, 1,,0,0,..)ed}, we see that C(X)=[; @™ U ylxare.
The techniques employed in (3.1) can be used to verify that C (X) is a cartesian
product for some other Peano continua X containing free arcs. Such is the case, for
example,- for the continua X in (3.2) and (3.3) below.
(3.2) ExampLi, Let X = B? UL, UL, where Ly = {(x, 0)e R*: 1<x<2}
and L, = {0, y) e R*: 1<y<2}.

3 . .
(3.3) Bxamern, Let X = B*u [‘1U1 L;] where L; and L, are as in (3.2) and

Ke[ru 4],
KeC(L).

Ly = {(x, —x+2) e R?: 0<x<2} _
However, as we will see in (3.16) and (3.17), there ar'e simple Peax'lo continua,
closely related to those above, such that their hyperspace is not a cartesian prodl%ct.
A necessary condition on Peano continua X in order that C(X) be a cartesian

product is given in (3.15). In order to prove (3.15), a number of preliminary lemmas

will be proved. '
(3.4) LemMMA. If A isa (nondegenerate) Peano continuum such that there is an .Ope}'t
subset U of C(d) such that AeU and dim[U]<2, then A is an arc or a circle.
Proof. Let F be a finite connected graph in 4. Using the arcwise connectedness
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of A, it follows easily that there is a finite connected graph F* = F such that F* e U.
Let U* = C(F*) n U. Then, U* is an open subset of C(F*) such that F* e U*
and, since U*<=U, dim[U*]<2. Since F* is a finite connected graph, these proper-
ties of C(F*) and U* easily imply that F* is an arc or a circle. Thus, since
F%*oF, Fis an arc or a circle. Since F was an arbitrary finite connected graph in 4,
we have proved that any finite connected graph in 4 is an arc or a circle. Hence, 4 is
a Peano continuum which contains no simple triod. Therefore, 4 is an arc or
a circle.

(3.5) LemMma. Let X be a.Peano continuum. If A e C(X) such that there is an open
subset U of C(X) such that Ae U=R?, then A is an arc or a circle; furthermore,
A is a circle if and only if A = X.

Proof. We first show that

(3.5.1) A4 is nondegenerate.

Proof of (3.5.1). Suppose A4 = {a}. Since X is locally connected and U is an

open subset of C(X) such that {a} e U, there is a connected open subset ¥ of X such

that ae V' and, letting A, = cl[V], C(4,)c=U. Hence, since Uz R?, C(A4,) is
embeddable in R*> and so, by [24, Theorem 2.3], Ay is an arc or a circle.
Thus, C(4,)=B* and {a} is in the manifold boundary of C(d,). Let
W = {Ke C(X): K=¥}. Since V is an open subset of X, W is an open subset of
C(X) and, since WeC(4,)cU, WoU. Hence, W is an open subset of Uz R2.
But, since {a} ¢ We=C(4;) = B* and {a} is in the manifold boundary of C(4)),
we have a contradiction to basic facts about open subsets of R2. Therefore, we
have proved (3.5.1).

Next we show that

(3.5.2) A is locally connected.

Proof of (3.5.2). Suppose there are three distinct points a,, ay, and a; of A such
that g; is arcwise accessible from. X\A for each ie {1, 2, 3}, Then there are three
mutually disjoint arcs J;, J,, and Jy in X such that for each i e {1,2,3}, a; is an
endpoint of J; and J; n 4 = {a;}. Moreover, by choosing appropriate subarcs
of J; if necessary, we assume without loss of generality that A= U where

3
A= {BeC(X): A=B<Au [ J]}.

i=1
It follows easily that A is a 3-cell (see the proof in [15, 5.3]). Since AcU=R?,
we have a contradiction. Hence, at most two points of 4 are arcwise accessible
from X\A. From this, and the local arcwise connectivity of X [16, p. 254], it follows
easily that each point of 4 which is not arcwise accessible from X\4 has a neigh-
borhood base in 4 consisting entirely of connected open subsets of X. Thus, 4 is
locally connected at all but at most two points. Therefore [31, 12.3, p. 19], A is locally

connected. This proves (3.5.2).

Now we complete the proof of (3.5). By (3.5.1), (3.5.2), and properties of U
in (3.5), 4 and Uy = U~ C(d) satisfy the hypotheses of (3.4). Hence, by (3.4),
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A is an arc or a circle, This proves the first part of (3.5). We prove the second part.
Assume A4 is a circle. Suppose 4 # X. Then, since X is arcwise connected, there is
an arc « in X from a point of X\ 4 to a point of 4. Without loss of generality, assume
[AualeU. Then, by (3.4) applied to the Peano continuum 4 U e and
Un C(4 ua), we have a contradiction (since 4 U « is not an arc or a circle).
Therefore, A = X. Conversely, assume 4 is not a circle; then, by the first part of (3.5),
A is an arc. Suppose 4 = X. Then C(4) = C(X) is a 2-cell with 4 in its manifold
boundary. Hence, no U as in (3.5) exists. Therefore, 4 # X, This completes the
proof of (3.5). v

NotatioN. In what follows it will be convenient to let J denote J\{p, g}
whenever J is an arc with end points p and ¢.

(3.6) LEMMA. Let X be a Peano continuum such that X is not a circle and let
A& C(X). Then, there is an open subset U of C(X) such that A€ U= R? if and only
if there exists a free arc J in X such that A=) and A is nondegenerate.

Proof. Assume U is an open subset of C(X) such that 4 e U~ R>. Therefore,
since X is not a circle, we have by (3.5) that 4 is an arc. It follows using [16, p. 254]
that 4 is free in X, Let p and ¢ denote the end points of 4. By (3.5), 4  X. Thus,
since A is free in X, p or ¢ must be a limit point of X\4. Therefore, using [16, p. 254],
we see that there is an arc B, from a point b; of X\4 to a point x e 4 such that
B, n 4 = {x} and such that [4 U B,]e U. Since 4 is free in X, x = p or x = g,
say x = p. Again using (3.5) and [16, p. 254], we see that 4 U By is a free arc in X.
Since C(4 w By) is a 2-cell with 4 in its manifold boundary and since 4 € U R?,
it follows that C(4 L By) N U-can not be a neighborhood in C(X) of 4. Hence,
since U is an open subset of C(X), it follows that [4 U B;]\{b;} is not an open
subset of X. Therefore, since 4 U B, is a free arc in X, it now follows that g is
a limit point of X\A. So, using [16, p. 254], we obtain an arc B, from a point ‘of
X\A to g such that B, n 4 = {g} and such that [4U B, U B,Je U Agaul,
AU B, U B, is a free arc in X. Letting J denote 4 U By U B,, we see that A=J.
This proves half of (3.6); the other half is clear from examining the structure of
the hyperspace of any arc. ‘ )

(3.7) Remark. Let

X, = d({(x, sn[1x]: 0<x<1}),
Xy = cl({Cx, sin[1/x]): 0<x<271),
Xy = {0, ) e R* —2<y< -1},

X, = {0,y eR* —4<y<0}.

’i‘hen: By taking 4 = X; U X3, we see the necessity for the rgquirement in (3.4)
that 4 be a Peano continuum, By taking X = X, v X3 and A. =X, U Xy, we
see the necessity for the requirement in (3.5) that X be a Peant? contmu}um, By taking
X=X, U X,and 4 = X,, we see the necessity for the requirement in (3.6) that X

be a Peano continuum.
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(3.8) LemMa. Let ¥ and Z be continua (not necessarily locally connected) and
let (y, z) € [Y X Z]. Then, there is an open subset U of YXZ such that (y, z) e U= R?
if and only if there are free arcs J(y) and J(z) in Y and Z respectively such that
yeJ() and ze (2.

Proof. Assume U is an open subset of ¥xZ and (y,2) & U= R?. Then, it is
easy to see that there is a connected open subset ¥V of ¥'x Z such that (y,2)e ¥,
c(=B?, and [KxL]cU where K = mylcl(¥)] and L = mp[cl(V)]. Thus, K
and L are nondegenerate locally connected continua such that K'x L is embeddable
in R2, Hence neither K nor L can contain a simple triod, and so X and L are both
arcs, or one of them is an arc and the other is a circle (comp. [22, Lemma 2]). There-
fore, by choosing a smaller ¥ if necessary, we assume without loss of generality
that K and L are both arcs. Now observe that:

(3.8.1)
(3.8.2)

ny[V] is an open subset of Y and m,[V] is an open subset of Z;

e[ V1% 7z[V] is an open subset of Ut R* and Kx L is a 2-cell in U such
that (ny[V1xn V) (KX L).

It follows from (3.8.2) and elementary properties of the topology of R? that

(38.3) mVleR and mVle L.

Also, using (3.8.1), we see that )
(3.8.4) my[V] (resp., 7;[V]) is a dense connected open subset of K (resp., L).

Hence, by (3.8.3) and (3.8.4), ny[V] = K and n,[V] = L.It now follows from (3.8.1)
that, by taking J(») = K and J(z) = L, half the lemma is proved. The other half is
clear.

(3.9) For any continuum A let
F(M) = {4e C(M): A=J for some free arc J in M and A is nondegenerate}.
Observe that

(39.1) - UF(M)={peM: pel] for some free arc J in M}.

(3.10) Lemma. If X is a Peano continuum such that X is not a circle and if
h: CQXYS YXZ is a homeomorphism, then h[F(X)] = [U F(Y)]x [ U FZ)].

Proof, The equality is a direct consequence of (3.6), (3.8), and (3.9.1).

(3.11) LemMA. Let M be a Peano continuum and let K be a nonempty connected

subset of U {J,: we I}, where J, is a free arc in M for each o in the index set I. Then,
one of the following holds: )

@) KcJ for some free arc J in M;
(i) M is a circle;
(i) K = C\{c} where C is a circle and C n l(M\C) = {c}.
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Proof. Let pe K and let N = {xe K: there is a free arc 4 in M such that
p, xe A}, We first show:

(.11 N = K.

Proof of (3.11.1). Since p e N, N # @, Now, let x, € N. Then, there is a free
arc Ay in M such that p, x, € Z(O. Since Ay N K is an open subset of K and since
X0 € [Zo n K]J<N, N is an open subset of K. Next we prove N is a closed subset
of K. To do this let {x;}/a; be a sequence in N such that x;— x,, € K. Since
xo€ Ko U {J,: e}, there exists f el such that x,, e J;. Since J; is an open
subset of M and x;— x, € J;, there exists & such that x, € J,. Since x, € N, there
exists a free arc A, in M such that p, x, & A,. Consider the set 4; U J,. First assume
A, u J; contains a circle S. Then, it is easy to see that 4; U J; = S. Hence, § is
both open and closed in M. Hence, $'= M and it is easy to see that K = N. Next,
assume A, U J, does not contain a circle. Then it follows easily that 4, u J,
contains a free arc A4 in M such that p,x, e A Thus, x,eN. Therefore, N is
a closed subset of K. We now conclude, from the connectedness of K, that N = K.

Now, let .
G=1{){4: 4is a free arc in M and pe 4}.

Note the following properties of G:

(3.11.2) G is arcwise connected;

(3.11.3) G is locally homeomorphic to R';

(3.11.4) G K (this follows from (3.11.1)).

Hence, G is an arcwise connected space which contains no simple triod
by (3.11.3). So, by [19, 3.2], G is a one-to-one continuous image of a connected subset
of R* which we again denote by L. By (3.11.3), L is not homeomorphic to [0, 11.
Also, since K # @ and K= G (by (3.11.4)), L must be nondegenerate. Thus, there
are two cases:

Case 1. L[0, + ). Suppose G is not compact. Then, since G is locally
compact (by (3.11.3)), we have by [26, Theorem 7.1, p. 69] that G=[0, + o). But,
by (3.11.3), this is false. Hence, G is compact. Also, by (3.11.3), G is locally connected
and contains no simple triod. Therefore, it follows easily from the Structure
Theorem in [20, p. 128] that G must be a circle. However, G is also an open subset
of M since, from the definition of G, Gt is a union of open subsets of M. Hence,
G = M and M is a circle,

Case 2. L& R', Then, by (3.11.3) and Theorem 1 of [17, p. 320], it follows

" casily that (' R'. Thus, since M is locally arcwise connected [16, p. 254], it follows

from the definition of G that cl(G)\NG consists of at most two points. First assume
that cl(G)NG consists of exactly two points ¢, and ¢, Then J = cl(G) is an arc
with endpoints ¢, and g¢,; furthermore, since G is an open subset of M, J is a free
arcin M. Also, by (3.11.4), K=J. Thus, (i) of (3.11) holds. Next assume that cl(GING
consists of only one point ¢. Then C = cl(G) is 2 circle. Since G is an open subset
of M and GA[MNC]=@, Gac[M\C)=@. It now follows that
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[C A d(MN\C)={e}. If MNC = @, then M = C and (ji) of (3.11) holds. Assume
MNC # @. Then, Cnr c(M\C) # @ (otherwise M would not be connected)
and so C N cl(MN\C) = {c}. It follows easily from (3.11.4) that (@) or (iii) of (3.11)
holds.

(3.12) LEMMA. dssume C(X)= Y x Z where X is a Peano continuum such that X is
not a circle. If K is a component of \) F(Y) # @ (resp. U F(Z) # ), then there is
a free arc J in Y (resp., Z) such that K = J.

Proof. By (3.9.1), K satisfies the hypotheses of (3.11). Hence, since X is not

nt
a circle, (i) or (iii) of (3.11) must hold. Suppose (iii) holds. Then define r: rSc by

) (v, »yeC,
"=, yed(MNO).

Since r is a retraction of Y onto the circle C, we have contradicted (2.1) which
states that Y is acyclic. Therefore, (iii) does not hold and, so, (i) holds. Hence, there
is a free arc J in ¥ such that K< J. Therefore, since X is a component of {J F(Y)
and Je[U F(D)], K= J.

(3.13) LemMA. Assume C(X)= Y x Z where X is a Peano contimuum such that X
is not a circle. If K is a component of \) F(X) # @, then there is a free arc J in X such
that K = J.

Proof. Since X is not a circle, we have by (3.9.1) and (3.11) that (i) or (iii)
of (3.11) must hold. Suppose (iii) holds. Let I' = {de F(X): AcK}. Let

h: C(X) OI:DY xZ be a homeomorphism. It is easy to verify that I" is a component
of F(X). Hence, by (3.10), A(I) is a component of [ |} F(Y)]x[U F(Z)] and so
ny([I') and my(h[I']) are components of {J F(Y) and |J F(Z) respectively and
R = my(h[T]) % mx(h[T]. Now, by (3.12), ny(a[I]) = Jy and my(h[I']) = J,
for free arcs Jy and J; in Y and Z respectively. Hence, cl(A[I'] = cl(JyxJ,)
= JyxJz; in other words, cl(2[I']) is'a 2-cell. However, it is easy to see that

d(D=B™N{(x,») e R*: [x—§*+r*<%}

and therefore, since 2[cl(I)] = cl(h[I']), we have a contradiction. Thus, (i) of (3.11)
must hold. Hence, there is a free arc J in X such that K<J, Therefore, since K is
a component of {J) F(X) and J=[ F(X)] by 3.9.1), K = J.

(3.14) LemmA. Assume C(X)=YXZ where X is a Peano continuum. If K,
and K, are distinct components of \) F(X), then cl(Ky) n cl(K,) = @.

Proof. Assume, for the purpose of proof, X is not a circle. By (3.13), there
are free arcs J; in X such that K, = J;, ie {l, 2}. For each ie{l,2}, let

I'={4deF(X): AcK}.

It is easy to verify that I'; and I', are distinct components of F(X). Now suppose
cl(K;) N cl(K,) # @. Then, noting that cl(X;) ncl(K,) = J; nJ, and that J;
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and J, are free arcs in X such that J, nJ, = &, we see that JinJ, ={p} or
J.nJy = {p,q} where p and g are end points of J; and J,. Note that

) c(I')) = C(J) for each ie{1,2}.

Therefore, since J; nJ, = {p} or Jy 0 J, = {p, q},
(%+)  cl(I'y) N cl(I';) consists of af least one point and at most two points.

Now, let A: C(X)OF;OYXZ be a homeomorphism. Since I'; is a component of
F(X) for each ie {1, 2}, it follows (see part of the proof of (3.13)) that A[cl(I')]
= J(Y)xJ(Z) where: For each i e {1, 2}, J(¥) and Jy(Z) are free arcs in Y and Z
respectively and J(Y) = ny(R[I)]) and J(Z) = mp(h[I;]) are components of
U F(Y) and |J F(Z) respectively. :

For future use we prove

(#) WZ)nJyZ)=@3.
Proof of (#). For each ie {1, 2}, h[cl(I')] = J(¥)xJ(Z). Hence
RI(I)] A AT )] = [J1(Y) 0 T(X)] % [J1(Z) n T(2)].

Suppose J(Z) n Jo(Z) # . Then, since Jy(Z) and J,(Z) are components of
U F(Z), J(Z) = J(Z). Hence, J,(Z) = J»(Z) and so

R[] A ALl )] = [T(¥) 0 JA(N)]xT(Z) .

Tt now follows that cl(I'y) ~ cl(I',) is either empty or contains a copy of Jy(Z),
both possibilities being incompatible with (x#). This proves ().

Let L = J,(¥)x J»(Z). Since L is a component of[) F(¥)]x [U F(Z)],A (LY
is a component of F(X) (by (3.10)). Hence, J h~*(L) is a connected subset of |J F(X).
Thus, by (3.13),.there is a free arc J in X such that [ A~ *(I)]=J. Therefore, since
h~Y(L) is a component of F(X), it follows easily that U h~*(L) = J. Now, since
{p}e C(J) = cl(I')) for each ie{l,2} (by (),

R({p}) & h[el(T)] = T(Y)xJ(Z)

Hence, h({p}) e [/1(¥)xJ3(Z)] = cl(L). Thus, {p}ed [F~*(L)] which implies
pec[Uh L)) = J. Therefore, J3nJ#@. Since L =~J1(Y)xj‘2(Z) and
R )e (¥) % J,(Z)] (actually equality holds) and J(Z) n J5(Z) = @ (by (#))s
we have that h~Y(L) n I'; = @. Hence, since I'; = {4&F(X): AcJ,} and (as
is easy to verify) i~ (L) = {4 e F(X): AcJ} and since Jy and J are free arcs in X,
it follows that J, ~ J = @. Thus we conclude that J; J is nonempty and consists
only of the common endpoint(s) of J; and J. Therefore, since cl(I'y) = C(Jy) and
cl[A~Y(L)] = C(J), it follows that

for each ie {1,2}.

(wex)  R[cI(I')] N cl(L) consists of at least one point and at most two points.
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But, we also have
Rel(T' ] v el(L) = [J(Y)xJ(Z)] 0 [J1( Y)Y J5(Z)]
=Jy(Y)x [J1(Z) n J5(Z)]

which contradicts (s#+). Hence, cl(K;) n cl(K,) = & and we have proved the
lemma. .

(3.15) THEOREM. Let X be a Peano continuum. If C(X)= Y'XZ, then one of the
Jollowing must hold:

(3.15.1) X is a circle;
(3.15.2) * X contains no free arc;

(3.15.3)  The closure of any component of \) F(X) is a free arc (in X') which is disjoint
from any free arc (in X) not contained in it.

Proof. Assume (3.15.1) and (3.15.2) do not hold, Then, letting X be a component
of J F(X), we see that (3.13) may be applied giving us that there is a free arc J in X
such that X ='J. Hence, cI(K) = J is a free arc in X which, by (3.14), is disjoint
from any free arc in X not contained in it. Therefore, (3.15.3) holds.

The continuum X in the following example should be compared with the con-
tinnum in (3.2).

(3.16) ExAMPLE. Let X =B*UL,uUA where Ly is as in (3.2) and
A = {(x, x~1) e R*: 1<x<2}. Then, by (3.15), C(X) is not a cartesian product,

The continuum X in the following example should be compared with the con-
tinnum in (3.3). ,

(3.17) ExampLE. Let X = B> UL; U 4 U L where L, and A4 are as in (3.16)
and L = {(2,): 0<y<1}. Then, by (3.15), C(X) is not a cartesian product.

(3.18) Remark. Note that (3.15) yields 9.7 of [10] (and, hence, (1.1) above)
as a corollary. Though the proof given for 9.7 in [10] provided inspiration for some
ideas used above, the procedure used to prove (3.15) is different from that used to
prove 9.7 in [10].

(3.19) QuesTioN. Is the converse of (3.15) true? Since C(X)=[0, 1]1x[0,1]
when X is a circle and since C(X)x1I, when X is a Peano continuum containing
no free arc [9, Theorem 2], the question reduces to whether, for Peano continua,
(3.15.3) implies C(X) is a cartesian product. It is clear from what was done in (3.1)
that knowledge about the union of Hilbert cubes that intersect in a Hilbert cube is
intimately connected with this question. Hence, more information about the con-
jecture in [2, p. 213] than is currently available would seem to be necessary to answer
the question (see (3.20)). One further comment: The question is stated in the context
of Peano continua; it may in fact be true that if C(X)is a cartesian product, then X is
a Peano continuum. If this is true and if the converse of (3.15) is true, then a complete

characterization of those continua X such that C(X) is a cartesian product would
be obtained.
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(3.20) Remark. Sher has recently shown the conjecture in [2, p. 213] is false
(Proc. Amer. Math. Soc. 63 (1977), pp. 150-152). However, perhaps some special
Hilbert cube sum theorems could be obtained to help answer the question in (3.19).
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Uniform quotients of metric spaces
by

Donald Marxen (Dubuque, IA.)

Abstract. Uniform quotients . of (pseudo-) metric spaces are investigated and several con-
ditions implying the pseudometrizability of such quotients are given. Most important, however,
it is shown that pseudometrizability is not preserved under uniform quotient maps, thus answering
in the negative a question of Himmelberg.

1. Introduction. The question of when a given class of maps preserves metriz-
ability of a topological space has long been of interest in general topology. Recently,
questions relating to the preservation of (pseudo-) metrizability have arisen in con-
nection with various types of maps between proximity and uniform spaces (see, for
example, [1], [4] and [8]). In [4] Himmelberg investigates uniform quotient maps and
provides necessary and sufficient conditions for such maps to preserve pseudo-
metrizability. Left open in [4], however, is the question of whether uniform guotient
maps, in general, preserve this property.

In Section 3 of this paper we construct a metric space having a non-
metrizable (T,) uniform quotient and, in doing so, answer Himmelberg’s question
in the negative. In section 4 we provide several conditions sufficient for a uniform
quotient map to preserve pseudometrizability.

2. Preliminaries. Let o be a pseudometric on a set X. For a positive real ¢ set
B(d, &) = {(x, y): d(x,y)<e}. Let %(d) denote the uniformity determined 4,
i.e. the uniformity with base {B(d,¢): ¢>0}. :

For a uniformity % on X, (%) will denote the gage of % [5, p. 189].

Let [X, %] be a uniform space, ¥ a set and g: X — Y a surjection. The quotient
uniformity, determined by [X, %] and g, is defined to be the largest uniformity ¥~
on Y such that g: [X, %}~ [Y, ¥ is uniformly continuous. This uniformity will
be indicated by %, and, when Y is endowed with %,, ¢ will be called a uniform
quotient map.

The formulation in [6] of the quotient uniformity is essential to the definitions
of the spaces in § 3. This formulation, with minor modifications, is outlined below.
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