Generalized Ehrenfeucht games
by

Martin Weese * (Berlin)

Abstract. Ehrenfeucht games give a necessary and sufficient condition for two structures to
be clementary equivalent. Many generalizations of Ehrenfeucht games to nonelementary languages
are known. In this article we show that for each language with Lindstrom quantifiers there exists
a corresponding game. This game gives a sufficient condition for two structures to be equivalent
with respect to the language with Lindstrdém quantifiers. In case of monotone quantifiers we also
get a necessary condition.

In 1954 Fraissé [6] developed an algebraic criterion for elementary equivalence
of two structures. In 1961 Ehrenfeucht [4] formulated this criterion in game theoretic
terms. Since that time this criterion received many generalizations to nonelementary
languages, for instance to infinitary languages by Karp [11] and Benda [2], to lan-
guages with cardinality quantifiers by Lipner [18], Vinner [29], Brown [3]and Slomson
[27], to languages with Malitz quantifier by Badger [1], to languages with Henkin
quantifier by Krynicki [13], to monadic monotone quantifiers by Krawczyk and
Krynicki [12] and Makowsky and Tulipani [23]; to higher order languages by
Le Tourneau [15], Tenney [28] and Hauschild [9]; to topological languages by
Ziegler [31], to positive and negative languages by Makowsky and Shelah [21], to
stationary logic by Makowsky [20].

Hanf [8] gave a useful new formulation of the criterion. Lindstrém [17] showed,
that the criterion is essential for characterization of elementary languages. The
criterion was used to get decidability results, see for instance Liuchli and Leonard
[14], Slomson [27], Tenney [28], Vinner [29], Weese [30].

In this article we show how the criterion can be generalized to languages with
Lindstrém quantifiers.

§ 1. Notations. All languages we consider are languages with only relational and
constant symbols as nonlogical symbols. L always denotes a first order language.
Let & be any language. Then Form (%) denotes the class of all formulas of & and
Sent (%) denotes the class of all sentences of ¥. Mod (%) denotes the class of all
structures for %. Suppose % has the relational symbols R, (i <«) and constant symbols

* 1 like to thank Miss Ingrid Schiemann for finding out some mistakes in a first draft.
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¢; (i<p). Then = = {(n;: i<a), B is the type of &, if for each i<a, n, is the arity
of R;. The type of & is denoted by . If v is any similarity type, then L, denotes
the corresponding first order language L with ;= 7. The type v = Lnyri<ay, By is
simple if B = 0; then we also write {n;: i<o) instead of {{n;: i<a),0).

A sequence @ will be a function from an ordinal 1h(a), and its ith element will be
a; = a(i). We write ae A if for each i<1h(a), a(i) e 4.

Let ¢ be any formula; then ¢° denotes ¢ and ¢! denotes 1. When writing

@(%) we always mean that all free variables of ¢(¥) occur in X.
Let A e Mod(¥), ¢ (%) e Form(¥). Then Rel¥p denotes the set

{ae|¥: Ak o@}.
Vo ox# e

i<Ih(x)'

£y stands for

§ 2. Preliminaries. In 1966 Lindstrdm [16] introduced a very general concept
of generalized quantifiers. Let L be any elementary language, © = {#g, ..., 1)
a simple finite type. A generalized (indetermined) quantifier Q of type 7 is a logical
operation which binds some variables and makes a formula out of m other formulas.
More precisely, if X;, W (i<m,lh(¥) = n;) are sequences of distinct variables,
@{X;, W) (i<m) are formulas, then

= Q)—CD ’_‘m—1[‘Po, sera (pm—-l]

is a formula. We also write 0% [¢,: i<m] or Q%[@] for x. The free variables of y are
those variables which are free in some ¢; (i <m) and do not occur in X; thus they are
from W. We set 1h(Q) = 3 n; and sc Q = Ih(X) = m.

i<m

L(Q) denotes the language that we get from L by adding the quantifier Q.
Form (L(Q)) is the least class F such that

(i) all atomic formulas are in F;

(i) if @, Y € F, then ¢ Ay, 7@€ F;

(iii) if @ € F, x is any variable, then Jxo e F;

(iv) if %; (f<m), w are sequences of distinct variables, Q is of type (Jh(X,): z<m>,

@(%;, W) e F for each i<m, then QX[@]eF.

Sent(L(Q)) is the set of all ¢ € Form(L(Q)) without free variables.

Now let K be a class of structures of type 7, closed under isomorphism,
WA eMod(L), ae|¥|, Ih@) = IL(w). Then we set

ke OX[F1(@ T U], Ry, ooy Ryed € K,

where

R, = {b: kg b,a)} for each i<m.

Then X gives an interpretation for Q. A generalized quantifier 0 with an interpret-
ation K is denoted by Qg and is called determined. If Q is a determined generalized
quantifier, then the corresponding class of algebras giving the interpretation is de-
noted by K,. We also write % F Qx%[@] instead of A kx OX[5].

icm
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Let {Q;: i eI} bea set of generalized indetermined quantifiers, #° = {K;:iel}
a family. of interpretations. Then we define L{Q;: ie I}, form(L{Q;: iel}) and
Fy analogous to the above definitions. We make the following convention:

If {Q;: ie I} is a set of generalized quantifiers, then for each i e J Q; has the
type {Mo,is -ovs M1,

We give some examples of special generalized quantifiers:

1. Let © =<1}, K; = {{4,P): P<d,P +# @}. Then Qg can be identified
with 3.

2. Lett = (1), K5 = {(A4,P): Pc A, cardP> 8,}. Then Qg can be identified
with Q,.

3. Let 1=(1,1), K3 ={(4,Py,P): Pycd, P,cd, cardP, = cardP,}.
Then Qf, can be identified with the Hirtig quantifier I (see [7]).

4. Let v = (1, 1), Ky = {4, Py, P,): Py A, P, =4, card Py<cardP,}. Then
Og, can be identified with the Rescher quantifier R (see [24]).

5. Let © = (n), K5" = {(4, P): Pc A", there is Sc 4 with S"<P and cardS
24,}. Then Qg..n can be identified with the Malitz quantifier Q% (see [19]).

6. Let =<2}, Ks= {{4, P): Pis a well-ordering of A}. O, is denoted by Q™.

7. Let © = (2>, K7 = {{4,P): PcA? P is an equivalence with at least x,
equivalence classes}. The quantifier Qy., denoted by QF, was first introduced by
Feferman [5].

8. Let © = (2), K = {{4,P): P=A® P is a linear order of cofinality &,}.
The quantifier Qg,., denoted by Qg, was first introduced by Shelah [26].

9. Let ©=<{m+ny, Kg" = {{4,P): PcA™", there is Y=A" such that
card Y88y and

on:---’ yn_lP(E,y)H(HieY)P(f,i)].

The quantifier Qg,m.n, denoted by QP was introduced in [22].

10. Let = = {2), Kyo = {{4, P): Pc4% P is a dense linear ordering with
a countable dense subset}. The quantifier Qg,,, denoted by 0P, was introduced
in [22].

11, Let 7 = (4, K,; = {{4, P): P 4* there are FS 4%, GS A” such that F,
G are functions from 4 in 4 and Fx GEP}. Q,, can be identified with the Henkin
quantifier Qp (see [10]).

Let L be an elementary language, {Q;: i€ I} a set of generalized quant1ﬁers
We define by induction a function qr: Form(L{Q;: ie I})—  as follows:

X1 [A g ..

qre = 0, if ¢ is atomic;

qarie = qro;

qre Ay = max{qro, qri};

qridxp = qro+1;

qr 0%[p] = max{qre;: i<lh(@}+1.
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We define an equivalence relation = on Form(L{Q,: ieI}) as follows:
@ (%) = Y(x) iff for any 2 e Mod(L), any interpretation %" of {Q;: ieI} and
any 4 e |¥] with 1h(@) = 1h(®), W Ey @@ iff U ky P (8).
Let L be a language with only a finite number of relational and constant symbols
and let m and n be natural numbers. Then it is easy to see that there is a finite set
dcForm(L{Q;: ieI}) such that for any ¢ e Form(L{Q,: ieI}) with qro<m
and the free variables of ¢ are among {v;: i<n}, there is Y € & with ¢ = . Further
on it is also easy to see that there is a recursive function &: 2w — @ such that for
each m, n there is a set @ with the above properties and card P<e(m, n).

§ 3. Main results. Let L be any elementary language, %, B e Mod (L), {Q;:ie I}
a set of generalized quantifiers, ', = {K;: iel}, #, = {K: ie I} interpretations
of {Q;: ieI}, rn a natural number. We define

(1) U¥ =" if for any ¢eSent(L{Q;: iel} with qro<n, Wky, ¢ iff

B Ey, 03
(2 A ~, "B if there is a sequence I with Ih(I) = n+1 such that for any
i<n,

(i) I'; is a set of partial isomorphisms between % and B and e I'y;

(i) if i<n, ¥el;, jel, &, eK,’, {8, = |2, then there exists &, e K7
with: [R,] = |B], for each I<m; (= scQ)) and each d € |B] with Ih(d) = n;
there exists Ze || with 1h(2) = Ih(d) such that e R} iff de R} and
C U {(c, d,): m<m}elq;

(iii) if i<n, €¥el,, jel, ], er, [KR,] = |B], then there exists &, eKj
with: I&;] = ||, for each I<m; and each Ce|¥| with 1h(¢) = n,; there
exists de|B| with Ih{d) = Ih(c) such that ¢e le iff d ele and
¢v {(Cm, dm) m<nl1} EI‘x+1=

@iv) if i<n, € e I';, c € | Y|, then there exists d e |5B] such that € L {(c, d)}
€liy;

(v) ifi<n, ¥ €T';, de B, then there exists ¢ e || such that ¥ U {(c, d)}
€ F|+1'

3 uh ;,,"’ *B if there is a sequence I' with Th(I') = n+1 such that for any
i<n,
(i) I'; is a set of partial isomorphisms between 2 and B and Fe FO;

(i) if i<n, €Ty, jel, &, eK‘, [&,] = |2 then there exists S\ZGKJ
with: |R,| = |B], for each /<m; and each de|B| with Ih(d) = n,; and
d e RY3 there exists ¢e [2] with 1h(?) = [h(d), e R and ¥ U {(cy d,):
m<n el yy; :

(ii) if i<n, ¥ely, jel, K, ek , [K,] = B[, then there exists K, eK1
with: |§;| = |¥], for each I<m; and each e |A| with Th(2) = n,; and
Ze R} there exists d e |B| with lh(d) =1h(@), de R% and ¢ U {(c
m<n;}el,y;

ms m)
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(v) if i<n, ¥ e I';, c € ||, then there exists d & |8 such that ¥ U {(c, d)}
el
() if i<n, € e I';, d e |B), then there exists c ¢ |] such that ¢ U {(c, 4)}
el
We write
¥t = 23 (UH ~ g, QI ~ ¥ respectively)
if
Wt =, P2l (UF ~, T2, Dlad ';;,,“”!B respectively) for any n<ow.

TusoreM 1. Let L be any elementary language, A, B e Mod(L), {Q;: ieI}
a set of generalized quantifiers, A\, A", interpretations of {Q;: ie I}. Then, for
any n, if )
Xt~ BB, then A=, @,

Proof. Weassume without loss of generality that 3 e {Q,: i e I} and is standard
interpreted. Let I' be as in (2). We show:

Claim. For each k<n, ¥ = {(a;,b): I<Ih(¥)} with ¥el,_;, we have

<Q[a E>Ml Ek%2<%: E)
with
a = <a; i<lh(@)), b =(b,;: i<lh(®).

Let k& = 0. Then the claim follows immediately from the definition of I'. Suppose
the claim is proved for some k<n. We show that the claim is true for k+1 too.
Suppose not. Then there are

% = {(a;, b): I<Ih(®)} € I'yp—y  and  x(Wg, ..., Winy-1 € From(L{Q;: i e I})

with qry = k+1 such that % k.., x(@) and B ky, ~1x(b). Without loss of generality
we assume that y = Q%[§] for some Qe {Q;: iel}. Let & ={|¥U|, R with
In(R') = scQ and R} = {&: Wk @, @)} for any i<scQ. Then K, €K,. Let
R, =¢B[, B be as described in (2)(i) and let &} =(|B|, R*) with Rf
= {d: Bk (d, B} for any i<scQ. Then {% ¢ K and thus &, % K3. Thus there
are j<scQ and de|B| such that

) HERJ and d ¢ R} or

(i) d¢ R} and d e R}.

In clthcx of the two cases there cannot be a e |2 with & € R} G iff d ER and

(U, a0 =, 7B, 57d) .
Thus the theorem is proved.
Let Q be a determined quantifier. Q is monotone if K, satisfies the following
condition:
if 9 = (|, Ry e Ky, U = /U, R*> and R,SR{ for each i<scQ, then
ke K,.
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When we have to do only with monotone quantifiers, then we can weaken the
assumptions of Theorem 1:

THEOREM 2. Let L ‘be an elementary language, U, B e Mod(L), {Q;: iel}
a set of generalized quantifiers, Ay, A , interpretations of {Q;: i€ I} such that each
quantifier is monotone- under its interpretation. Then for any n,

. A x Hy . A
if U~ B, then W=, B

Proof. We assume without loss of generality that 3 € {Q;: ie I} and is standard
interpreted. (Remember that 3 is a monotone quantifier.)
Let I be as described in (3). We show:

Claim. For each k<n, % = {(a;, b): I<Ih(¥)} with ¥eTI,_,, we have

U@y =758, by
with
@ =<{a; i<lh(®)), b =<b; i<ih(®).
Let k = 0. Then the claim follows immediately from the definition of I'. Suppose
now that the claim is proved for some k<n. We show that the claim is true for
k+1 too. Suppose not. Then there are

€ = {(ay,b): I<In(®)} T,y and x(wo, ..., Win)-1) € Form(L{Q;: ieI})
with qry = k+1 such that

Wky, x@ and B Fy, 13(b).
Without loss of generality we assume that y = OX[@] for some Qe {Q;: iel}.

Let & =%, R*) with R} = {&: Uk o, c,d)} for each i<scQ. Then
8, € K5, Let &, =B, R?) be as described in (3)(ii) and let &% = (|B), R*
with R} = {d: B F ¢,(d, b)} for each i<scQ. Then 8} ¢ K3. Now it follows from
the monotony of Q that there are j<scQ and d € |B| such that d € R} and d ¢ R}.
Thus there cannot be ¢e || with EER}- such that (91, 7°&)*" =, ¥%B, ™)
and the theorem is proved.

Now we are looking for conditions that are sufficient to prove the inverse of
Theorem 1:

THEOREM 3. Let L be an elementary language with only a finite number of re-
lational and constant symbols, {Q,: ie I} a finite set of quantifiers, 'y, A , interpret-
ations of {Q;: ie I} such that each quantifier is monotone. Then there is a recursive
function F: @ — w such that for each U, B e Mod(L) and each n,

if A= Fiy 18, then U ~,%B,

Proof. Let /, = max{lhQ;: ie I} and let &: w?>— o be a recursive function
with: for each m,n there is a set =Form(L{Q;: ieI}) with card d<e(m,n)
such that for each ¢ € Form(L{Q;: i e I'}) with qr o <m and the free variables among
{vg5 +1e» Uy—1}, there is i € & with ¢ = 1. To prove the theorem it is enough to show
for any natural number /; the following:

icm

Generalized Ehrenfeucht games 109

if ae|¥|, be|B|, h(@ = @) =1,
k¥ = k_25(k;lﬂ+11).2lu:~lo+k+l
U, 3" =, ¥%(B, by,
then

(i) for each Qe {Q;: iel}, &, e K} with K| = |2, there exists &, e K2
with |R,] = |B| such that for each j,<scQ and each d € |B| with Ih(d) = ny, there
exists € e[| with 1h(¢) = ;, such that e R}, iff de R, and

U, 578% =, %48, 5 ;

(i) for each Qe {Q;: iel}, 8, e Ky with |K,| = |B|, there exists &, eKé.
with [&,| = || such that for each j,<scQ and each ¢ e || with [h(é) = n;, there
exists d e |B| with Ih(d) = ny, such that ¢e R} iff de R}, and

(U, 3" =, 5B, 57 ;
(iii) for each c e || there exists d e |B| such that
U, 7)™ =, KB, B7d) ;
(iv) for each de [B| there exists ¢ e || such that
(U, T)*t =, *%B, 5°d> .
We only show (i), the other cases are similar. For each /, let G(!) be the set of all
functions g €2 such that

® g9G.0) =g(, D for all 1, j<l;

(ii) g7, i) = 0 for all i</;

(iii) for all i,j, k<1, if g(i,j) = g(j, k) = 0, then g(i, k) = 0.
Let 1h(X) = I, g € G(I); we set

Aqld® = N\ 6= 5.

Let Qe {0Q;: i}, &, € Kj with K] = |%]. For each i<m let &; = {9, ;: j<k;}
be a set of formulas such that for each ¢ € Form(L{Q;: i eI}) with qre <k, the
free variables of ¢ are among {Xg, ..., Xy—1s Wo, s Wy—1}, there exists ¥ e &,
with ¢ = 1. For each fe "2 let

OLLSI® = A oulE ay®;
<kt
Jy = {fe"2: R} A Rel"@[1,f] # B}
and

M(f) = {g e G(n): Wk A%(Aglgl® A R A D[, S 1)} -
Let

Y= /\ /\ /\(J)axi,f,g([i.q[g](ii,f,g))AQ[i7f](3_ci,f,g/\

i<m fel; geM;i
AQIL OLf1Gpdv N\ N Fi# Fupgt i<m).
fen Seli geMi(f)
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It follows from the monotony of @ that o E . An easy computation shows that
qriy<k*. Thus B k. Now let by, (i<m, feJ;, geM{(f)) be such that

BE A A A AalglBir) AP f1(i s A

i<m feli geMi(f)
AQFLN @I f1FA N\ A\ Fi s bipgr i<m].
fedy Sel geMi(f)

We set &, = {|B|, R*)> with
Rf ={de|B|: BF ,\/, ANATCO T /\”a # by s}

el geM
for each i<m. Then it follows immediately from the definition of i, that for each
i<m and each de|B| with 1h(d) = n;, there is ¢ & |¥U| with 1h(Z) = »; such that
Ze R} iff de R} and

(@, 70" =, B, 50 .

Thus the theorem is proved.

§ 4. Applications. It is possible to formulate the results of § 3 in game theoretic
terms. Let L be an elementary language, 2, B e Mod (L), {Q;: ie I} a set of general-
ized quantifiers, J",, A, interpretations of {Q;: ieI}. Then for any natural
number #, the game G(n, U, B, A, A',) is a game with two players, player I and
player II and » moves. The ith move goes as follows: player I begins and at first
decides whether it will be an 7 -move or a Q-move. In case of an Z-move player I
chooses one of the two structures, for instance %, and in this structure an element ;.
After that player II chooses the other structure, in our case B, and in this structure
an element b;. Now the ith move is finished; the set 3; = {(a;, b,)} is the result
of the ith move. In case of a Q-move player I chooses some j e I, one of the two
structures, for instance B, and a structure &, eKé , With [R,] = [B[. Now player II
chooses the other structure, in our case 2, and a structure &, Ké , with [R,] = 20].
After that player I chooses some k<m; and a € || with 1h(a) = ;- That means,
player I is now in the structure which was chosen by player II. At least player II
chooses be B with 1h(B) = n,; such that Ze R}, iff be R} ;. Now the ith move
is finished; the set 3; = {(a,, b): I<nm,;} is the result of the ith move. After the
(n—1)-th move the game is finished.

The game H(n, W, B, £y, A ;) bas the same rules as the game

G, W, B, Ay, H5)

with the only distinction that the sequences @ and b have to be such that de Ry,
and be RY,.
Player II wins the game if |) 3, is a partial isomorphism between 90
i<n
and B. If player II can always win the game G(n, A, B, X 154 ;) (the game
H(n, U, B, Ay, A ,)), then we write
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U 2, PBEAT o, F1) .
Now we have immediately:

THEOREM 4. Let L be an elementary language, N, B e Mod(L), {Q;: ieI} a set
of generalized quantifiers, Ay, A, interpretations of {Q;: ie I}, n a natural number.
Then

@) A ~, B g qt

@) W ~, B gy g

w H

7B
~ ¥,

The H-games can be applied to the quantifiers Q,, QF and Q. In [18] Lipner
describes the corresponding game for Q, and in [1] Badger describes the correspond-
ing game for Q. In [12] a game is described for a quantifier closely related to the
Rescher quantifier R. '

Let L be an elementary language, 2 € Mod(L), {Q;: i€ I} a set of generalized
quantifiers, & an interpretation of {Q;: iel}. Let B = (|%|, R) be a structure
with finite 1h(R). B is definable in A with respect to A", if for each j<Ih(R) there
are de || and ¢(X, W) e Form(L{Q;: ieI}) such that

R, ={be|¥: Ak o(F,a)}.

Let 94(20) be the set of all structures B which are definable in 2 with respect to #".
It is easy to see that Theorem 4 remains valid if we replace in the games the classes
Kj,, K5, (jelI) by any classes Kj', K47 with

Kg,n Dy (MSK) <Ky, and K 0Dy (WK S KG,

(see also [25]). Sometimes these restrictions are useful for applications.

It is strightforeward to generalize the results of the article to languages
L,,({Q:: ieI}) (where A\®, \/® are allowed for sets of formulas @ with card
®<x and X, YXp are allowed for sequences of quantifiers with 1h(X)<2). The
corresponding results for languages L, ; are contained in [2] and [L11].
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Dimension of non-normal spaces
by

Keio Nagami (Matsuyama)

Abstract. Let X be a general topological space and dim X the covering dimension of X due
to Katetov defined by means of finite cozero covers. If V' is a cozero set of X, then dim V'<dim X.
If {Vi} is a countable cozero cover of X, then dimX = sup dim V;. Several applications of the
subset and sum theorems thus stated are also given.

0. Introduction. Let X be a topological space. Then dim X<# if each finite
cozero cover of X is refined by a finite cozero cover of order <n+1. This definition
of covering dimension for general topological spaces stems from Katétov [4] and
coincides with the usual definition of covering dimension for normal spaces. There
has been a great amount of studies for the dimension of normal spaces in many
aspects. On the contrary we have only a few for non-normal case. Especially, con-
cerning subset and sum theorems we have had nothing with the exception of those
due to Katétov [4]. Sections 1 and 2 below constitute the body of the paper where
subset and sum theorems for non-normal spaces will respectively be given. In Sections
3 and 4 we give product and inverse limiting theorems for non-normal or normal
spaces which will refine known results. In this paper all spaces are non-empty
topological spaces and maps are continuous.

1. Subset theorem.

1.1. THEOREM. Let V be a cozero set of a space X. Then dimP<dimX.

Proof. When dim X is infinite the inequality is clear. Consider the case when
dimX = n. Let % = {U,: a e 4} be an arbitrary finite cozero cover of V. It is to be
noted that each U, is cozero in X since ¥ is cozero in X. Let f be an element of
C(X,I) with V= {xe X: f(x)>0}. Set

V,={xeX: fx)>1i}, F,={xeX:f(x)=1/i}.
=<
Then V' = () ¥, and V,cF,=V;,, for each i. Set
i=1
Wy = {Wiy=U,u(X~F,): aed}.

Then %, is a finite cozero cover of X. Let %y = {Uy,: a€ A} be a cozero cover
of X such that U;,= W;, for each o e 4 and order #;<n+1. Set

Wy = {Wa = (U0 V2) O (U= Fp) v (X Fa): wed}.
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