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Analytic sets and Borel isomorphisms g

by

John R. Steel * (Los Angeles, Ca.)

Abstract. We show that if all analytic (i.e. Z‘{) games are determined, then any two analytic

. non-Borel sets of reals are carried one to the other by a Borel permutation of the reals. A similar

theorem concerning homeomorphisms of the Cantor space is proved.

0. Introduction. We shall show that if all analytic (i.e. Z]) games are deter-
mined, then any two analytic non-Borel sets of reals are Borel isomorphic (carried
one to the other by a Borel permutation of the reals). Thus there are, under this
determinateness hypothesis, exactly two analytic Borel spaces ([11, p. 46).

The question whether all analytic games are determined has been the subject
of much recent investigation. In our opinion, the existing evidence supports an
affirmative answer. At any rate, it is shown in [3] that one cannot weaken this deter-
minateness hypothesis here, for it is provable in ZFC that if all analytic non-Borel
sets are Borel isomorphic, then all analytic games are determined.

The Borel isomorphisms we produce will actually be class (1, 1) homeo-
morphisms (cf. [4], p. 374). In §3 we describe some cases in which full homeo-
morphisms can be obtained.

1. Preliminaries. Let Sq be the set of all finite sequencesof zeros and ones,
i.e.Sg = | ™2.The Cantor space is the set @) together with the topology generated

new
by basic open sets of the form

, [s] = {xe“2| s=x}

where s & Sg. In fact, [s] is clopen in this topology for se Sg. We work with the
Cantor space, but the results of § 2 carry over to the real line since there is a Borel
isomorphism of low complexity between the Cantor space and the real line.
In general, we use i, , k, I, m, n torange over o, p, 4, 1, 5, 1, u to range over Sq,
v, w, X, ¥, z to range over “2, and 4, B, C, D, E to range over subsets of “2.
Let o: Sq— Sq be order preserving, i.e. Vs, t(sst = a(s)So(t)). Then
* This work formed a part of my Ph.D. thesis [6]. My warm thanks to Professor John
Addison, my adviser, for helpful suggestions on this and other problems.
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define f, by: f,(x) = U o(x} n). The map f, is continuous on it’s domain, which is
n

a G, set; conversely, if dom( f) is a Gy subset of “2 and f: dom( f) — “2is continuous
on dom(f), then f = f, for some order preserving o: Sq-— Sq.

Our proofs descend from an idea of William Wadge. For 4, B<“2 let A<, B
iff 3 £ “2— 2 (f is continuous A f~*(B) = 4). If I' is a class of subsets of. “2,
T is a pointclass iff VA, B(BeI'nA<,B) == AeT). For I' a pointclass, let

I={"2—-4] deT},
bI = {A] 4 is a finite boolean combination of sets in I'}.

Let “I'— AD” abbreviate the statement “all games with payoff set in I' are deter-
mined” (cf, [5]).

Lemma 1 (Wadge; cf. [7]). Let I' be a pointclass so that bI' — AD holds. Then
VA,BeI'(A<,BVB<,"2—A), and thus VA, Be I'(B¢ I = 4<,B).

The relation <, has been extensively studied; cf. [7]for a survey. The analogous
relation for subsets of the real line has not been studied. One obstacle to such a study

isthat Lemma 1 fails on the real line; let I' be the class of F, sels, B the set of ration-
als, and A4 the closed unit interval for a counterexample.

2. Borel isomorphisms. For 4, B<=“2 let A<, B iff Af: “2— “2(f is con-
tinuous A f is one-one A 4 = f™*(B)).

Lemma 2. VA, BS“2[(A<BAB<  A) = Th: 22 (h is .a class (1,1)
homeomorphism Ah™(B) = A)].

Proof. One of the usual proofs of the Schroeder-Bernstein Theorem yields
this refinement. B i

In view of Lemma 2, we would like to replace “<,” by “<,” in Lemma 1.
This can be done if I' is reasonably closed, by which we mean that
VA(deI = A*eT), where A* is defined as follows. Fix xe®2. If InVm
>n(x(m) = 0), then xeA*; if AnVm>n(x(m) = 1), then x ¢ 4*. Otherwise x
breaks up into infinitely many blocks of zeros separated by blocks of ones. Let
»(i) = 0 if the ith block of zeros in x has even length, and y(i) = 1 otherwise. Then
xed* iff ye d.

All pointclasses occurring in classical descriptive set theory which properly
include the F, sets are reasonably closed. (A precise description of the ordinals of
such classes in the Wadge ordering <., can be abstracted from [6].)

Lemma 3. Let I' be reasonably closed and suppose bI'—AD holds. Then
VA, B((4eT'ABel'-]) = 4<,B)

Proof. Let I, 4, and B be given as above. Then A* e T, so by Lemma | we
have a continuous f1 2 — ®2 so that 4* = f~(B). Let f = f, where o: Sq— Sq.

We shall define 7: Sq — Sg so that £, is a witness that 4<., 4* dnd fo o [, 15 a witness
that 4<, B.

(s) is defined by induction on dom(s). Let (@) = (1>. Suppose t(s) is
defined, where dom(s) = {n| n<i}, in such a way that
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(i) the last entry in t(s) is 1;

(if) there are exactly i blocks of zeros in 1(s), -and for 0<n<i, s(n) = 0 iff the
nth block of zeros in t(s) has even length.

Let x(n):= y(n) = t(s)(n) if nedom(r(s)); let x(m) =0 and y() =1 if
ne¢ dbm('r(.s)). Then f,(x) e B and f,(y) ¢ B, so for some k, o(x| k) and o(y} k)
are incompatible. Let 7(s"0) and ©(s"1) be extensions of x} k and y } k respecti-
vely so that (i) and (ii) remain true; these are easily found. This completes the de-
finition of 7.

By (i), Vx(xe 4 < f(x) e 4%). Thus f, is a witness that 4<,4* and f, o f;
a witness that A<, B. But £, ¢ f, is one-one by the construction, hence A<;B. &

THEOREM 1. Assume Zi—AD. Then VA, B(4,BeXi—I; = Jh: “2— 72
(h is a class (1, 1) homeomorphism Ah™*(B) = 4)).

Proof. 21— 4D implies b2} —4D by [3] and unpublished work of D. Martin.
The theorem now follows at once from Lemmas 1, 2 and 3. B

Remark. Let 2<v<s,; then HS is a reasonably closed pointclass. By [5],
bIIS— 4D holds. Thus any two properly 1% sets are class (1, 1) homeomorphic.
It was known i classical tin\'les that any two uncountable Borel sets are Borel iso-
morphic, however, we conjecture that the refinement just mentioned is not provable
by classical methods. That is, we conjecture that A} —AD is provable in sccond-orde‘r)
arithmetic together with the statement “Vv (if 2<v<s,, then any two properly II,
sets are class (1, 1) homeomorphic)” (cf. [2]).

Lemma 3 is due to L. Harrington. It provides a proof of Theorem 1 much
simpler and of more general applicability than our original one.

3. Homeomorphisms. For 4,B<“2 we say 4 ‘is homeomorphic to B iff
Jh: ©2— 92 (h is a homeomorphism A h(4) = B). We believe that it would be of
some interest to obtain a list of invariants characterizing the homeomorphism types
of, say, Borel sets. Theorem 2 is a first step in that direction.

If VseSq(4 n [s]e I—I), then we say that 4 is everywhere properly I.

TueorEM 2. Let T be a reasonably. closed pointclass so that bI'— AD holds, and
suppose A and B are each everywhere properly I' and meager. Then A is homeomorphic
to B.

Proof. Let 4, B, and I' be as in the hypotheses. Because A and B are meager
there are sequences {C;| i<w) and {(Dy| i<w) of closed nowhere dense sets so
that

8)) csC and DD for i<j;
@ A= €, and Bs UD;.

For se Sq let § = s} dom(s)—1. The fact that 4 and B are everywhere properly I’
enables us to choose these sequences so that for each i

(3) (a) BaDyel-T;
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(®) VseSql(ls]n Ci = BABIN C, # @) = A [s]n Cpyye T

(©) Vse Sq(([s]n D; = BA[S]n D; # B) = B [s]n Dy eI'=T1.
The following observation allows one to arrange that (3) holds: if Xe I'—T, then
there is a closed nowhere dense set C such that X A Ce I'—F. For let ¥ be any now-
here dense setin I'— I, and let ¥’ 1 X'viathemap f. Let C = { f(x)| x € closure of Y}
Then the compactness of ®2 implies that C is closed nowhere dense, and. X'~ Ce I’
since I' is reasonably closed. But ¥<,;Xn C via f, so X A Ce¢rl.

Our plan now is this: the desired homeomorphism will be the limit of a sequence
<{h,| n<w) of partial homeomorphisms constructed by a back and forth argument
using Lemma 3. The h,’s will satisfy:

(a) hn+1T‘ dom(hn) = hn;

(b) A, is a homeomorphism between its domain and range;

(©) dom(hzy) = Cy,

ran(th) < -D2m
dom (B2 41) S Copi v
ran (1) = Dyyiqs

(d) Vxedom(h,)(xe 4 < h(x)e B).

(From (b) and (c) it follows that dom(#,) and ran(h,) are closed sets.) We define 4,
by induction on n.

n=0: Since BN DyeI'-I, Lemma 3 provides an /% which witnesses that

A< B D,. Since A4 is dense, ran(h)E Dy. Let hy = At C,.

n odd: We are given A,_, satisfying (a)-(d). Thus dom(h, 1) = C,_,. Let
M =M, = {seSq| [§] nran(h,_;) # DA[s] A ran(h,.,) = @} .

For s e M, choose ¢, so that [tln Coy # & and he—1([t]) <[5]; such a ¢, exists
by (b). Pick u,27, so that [u] N C, -1 =% and 4 n [u] A C, e ', this can be
done by (3). It is not hard to see that we may choose u; so that if s % s’ then
[] N [uy] = @. (This makes use of the reasonable closure of I')

By Lemma. 3 we have for each se M a map & so that [s] n B, [u] ~ 4 C,
via hi. Let h, = h} D,. Finally, let

hy=h,_y 0 U K.
seM

It is easy to verify all the properties ()~(d) of I, except perhaps (b). For that,
since 4, is clearly one-one, it is enough to see that 4, ! is continuous on it's
domain, D,. Let i, ' = p, Suppose Vk(y, € D,) and lim Y = y. Since “2 is compact,

k-0

it is enough to see there is no subsequence <yl k<w) of {y| k<w) so that
klim h(y) exists and klim h(yi) # h(y). Suppose Ol k<w) were such a subse-
0 g <]

quence. Then for k large enough, v, éran(h,_,) by property (b) of A,_; and the
definition of 4,. Further, there is no fixed se€ M so that yj e [s] for k sufficiently
large, by the choice of h and the definition of hy,. Thus by passing to a subsequence
of (y| k<w) we may assume that VEk(yie [s,]), where s, e Mand i # k = §; F S
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Choose z; in ran(h,—) N [§]. Now Vidn¥m>n(ie dom(s,)), and z } dom(5)
=y} dom(§), so lim z; = y. Thus y eran(h,—,) and 2(y) = ht,(y).
k=0

Fix k. By (b) for h,_; find [ so that if 4,_,(z) € [y} [] then z e [A(») } k]. Now

v} I<5; for i large enough, and so h(y)} k<t,, for i large enough. But t,lgh.(yé)

by the definition of ,. Since k was arbitrary, lim 4(y}) = h(»), a contradiction.
i+

n even: We are given h,_, satisfying (a)-(d). Thus ran(h,_,) = D,_;. Let
M =M, = {se Sq| dom(h,_,) " [§] # Srdom(h,_,) N [s] = B} .

For se M, choose t, so that h ([t < [5] and [] " D,; # @. Pick 1,21, so
that [y N D,y =@ and Bn [u]n D,eI'—T. Let the u, be chosen so that
s # S5 = [us] @l [us'] = @. ,

By Lemma 3, let [s] " A<y B n [u] N D, via hl. Let A, = K.} [s] n C,, and let

hy=h,yu U kg
seM

Properties (a)-(d) are verified as in the case where n is odd.

Now let & = {J h,. Since A is dense, for any x e ®2 we can find (x} k<)

so that Vk(x; e dom(#')} and lim x, = x. Define A(x) by:
k- o
R(x) = lim #'(xy) .
koo

We shall show this limit exists and depends only on x.

CLAM. Let s, te Sq and h,([s])<[t], where [s] n dom(h,) # &. Suppose that
Vi'ct Vie {0,1} (ran(h,) 0[] # ©). Then Vm>n(h,(sH=[]).

Proof. By induction on m>n. First, let m be even, and let

x & [s] n (dom(h,)—dom(h,,- 1)) -

Then x e [r] for some re M,,. Since [s] N dom(h,_,) # &, s<F. But .then tctr.
For if not, then ([t,]—[t]) nran(h,—) # & by the claim hyPoth.ems, and.so
Ay(y & [s]A M- (3) € [£]) bY the(indu;:t]ion hypothesis. Since scF, this contradicts
choi f ¢,. Since t<f,, h,(x)et].
e ﬁgiele(t)rm.r'besortld, and let x & [s] n (dom(h,) —dom(h,—4)). Then xe [r] for
some r & M,,. Now h,,.. ([t)) S [Fland 7, ([s) = [t]and [£].n [s] ndorrf(.h,n_ﬂ # Q.
Thus [F] A [f] # @. But Fz by the claim hypothesis and the definition of M,,,
hence t<F. Thus A,(x) € [t]. The claim is now proven. )
Now fix x; we want to see that A(x) is well-deﬁn?d. By the compz}ctne’ss’of 2;
it is enough to see that whenever klirg ¥, = x and lim x;, = x and lim /'(3) = 2

k- k—~+ow
and lim A'(x,) = w, then w = z. So suppose (x| k<w}, {»l k<w)y, w, and z are
Lo
a countercxample. )
First, suppose dn(x e dom(h,). Let 1<h,(x), 1€ Sq. Let k be so large that
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xedom(y) and if t'c¢ and ie{0,1} then [t"]n ran(h) = @. Since by is
a homeomorphism we have se Sg so that x e [s] and h([sD<z]. By the claim,
hlsDelt] for all j>k. Thus tsw and tcz. But z was arbitrary, sow = z.

Now suppose Vk(x ¢ dom(h,)) and win =z} r but w(n) # z(n). Let k be
odd and so large that if #& Sg and dom (¢)<<n+2 then ran(hy) N [f] # &, Let [ be
least so that x } I ¢ dom(hy). Lets = x| [; then s € M, ,. Let u; be as in the definition
of Zyy. Then [u] 0Dy = @, so dom(u)>n+2 and u,} (n+1) % wh (r+1) or
Uh (1) # 2t (n+1). Say that u,} (n+1) # wh (n+1). Now hyy y([sh €[] by
definition, and Ay([s]) < [u,} n+1] for all j2k+1 by the claim. This contradicts
our assumption that lim x, = x and lim #'(x,) = w. ‘

k—r 0

k-0
Thus 4 is well-defined. Clearly 4 is continuous. A completely symmetric argument
shows that #~* is well-defined (i.e. 4 is one-one and onto) and continuous, Thus / is
2 homeomorphism of “2. Clearly h} dom(#) = /', and thus h(4) = B. &

Both of the hypotheses that 4 and B are everywhere properly I' and that 4
and B are meager are necessary in Theorem 2. One can, however, replace “meager”
by “comeager” by passing to complements. In the case that I' = % !, the hypothesis
of bI'— 4D can also be shown necessary;. this follows from- [3] and the fact that
any properly 1 sct is Borel isomorphic to a meager, everywhere properly £} set.

We conjecture that Theorem 2 holds for subsets of the real line. Of course,

one must formulate the notion of reasonable closure properly in order to prove
this.
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On fine shape theory II
by

Y. Kodama (Ibaraki) and J. Ono (Shizuoka)

Abstract. Let Cg be the proper shape category defined by Ball in terms of proper mutation.

1t is proved that the fine shape category Cyis isomorphic to the full sul?category of Cﬁ whose
objects are locally compact metric spaces of the form X'x R*j’ where X is any compa.ctur‘n and
R+ is the space of non negative reals. The proper movability is defined and a characterization of
pointed FANR in terms of proper movability is obtained.

1. Introduction. The notion of proper shape was introduced originally by Ball
and Sher [3]. Their presentation paralleled Borsuk’s one [1], using a notion of proper
fundamental net in place of Borsuk’s fundamental sequence. Ball [1‘} has established
proper shape theory modeled on the ANR-systems of Mardesi¢-Segal [14], op
the mutations of Fox [7] or on the shapings of Mardesié [13]. Vie mean by ‘9”1, the:
proper shape category in the sense of Ball and Sher [3] and by %, the proper S}]ilape
category in the sense of Ball [1]. As presented by Ball [1], whether €, and ¥, are
isomorphic is an open question. o

Recently the authors [12] have introduced the fine shape category % cgnsmtmg
of all compacta and proved that %/ is isomorphic to the full sul?category %, of €,
whose objects consist of space of the form XX R, , where X is any compactum
and R, is the space of non-negative rea;!i. In tgis paper we first prove ft}tiz,t
%, is isomorphic to the full subcategor;z %, of ‘61,. consisting of spa?ces of the
form Xx R., X a compactum. This gives a partial answer to Ball’s ques'no‘n
mentioned above. In the second part of the paper we shall invest‘lgate a characterlst;c
property of a pointed FANR in connection with the'categones €y, €, and 6.
We use [12] as general reference for notions and notatxons‘. Throughout the paper
all spaces are metrizable and maps are continuous. If X isa sul?set of a space M,
then we denote by U(X, M) the set of all neighborhoods of X in M. .

2. 4, and %’g . Ball has defined the proper shape categories &, &, and '_?zr
whose objects consist of locally compact spaces and proved that these three categories
are isomorphic to each other. (Cf. [, §§2, 3 and 5, 'T!let.arems 4.6' and 5.3].) We
shall identify the categories 9’;, i=1,2,3, under Ball’s isomorphism and denote

: B
it by %,.
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