On homotopy types of 2-dimensional polyhedra
by

Karol Borsuk and Igﬁamurczyk! (Warszawa)

Abstract. To every polyhedron of dimension <2 a polyhedron with the same homotopy
type and with an especially regular structure is assigned. The topological type of this last polyhedron
is determined by a numerical scheme & and it is shown that for every given scheme & there exist
polyhedra of dimension <2 with & as their scheme.

1. Introduction. The problem to classify all polyhedra of dimension <2 from
the point of view of their homotopy properties has been studied by many authors
(see [2] and [4] and the there given bibliography). In those studies an important role
of the fundamental group for this problem has been exhibited. In our approach we
limit ourselves to very elementary geometric consideration with the aim to find for
a given polyhedron of dimension <2 a polyhedron of the same homotopy type
(i.e. of the same shape), but with an especially regular structure. Thus our aim is
closely related to the problem to find a reasonable representative of a given shape
(compare [1], p. 357). We give also a numerical scheme which allows us to determine
the topological type of each polyhedron which has a such regular structure.

‘We wish to thank J. Jaworowski, M. Moszyr’xska, J. Nowak and J, E. West for
valuable remarks and suggestions.

2. Notations. By polyhedra we understand here always polyhedra of dimension
<2, i.e. compacta for which there exists a finite triangulation T consisting of (curvi-
linear) simplexes of dimensions <2. Thus T consists of vertices, edges (i.e. 1-di-
mensional simplexes) and triangles (i.e. 2-dimensional simplexes). An edge L is
said to be an n-edge if there exist in T exactly n triangles adjacent to L. In particular,
0-cdges will be said free, 1-edges — sharp, 2-edges — smooth and n-edges with
n>2 will be said edges of ramification.

By a subpolyhedron P’ of a polyhedron P we understand any set which is the
union of some simplexes of any triangulation of P. In the sequel we need the following
well known facts:

.1) If P’ is a subpolyhedron of a polyhedron P, then the quotient-space PP is
a polyhedron.
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If P! is a subpolyhedron of a polyhedron P, then the closure of each component
of P\P' is a polyhedron.

(2.2

By a simple graph of a triangulation T, we understand either a set congsisting
of only one vertex of T, or a set with trivial shape which is the union of some edges
of T. Let us observe that

@3)

If T is a triangulation of a connected polyhedron, then there exists a simple
graph of T containing all vertices of T.

By 2 bouguet we understand here always a finite bouquet, i.e. a pointed continuum
' (X, ¢) which is the union of a finite number of subcontinua Xy, ..., X; such that
X, n X; = (¢) for i # j. The continua X3, ..., X, are said to be the leaves and the
point ¢ — the center of this bouquet. By a degenerate bouguet, we understand the
singleton ().

3. ‘Surfaces. By surfaces we understand continua S # @ such that for every
point x e S there exists a neighborhood of x in S homeomorphic to the plane E2.
It is well known that every surface is a polyhedron nad that two surfaces § and §’
are homeomorphic if and only if

2i(S) =p:i(S)  and  py(S) = paAS).
where py(X) and p,(X) denote the first and the second Betti numbers of a space X.
Any non-negative integer can be the value of p,(S), but the value of p,(S) is either 1

@if S is orientable), or 0 (if S is non-orientable).
Let us recall the following well-known facts:

(3.1) If Dis a disk lying on a surface S, then there is a disk D'<S containing D
in its interior.

(32) If D and D' are two disks lying on two homeomorphic surfaces S and S’
respectively, then for every homeomorphism h: D — D' there is a homeo-
morphism M h: S~ S8’ such that i(x) = h(x) for every point x & D.

(3.3) Let 1:51 » wr, Dy be oriented and disjoint one to another disks lying on a surface S.

If S is non-orientable, assume that the orientations of [5i are arbitrary, but
if S is orientable, assume that the orientations of D, are all induced by a given
orientation of S. In both cases, (of non-orientable or orientable surface) there
exists in S an oriented disk D containing all Di in its interior and oriented
in the same sense as all D;.

Consider now a surface S, a point ¢ e S and two oriented disks ﬁ1, 52 lying
on S and containing ¢ in their interiors. The orientation of 51 is said to be the same
as the orientation of D, if there exists an oriented disk D lying in the interiors of D,
and of D, and which is oriented in the same sense as J, and D,. It is clear that the
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collection of all oriented disks on S containing ¢ in their interiors decomposes into

two classes, where two such oriented disks belong to the same class if and only if they
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have the same orientation. If we select one of those classes, then we give to S a local
orientation at the point c.

4. Rosettes on surfaces. By a rosette Z lying on a surface S we understand a bou-
quet with center ¢e.S and with k leaves Dy, ..., D, which are disks lying on S.
The singleton (c) will be said to be a rosette with center ce S and with O leaves.
If D; denotes the boundary of D;, then the curves D, ..., D, constitute a bouquet Z
with center ¢, called the boundary of the rosette Z. The set Z = Z~Z is said to be the
interior of Z.

Using proposition (3.1), one shows easily the following proposition:

(4.1)  Let Z be a rosette lying on a surface S. Then for every neighborhood U of Z

(in S) there is a disk DcU containing Z in its interior.

If Z is a rosette with center ¢ and leaves Dy, ..., D, lying on a surface S and
if D<= S'is a disk containing Z in its interior, then a local orientation of S at ¢ induces
an orientation D of D and consequently also an orientation D, of each disk D;.
By an oriented rosette Z (011 S) we understand a rosette Z in which the leaves are
given in a fixed order and their orientations are induced by a fixed local orientation
of S at ¢

Consider now a pair (C, (ay, ..., ak)) consisting of a simple closed curve C and
of an ordered system of k different points lying on C. Let (C ’, (a%, ..., a;)) be another
pair consisting of another simple closed curve C’ and of another ordered system
of k different points lying on C’. Let us say that (a,, ..., @) has on C the same
position as (ay, ..., a;) on C’ if there exists a homeomorphism #: C— C’ such
that

ha)=a; for i=1,.,k.

Let us say that two pairs (C, (ay, ..., 4)) and (C’, (a1, ..., ap) belong to the
same class if and only if the position of (a,, ..., @) on C is the same as the position
of (d}, ..., ay) on C’. One shows ecasily that the number o (k) of all such classes is
given by the formulas:

c0)=0(1)=0(2) =1
and

o'(k) = k>2.

Thus to every class of pairs (C, (y, ..., 4)) one can assign in one-fo-one manner
an mdux w cqual to one of the numbers 1, ..., o(k).

If Z is an oriented rosctte with ccnter c lymg on a surface S, then Z is given by
the ordered system of oriented disks .D1 y Dk, for which the orientations are
induced by a given local orientation of S at c. Consxder a disk DS containing the
point ¢ in its interior and such that no disk .D (i=1,..,k) is contained in D.
Let C denote thc boundary of D and C, denote the orlented boundary of D;. Then
forevery i = ., k there is a point a; € C which belongs to C; and is the endpoint
of an arc I; st’xrtmg from ¢, lymg on the boundary C;of D;, oriented by the orien-

J—-1! if
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tation of €, and such that the interior of L, lies in the interior of D. In this way we
assing to Z and ordered system (a; , ..., @) of different points lying on the boundary C
of the disk D.

Ci

Let Z’ be another oriented rosette with center ¢’ and with the ordered system
of oriented leaves [, ..., D; lying on another surface S’ locally oriented at ¢'.
As previously, we select a disk D’<S’ containing ¢’ in its interior and such that
no disk D{ is contained in D', and we assign to Z' and ordered system of points
(ay, ..., ap) lying on the boundary C’ of the disk D’. We say that the position of the
oriented rosette Z' on S’ is the same as the position of the oriented rosette Z on §
if the position of (af, ..., a;) on C’ is the same as the position of (ay, ..., @) on C.
One sees easily that for this relation the choice of the local orientations of S (at ¢)
and of S’ (at ¢"), and also the choice of the disks D and D' are immaterial.

Since the position of (ay, ..., a,) on C can be determined by a coefficient w
(with value equal to one of the numbers 1, ..., o(k)), we infer that also the position
of an oriented rosette Z lying on a surface § is determined by the coefficient w.

Consider a disk £ < S containing the oriented rosette Z in its interior and a disk
Des’ containing Z' in its interior. One sees easily that

(4.2)  If the position of Z on S is the same as the position of Z' on ', then for every
homeomorphism h: Z— Z' which maps B, onto D} for i =1, ..., k, there
exists a homeomorphism h: D — D' such that h(x) = h (x) for every point x
of Z. .

5. Pinched surfaces. By a pinched surface we understand a continuum R which is
obtained from a surface S by the identification of a finite number of its points.
If y is the number of the identified points, then R is said to be an y-pinched surface.
Hence the 1-pinched surfaces are the same as surfaces. The point of R obtained by
the identification of y points of S is said to be the peak of R. It is uniquely defined
only for y-pinched surfaces with y> 1. By (2.1), every pinched surface is a polyhedron.

Observe that the number y is topologically determined by the y-pinched sur-
face R. In order to see this, denote for every point x € R, by n(x) the minimal integer
such that for every sufficiently small neighborhood U (in R) of x the set UN(x)
contains at least n(x) components. It is clear that y = Supn(x). Thus y is determined

xeR

by the topological type of R. We write y = y(R).
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"One sees easily that
(5.1) PiR) = py(S)+y=1 and  py(R) = py(S).
Since the topological type of S is determined by two integers:
w=pS) and B = p,(S),

and since p;(S) = p(R)—y(R)+1 and P2(S) = py(R), we infer that the topological
type of R determines the topological type of the surface S. Morcover, the triplet
[, B, 7], where o = p((S), B = p,(S) and ? = ?(R) determines the topological
type of the pinched surface R. Observe that  is an arbitrary non-negative integer,
Bis0or1andyisan arbitrary natural number. If B = 0, then the pinched surface R
is said to be nom-orientable, and if § = 1, then R is said to be orientable.

(5.2) LeMMA. The pinched surfaces are the same as connected polyhedra P+D for
which all points, except at most one, have neighborhoods homeomorphic to the plane E>.

Proof. Itsuffices to show thatif T'is a triangulation of a connected polyhedron P
and if there is a point ¢ & P such that for every point x e P\(c) there is a neighborhood
of x in P homeomorphic to E?, then P is a pinched surface.

Let M (c) denote the union of all simplexes of T' containing the point ¢ and let
N(c) denote the union of all other simplexes of 7. Setting K(c) = M(c) n N(c),
one sees easily — because each point x K(c) has a neighborhood in P homeomorphic
to E? — that every component of K(c) is a simple closed curve. It follows that the
set M(c)\(¢) has a finite number of components M, ..., M,. By a compactification
of M; by one point ¢; (where ¢; # ¢; for i # j), one gets a continuum M; such that
every point of the set

P=Neoumu.. v,

has a neighborhood homeomorphic to £2. Hence P is a surface and it is clear that
by the identification of points ¢y, ..., ¢, one gets from P a set homeomorphic to P.
Hence P is a y-pinched surface and the proof of Lemma (5.2) is finished.

The formula (5.1) implies that y<p,(R)+1. It follows that

(5:3)  For every natural number n the collection of all topological types of pinched
surfaces R satisfving the condition p,(R)<n is finite.

6. Roscttes on pinched surfaces. Let ¢ be the peak of a y-pinched surface R.
By a rosette on R we understand a bouquet Z< R with center ¢ and with k leaves
Dy, ..., D, which are disks containing ¢ on their boundaries. Setting C; = D;, one
obtains a bouquet consisting of k simple closed curves Cy, ..., C, lying on R. The
point ¢ is the center of this bouquet, which we call the boundary of the rosette Z
and we denote it by Z. The set Z = Z\Z is said to be the interior of Z.

If R is obtained from a surface §' by the identification of points ¢y, ..., ¢, € S,
then to every leaf D, of Z corresponds a disk D,= .S which passes onto D; by this
identification. It is clear that for every u = 1, ...,y the disks D, containing the

4=~ Fundamenta Mathematicae CIX
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point ¢, constitute a rosette Z, on S with center ¢,; several of those rosettes may
degenerate to singletons (c,). Moreover

6.1) Z,nZ,=@ for p#v.

Using (4.1), we infer by (6.1) that there exist on S disks D¥, ..., D;’,’ such that
6.2) Z, lies in the interior of Di for p=1,..,7,
(6.3) D¥nD} =0 for p#v.

A

S D ;

As a generalization of the notion of the oriented rosette lying on a surface, let
us assign to a rosette Z with center ¢ lying on a pinched surface R (with peak ¢)
an oriented rosette Z on R, defined as follows:

The pinched surface R is obtained from a surface . (which is topologically
determined by R) by the identification (with the peak ¢ of R) of y points ¢, , ..., c,eS.
If Dy, ..., D, are leaves of Z given in a fixed order, then the corresponding disks
Dy, .., D, on § are given also in a fixed order and this order induces (for every
#=1,..,7) an order of the leaves of the rosette Z,=S with center ¢, (we preserve
here the previous notations).

Consider now a local orientation of the surface S at the point c,. This local
orientation induces an orientation of every disk lying on S and containing ¢,
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in its interior. In particular, it induces and orientation D of the disk D} =S (defined
above) containing Z,, in its interior, and consequently it induces an orientation of all
leaves of the rosette Z,. If the local orientation of § at ¢, is given for every
u=1,..,7 then we obtain in this way orientations of all leaves D;, hence also
orientations of the leaves D, of the rosette Z.

Now let us distinguish two cases:

If R (hence also S) is non-orientable, then we understand by an oriented
rosette Z the rosette Z together with a fixed order of its leaves and their orientations
induced by arbitrarily given local orientations of S at the points ¢y, ..., ¢,. Observe
that thc_’so oriented and ordered leaves D; belonging to Z, constitute an oriented
rosette Z, on S with center c,. .

1If R (hence also S) is orientable, then the definition of Z is similar, only
we assume that the local orientations of S at ¢y, ..., ¢, are all induced by a fixed
orientation of the whole surface S.

By (3.3) in both cases, there exists on S an oriented disk D containing all disks DTL
in its interior, which is oriented in the same sense as the disks ]3:g foru=1,..,7.

It is clear, that in the case y = 1 (i.e. when R = S is a surface), the definition
of the oriented rosette Z is the same as the previous definition of the oriented rosette
on a surface.

Consider now another oriented rosette Z’ with center ¢’ and with the same
number k of otiented leaves given in a fixed order B, ..., Di, lying on another
pinched surface R’, which is homeomorphic to R. Then R’ is obtained from another
surface S’ homeomorphic to S, by the identification (with ¢’) of points ¢y, s cye S
Similarly as to Z, corresponds to 7' a system of y oriented rosettes Z, (4 = 1, ..., V)
on S’ with centers ¢y, Let us say that the position of Z' on R' is the same as thi position
of Z on R if, for every p = 1, ..., 3, the position of the oriented rosette Z, on S’
is the same as the position of Z, on S. . . »

Instead to say that two oriented rosettes Z and Z' have the same positions
on R and on R, we say also that Z and Z' belong to the same class. If k, denotes
the number of leaves of the oriented rosette 2,, on S, then o (k,) (defined in Section 4)
is the number of classes of oriented rosettes with k, leaves lying on arbitrary surfaces.
We infer that the number of classes of oriented rosettes with & leaves lying on a y-
pinched surface is finite and it depends only on k and on y. Let us denote it by o (k, 7).
Thus the position of an oriented rosette with k leaves lying on an y-pinched surface
may be determined by a coefficient o with value equal to one of the numbers
1, .., a(k,y) . .

Consider now a homeomorphism /h: Z—Z’ such that (D) = D; for
i=1,..,k Since R is obtained from S by the identification with ¢ of all poi_nts
Cys ey €y, and R’ is obtained from S by the identification with ¢’ of all points
€iy ., ¢, we infer that there exist two maps

3 Ly
¢: S—R and ¢S —=F
such that ¢(c,) = ¢, ¢'(c;) = ¢’ for p=1,..,7 and that ¢ maps topologically

4
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S\(¢g, ..., ¢,) onto R\(¢) and ¢’ maps topologically S'\(cj, ..., ¢;) onto R'\(¢").
Consequently there exist two maps:
Yo RN(Q) = S\(e1s ey ) ' RIN(E) — S'N(ei, ey €))
such that
Qy(x) = x for every xe R\(c),
o"Y'(x) = x for every xe R'\(c").
-Setting
h(c) =c¢, and h(x) =yhe(x) for xeZ

(O

we get for every u = 1, ..., y a homeomorphism hy: Z,— Z, which maps the oriented
leaves of Z, onto the corresponding oriented leaves of Z,. It follows by (4.2) that
there exists a homeomorphism 71,l of 13:' onto D}* such that

l;u(x) = h,(x) for every point xeZ,.
But the orientation of the disks 5:‘ (for = 1, ..., y) is the same as the orientation
of a disk DS containing all disks Dy in its interior, and the orientation of 1-).,"*

is the same as the orientation of a disk D' S’ containing all D;,* in its interior. One
infers easily that there exists a homeomorphism /: B — B’ such that

71(x) = /;u(x) for every point xeZ,, pu=1,..,y.

Since S and §” are homeomorphic one to the other, we infer by (3.2) that there exists
a homeomorphism A: S— §' such that

B(x) = h(x) for every point xe .
Setting:

) = ¢,
() = o'y (x) for every x e R\(c),

we get a homeomorphism A*: R — R’ such that for every point x & Z\(c) there is
an index u such that i (x) €Z,. Hence :

(x) = 'Ry (x) = (p'izulp(x) = @'hab(xX) = o'W hoy (x) = h(x) .

Thus we have established the following proposition:

(64)  Let Z be an oriented rosette with ordered system 51 N 5k of oriented loaves
lying on a pinc{zed sutface R, and let Z' be another oriented rosette with
ordered system D, ..., D} of oriented leaves lying on another pinched surface R,
which z'.s'qhomeomorp/zic to R. If the position of Z on R is the same as the pos-
z‘tiog of Z '_bon R', then for every homeomorphism h mapping Zonto Z !, so that
WD) = D fori=1, ..,k there exists a homeomorphism h*: R — R’ such
that B¥(x) = h(x) for every x e Z.

icm°®
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7. Reduced and standard triangulations. By a reduced triangulation of a connected

polyhedron P we understand any triangulation T of P satisfying two following
conditions:

(1.1)  No edge of T is sharp.
(7.2)  No edge of T is adjacent to more than 3 triangles of T.

A triangulation T'is said to be standard if itis reduced and if the following con-
dition is satisfied:

(7.3)  The union of all free and of all 3-edges of T is a bouguet of circles.

If a standard triangulation T contains free and also 3-edges, then the center ¢ of
the bouquet C consisting of all free and of all edges of ramification is the union of two
bouquets: The bouquet 4 (called free bouguet of P) which is the union of all free
edges of T, and the bouquet B (called the bouguet of ramification of P) which is
the union of all 3-edges of T.

If T does not contain any free and any 3-edge, then P is a surface and as its
center, we can select any point ¢ e P. Then we set A4 = (¢) and B = (¢). If T does not
contain any free edge, but it contains 3-edges, then we set 4 = (c), where ¢ is the
center of B. If T does not contain any 3-edge, but it contains free edges, then we
set B = (¢), where ¢ is the center of A.

(7.4) Remark. Observe that if a connected polyhedron P has a standard
triangulation, then all its triangulations are standard — because all conditions
(7.1)-(7.3) are topologically invariant. The same concerns reduced triangulations.
Each connected polyhedron with reduced (or with standard) triangulations will be
said to be a reduced (or a standard, respectively) polyhedron.

(7.5) TueoreM. Lvery connected polyhedron P is homotopy equivalent to a standard
polyhedron. '

Proof. By the well known operation of collapsing, we can eliminate all sharp
edges, without changing the homotopy type. Thus we can assume that already the
given triangulation T of P satisfies condition (7.1).

Let Ly, .., L, be all edges of T such that L, is an ni-edge with »;>3 for
i=1,..,k Let us sct

A(T) = n1+”2+--~+71k .

In order to obtain a polyhedron belonging to Sh(P) and satisfyin_g both conditions
(7.1) and (7.2), it suflices to show that if A(T)>0, then there exists a polyhedron
P'eSh(P) with a triangulation T satisfying (7.1) and such that A(T")<A(T).
Consider two triangles 4, # 4, of T adjacent to L,. Let @, b denote t.hc ends (?f L
and let ¢, (for v = I, 2) denote the vertex of 4, opposite to L. Conslder.a point d
lying in the interior of 4,. One sees easily that if we remove from P both triangles 4,
and 4, and if we add five (curvilinear) triangles with vertices abd,‘ acy d, be,d, ac,d
and be, d, with interiors which are disjoint one to the other. a¥nd d1s10-1nt also.to th?
set P\(d, U 4,), then we get from P a polyhedron P’ with the triangulation T
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consisting of all simplexes of T different from 4,, 4, and of five new triangles and
their edges and vertices. It is clear that 7" has no sharp edges and that the edges L,
with i =1, ..., k—1 remain still n~edges in 7", but L, is an (m—1)-cdge in 17,
Since every other edge L of 7" is an n-edge with n<3, we infer that A(T")<A(T).

(&

(4]

Moreover P’ e Sh(P), because if we decompose the triangle 4, with vertices
abd into a family F of parallel segments (two of them reduce to singletons) with one
endpoint on the edge L; and the other — on the union of two other edges of 4,,
then the space of the decomposition of P’ into segments belonging to F and into
singletons is homeomorphic to P. But it is well known (sec [5D), p. 86) that the shape
of P’ is the same as the shape of the decomposition space, hence it is the same as the
shape of P, i.e. P and P’ have the same homotopy type.

By iterating this proceeding, one gets finally a polyhedron P, e Sh(P) with

a triangulation 7' satisfying both conditions (7.1) and (7.2). Thus we have shown
that ,

(7.6)  Every connected polyi,zédron P is homotopy equivalent to a polyhedron Py
with a reduced triangulation T).

Let us add that if one replaces the reduced triangulation T by its barycentric
subdivision, then one gets another reduced triangulation which satisfies the following
condition
(7.7)  Every triangle contains at most one edge of ramification.

Since P is connected, there exists in T, a simple graph J which contains all
vertices of 7. Then P = P,/J is a polyhedron homotopy equivalent to P. By our
construction, to every edge L of 7', corresponds in P either the point ¢ obtained by
the identification of all points of J (if L=J), or a simple closed curve obtained from L
by the identification of its endpoints. It follows that all simple closed curves obtained
in this way from edges of T constitute a bouquet with center ¢. Consequently every
triangulation T of P satisfies condition (7.3), hence P is a standard polyhedron and
the point ¢ is its center. Thus the proof of Theorem (7.5) is finished.

° ©
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(7.8) Remark (due to S. Nowak). Using theorem on extension of a simple
homotopy (see [3], p. 19), one can show that all operations used in the proof of
Theorem (7.5) do not change the simple homotopy type. Consequently Theorem (7.5)
can be reformulated as follows:

For every connected polyhedron (of dimension <2) there is a standard polyhedron
of the same simple homotopy type.

Let us add that the problem if two polyhedra of dimension <2 with the same
shape have always the same simple homotopy type remains open. See [3], p. 81.

8. Wings and their carriers. Let T be a reduced triangulation of a connected poly-
hedron P. Assume that this triangulation satisfies condition (7.7). We know already
that if J is a simple graph in T containing all vertices of T, then the polyhec%ron
P = P/J is a standard representative of Sh(P). Let ¢ denote the point Of. P obtained
by the identification of all points of J, and let 4 be the free bouquet (with cen.ter c)
obtained by this identification from the union of all free edges of 7. Then p is the
union of 4 and of a connected polyhedron P’ which is the union of all sets obtained
by this identification from triangles belonging to T. Let [ = [ (P) denote the number
of leaves of the bouquet 4. It is clear that

8.1) UPY<p,(P) for every standard representative P of Sh(P).

We know already that all edges of ramification of the triangulation T are 3-edges
and that their union is a bouquet B with center ¢. Recall that th.e leaves of B are
obtained by the considered identification from the edges of ramification of the reduced
triangulation T. Let m = m(P) denote the number of leaves of B. Then

B= B u..uUB,, -
where B, is a simple closed curve obtained from an edge L; of Tby‘the identilﬁcz;tlzg
of its endpoints @; and b;. The edge L; is adjacent to exactly three triangles 4;, 47, ;1
of T. By (7.7), all sides of the triangle 43 (v = 1,2, 3), different from L;, are smoot
edges of T. . i

Let us replace the edge L, by three arcs Lf, L] and L? with common end;;qn;
a;, b, and with disjoint interiors, We can assign to every v = 1,'2, 3 ? gyg;;rrlzm
triangle 4% with the boundary consisting of the arc L} anilvof two sxd.cs o1 4 1m o
from LY. Assume that the intericrs of all triangles A4} (where i = L oees

isjoint to t 4% B
v =1, 2,3) are disjoint onc to another and also disjoint to the set P\VL=)1 i91 i- By
1L} 3 become
the identification of a, with b, (recall that a;, b, e J), the arcs Li, L3 and'L, :

i ', B} 2 that all curves B; obtained in this way
simple closed curves Bf, B/ and B and t_m all : Bi ot a tripline
constitute a bouquet B* with center ¢. We may consider B¥ as the resu 2
of the bouquet B. _ o ) o

Since B! is obtained from the segment Lj by the identification of its endpoints a;
and b,;, there is a homeomorphism

¢): Bi— B,
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induced by the homeomorphism of L} onto L, by which the points @; and b; remain
fixed. Let us say that ¢} is a natural homeomorphism of B} onto B;.

Denote by P* the polyhedron obtained from the polyhedron P’ by replacing
in it of each triangle 4} by the triangle 4}. From the intuitive point of view, the
polyhedron P* may be considered as to be obtained from P’ by the cut along the
bouquet B, with preserving its center c. It is clear that every edge of any triangulation
of P* is either smooth or sharp and that the union of all sharp edges is the bou-
quet B*. _

Consider a component G of the set 2*\B*. Then the closure W = G of G is
a polyhedron (by (2.2)) for which the union of all sharp edges (for any triangylation
of W) is the union of some leaves By(G), ..., By (G) of the bouquet B*. Let us
call the polyhedron W obtained in this way the wing of P corresponding to the com-
ponent G of the set P*\B*.

Let us span on the curve B,(G) (for p = 1, ..., k(@) a disk D,(G) so that the
interiors of all such disks are disjoint one to another and also disjoint to W. It is
clear that the set

k(G)
R(G) = Gu U DG
u=1

is a 2-dimensional polyhedron such that for every point x € R(G)\(c) there is a neigh-
borhood of x in R(G) homeomorphic to the plane E2. It follows by Lemma (5.1)
that R(G) is a pinched surface with peak c. The disks D(G), ..., Dy,(G) constitute
a rosette Z(G) on R(G) with the boundary Z(G) = By(G) U ... U Byy(G). This
pinched surface R(G) will be said to be the carrier of the wing W(G) and the set Z (@,
which we denote also by W(G), will be said to be the boundary of the wing W(G).
Observe that one gets the wing W = W(G) of P corresponding to G, if one removes
from R(G) the interior Z(G) of the rosette Z(G).

Let #n = n(P) denote the number of all components of the set P*\B*. Denote
those components by Gy, ..., G, and observe that W;= G, is the difference between
the pinched surface R; = R(G;) and the interior of the rosette Z; = Z(G;) with
center ¢. The boundary of the wing W, is the same as the boundary of Z; and it is
the union of k; = k(G;)>0 simple closed curves which are the same as the leaves
of the bouquet B* which lie on R;. Observe that

3.2 n(Py=0 onlyif P*= (o).

In this way we have assigned to a given standard polyhedron P three non-
negative integers:

I=1P), m=mP) and n=nP).

9. Scheme of a standard polyhedron. For a standard polyhedron P we have
defined:

1° The free bouquet 4 with I = /(P) leaves A, ..., Ay
2° The bouquet of ramification B with m = m(P) leaves By, ., By,
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Both bouquets 4 and B have the same center ¢, called center of P.

3° The bouquet B* with center ¢ consisting of 3m leaves B!,
and v=1,2,3. ‘

4° The natural homeomorphisms ¢}: B} — B fori=1,.

wherei = 1,...,m

. womandy =1,2,3,
5° The pinched surfaces Ry, ..., R, with common center ¢ and disjoint sets
RN, .oy RN\(e). The pinched surface R; is obtained from a surface S; by the

identification of y; points Chyts oees Cpyy OF S

6° The numbers o; = a(P) = p,(S), f; = B(P) = Po(S) and y; = y;(P)
forj=1,..,n

Now let us fix:

7° An order in the set of all leaves B, of the bouquet B, and also an order in the
set of all leaves B} of the bouquet B*,

8° An orientation J}i of By fori=1,..,m

9° A local orientation of S, at Guforj=1,. ,nand p=1,.., y If S is
orientable, then we select those local orientations as induced by a given orientation
of §;. If S; is non-orientable, then we select those local orientations arbitrarily.

We know that every curve B] lies on exactly one of the pinched surfaces Ry , ..., R,.
The fixed ]oc_z}l orientations of S; at ¢;, for j=1,...,n and u=1,..,y; induce
orientations B of all leaves of the bouquet B*.

10° Foreveryi=1,...,m;j=1,..,nandv = 1,2, 3we denote by 01y = 01,(P)
an integer defined as follows:

If B} does not lie on Ry, then §}; = 0.

IT Bj lies on R;, then &7, is equal to the degree of the natural homeomorphism
0% Bi— B,

Let k(j) denote the number of curves B; lying on R;. Hence k(j) is equal to the
number of coefficients 8% ; which, for a given j, do not vanish. If di; # 0, then the
7;-pinched surface R; has been constructed so that By is the boundary of a disk lying
on R; and all such disks constitute a rosette Z; with center ¢ Iying on R;. The order
(fixed in 7°) of curves BY and their orientations B! induced by local orientations
of the surfaces S; (fixed in 9°) give to the rosette Z; the character of the oriented
rosette /J By Section 6, the position of Zj on R; is determined by

[1* A coefficient ; = w;(P), which is equal to one of the numbers

1y eer (ks ;) -

Now we deline the scheme © = S(P) of a standard po]yhedron P as the system
consisting of numbers: [(P), m(P), n(P), (P), f(P), y,(P), w(P) forj = 1, ..., n(P)
and &} () for i=1,..,m(P);j=1,.,n(P)and v =1,2,3.

In this system the numbers /(P), m(P) are arbitrary non-negative integers, the
number n(P) is a non-negative integer, the number 8;(P) is 0 or 1, y; is a natural
number, the numbers §; (P) have values 0, 1 or —1 and they satisfy the condition

0.1)  For every i =1,..,m(P) and v = 1,2,3 there exists exactly one index j
such that 87 ; # 0.
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If %(;j) denotes the number of coefficients 8} ; which (for a fixed /) do not vanish,
then the coefficient w(P) has the value equal to one of the numbers
1, ey o(k (), 31P)) -

Let us observe that the triplet [o,(P), B;(P), (P determines topologically the
pinched surface R;.

Now let us prove the following

(9.2) THEOREM. For every given scheme G there exists a standard polyhedron P
which has © as its scheme. If the scheme & is given, then the bouquets of simple closed
curves A with leaves 4y, ..., A;-and B with leaves By, ..., B,, and also the bouquet
of pinched surfaces Ry, ..., R, with center c are topologically determined. Let S; denote
a surface such that R; is obtained from S; by the identification with ¢ of a system of
DOINIS € 15 wruy Cjy € 5;. If We fix the orientations of curves B; and the local orientations
of surfaces S; at ¢;, (u =1, ..., y;) saisfying 9°, then P Is topologically determined
by G. o

Proof. Let ©be a scheme consisting of numbers: I, m, n, a;, Bi» i @;s &if
where i = 1,..,m;j=1,.,nand v=1,2,3. Then there exist two bouquets:
A with ] leaves Ay, ..., 4; and B with m leaves By, ..., B,, such that all curves
Ayy s Ay, By, ..., B, are different one from another and they constitute a bouquet.
Let ¢ be the center of this bouquet. Moreover, for every j =1, ..., n there exists
a surface S; such that p,(S)) = o and p,(S;) = f; and this surface is topologically
determined by the numbers «; and f§;. Consider a system of y; points ¢y, -, €y, € S
By identification of all those points with a point ¢;, one gets from S; a y;-pinched
surface R; with peak ¢; and this pinched surface is topologically determined by the
triplet [o;, §;, ¥;]- Moreover we may assume that all pinched surfaces R, are different
one from another and that all sets Ay, ..., 45, By, .., Buy Ry, oo Ry cOnstitute
a bouquet with center c.

Now let us assign to every curve B; an orientation Z?, and to every surface S;
a local orientation at the point ¢;, and assume that in the case when S; is orientable
all such local orientations of S; are induced by an arbitrarily given orientation of S;.

Consider a bouquet B* with center ¢ consisting of 3m simple closed curves By
(i=1,..,mandv=1,2,3) given in a fixed order and assume that B; lics on R;
if and only if 8} # 0 and that all curves B} lying on R; constitute the boundary Zj
of a rosette Z;= R; with center ¢;. Since R, is obtained from S, by the identification
with ¢; of points ¢y, ..., ¢y, We infer that to the rosette Z; corresponds a system
of y, rosettes Z;1, ..., Z;,, lying on §; with contews ¢y, ..., ¢;,y,- The fixed local
orientation of §; at ¢;,, induces orientations of all leaves of Z; ,, consequently also
an orientation Z; of the rosette Z;. The coefficient w; determines its position on the
y;~pinched surface R;.

Let G; = RNZ;. Then W = G; is the polyhedron obtained from R; by removing
the interior of the rosette Z;. Let us assign to every curve B} a homeomorphism

1— B,

@i
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such that fﬂ‘z’_(c) = ¢ and that, if Bj lies on R;, then ¢} maps the oriented curve B
onto the oriented curve B; with the degree 5! j+ Setting )
¢x) = @i(x) for every point xe BicR;,
we get a map @, of the boundary of the polyhedron W; onto a subbouquet of the

bouquet B, such that ¢;(c) = c.

One sees easily that the map ¢; can be extended to a map ¢; of W; onto a poly-
hedron P; so that ¢,/G; is a homeomorphism and that ¢(G) n B = &. Moreover
we can assume that the polyhedra P, (where j =1, ..., n) are constructed so that

P;nPcB J#EJ .
Then the set P’ = P; U ... U P, is a polyhedron.

Observe now that if a leaf B} of the bouquet B* lies on R;, then B} is the union

of some sharp edges of any triangulation T; of the polyhedron W; and — because

of (9.1) — there exist exactly three indices j,, j,, j; (not necessarily different) such
that

for

wil,jxl = ]512»121 = Ié?»]al =1.
Then the curve Bj is the union of some sharp edges of W;,, forv=1,2,3 We
infer that B is the union of some 3-edges of P’, Moreover it is clear that all other
edges of P’ are smooth.

Since the components G, of the set P'\B are the same as sets $,(G;), we infer
that the wings of P’ are homeomorphic to polyhedra W, lying on pinched surfaces R;,
where j =1, .., m '

Adding to P’ the bouquet 4 consisting of / simple closed curves (with center ¢),
which has with P’ only the point ¢ in common, we get a connected standard poly-
hedron P. If we confront the construction of P with the procedure leading from
polyhedron P to its scheme, we infer that & is the scheme assigned to P. Thus the
first part of Theorem (9.2) is proved.

Passing to the second part, consider two connected standard polyhedra P
and ,P with the same scheme &. First let us consider the case when (P and ,P do not
have free edges, that is when / = 0. We may assume that P and ,P have the same
bouquet B of ramification with center ¢ and let us fix an orientation for every lcaf B,
(where 7 =1, ..., m) of B.

By the operation of cutting the polyhedron (P along B (preserving the point ¢),
one gets from cach leal B, of B threc simple closed curves (B, ,Bf, (B and all
curves B} so obtained constitute a bouquet (B* with center ¢. Denote by ,¢; the
natural homeomorphism of | B} onto B;. Similarly the cutting of ,P along B gives
for every curve B three simple closed curves ,B/, ,B7, ,B; and all curves ,B7 so
obtained constitute a bouquet ,B* with center ¢. Let ] be the natural homeo-
morphism of ,B} onto B,.

The polyhedron ;P* is the union of n wings { Wy, ..., s W, and the polyhedron
2P* is the union of n corresponding wings , Wy, ..., ;W,. The wing ; W is a poly-
hedron obtained from a p-pinched surface ;R; by removing from it the interior
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of a rosette ,Z; with center ¢, consisting of k(j) disks Dy, ..., y Dy, which are
spanned on those curves 4B} for which &7 ; # 0. Similarly, the wing ,¥; is a poly-
hedron obtained from a y;-pinched surface ,R; by removing from it the interior
of a rosette ,Z; with center ¢, consisting of &(j) disks ; Dy, ..., ;D) spanned on
those curves ,B; for which J;; # 0.

Both pinched surfaces ; R; and ,R; are homeomorphic, because they are de-
termined by the same numbers «;, f;, y;. The y;-pinched surfaces ;R; and ,R; are
obtained from two surfaces, ;S; and ,S; (which are homeomorphic) by the identi-
fication with the point ¢ of y; points. y¢q, ..., 1y, lying on S;, and of y; points
2C15 «5 2Cy, lying on ,S;. Now let us fix the order of disks Dy, ..., ; Dy and the
local orientations of (S; at points ¢y, ..., ;¢,,, assuming that those orientations
are arbitrary if , S} is non-orientable, and are induced by an arbitrarily given orien-
tation of 4S;, if 4, is orientable. As we know, those local orientations induce orien-
tations of disks ; Dy, ..., ; Dy, andin this way we obtain from ,Z; anoriented rosette
12}- lying on R;. Similarly we geg from ,Z; an oriented rosette Z?j lying on ,R,.
By our scheme y the position of ;Z; on ;R; and the position of ,Z; on ,R; are de-
termined by the same coefficient w; and consequently they arc the same.

Let ; denote the homeomorphism of B, onto ,B} inverse to the natural homeo-
morphism ,¢j: ,Bj— B,. Setting

%= i,
we get 4 homemorphism y}: B}—, B} and it is clear that there exists a homeomor-
phism 8: {D;—,D; such that 3}(x) = x}(x) for every point x e B}. Setting

9;,(x) = 8(x) for every point xe D;=,S;,

we get a homeomorphism 9; which maps the rosette 1Z; onto the rosette ,Z;. More-
over the degree of the map ¢} (where 1BieyR) is 8;; = +1 and it is equal to the
degree of the map ,¢}, hence also to the degree of the map i}. Consequently the
degree of the homeomorphism y} is 1, and we infer that this map, hence also
the map §; preserves the orientation. Moreover, to the leaves B} of 1Z;, corre-
spond by the map 8;, in the same order, the leaves ,B! of 2Z;. Thus the homeo-
morphism §; maps the oriented rosette 12, onto the oriented rosette ZZJA Finally the
position of ;Z; on (R; is the same as the position of ZZI on ,R;, beeause those
positions are determined by the same coefficient ;.

Using Froposition (6.4), we infer that there exists a homeomorphism QJ: (Ry= 3 R;
such that 9,(x) = 9,(x) for every x e Z;.

Observe that §; maps the wing 1W; onto the wing ,W,. The natural homeo-
morphism ;¢;: B;— B; induces a matching of 1W; with B, by which the point
x € (Bj<R; is identified with the point 1@1(x). By the homeomorphism &, to the
point x corresponds the point

500 = vlioi) e B
and the map ,¢! assigns to Qj(x) the point

2(P¥gj(x) =011 01(x) = 1p}(x).
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Conscquc;:ntly the f‘esult of the matching of 1W; with B, induced by the natural
homeomorphism (¢; is homeomorphic with the result of the matching of ,W,
with B induced by ,¢;. It follows that the polyhedron ,P is homeomorphic to thé
polyhedron ,P.

Thus in the case when ;P and ,P do not have free edges (i.e. in the case [ = 0)
the proof is finished. But in the case />0, the polyhedron , P is the union of a bouquet
yA consisting of / curves with center ¢ and of a standard polyhedron wP' which does
not contain free edges and for which the bouquet of ramification has the point ¢
as its center. Moreover 4 N P’ = (¢} and we infer from the homeomorphism of
(WP', ¢) with (o£', ¢) that P is homeomorphic with 2P,

Let us add that the topological structure of ,P does not depend on the choice
of the natural homeomorphism ;¢}: ;B}— B, (with the degree given by 87 ), because
if we assume that (R; = ,R; and ;B} = ,Bifori=1,...,mand v = 1,2, 3, then
oP differs from P only by replacing the natural homeomorphism ¢} by another
natural homeomorphism ,¢;: ,Bj— B,.

10. Special polyhedra. The following remark shows that the numbers I, m, n
appearing in the scheme are not shape invariant:

Let P, denote the union of the 2-dimensional sphere S2 with a disk D such
that the set D n §7 coincides with the boundary D of D. Then P, is a standard
polyhedron, for which I = 0, m = 1 and n = 3. But P; has the same shape as the
polybedron P, which is the union of two 2-dimensional spheres with only one point
in common. Also P, is standard, but for it all numbers I, m, n vanish.

The question how to reinforce the conditions characterising standard polyhedra
in order to guarantee the uniqueness of the numbers I, m, » is rather hard. In an
attempt to approach this aim, let us introduce the notion of special polyhedra.

Consider a point ¢ of a connected space X. Let us say that ¢ locally separates X
if there exists a connected neighborhood U of ¢ such that UN\(c) is not connected.

Let P be a standdrd polyhedron with center ¢ and let 4 denote the free bouguet
of P, and B — the bouquet of ramification of P. Let W, ..., W, be the wings of P.
We say that the polyhedron P is a special polyhedron if it satisfies additionally the
following conditions:

(10.1)  No wing of P is a disk.
(10.2)  The closure of no component of PNA is locally separated by c.

Now let us prove the following

(10.3) THLOREM. Every connected polyhedron is homotopy equivalent to a special
polyhedron.

Proof. Assume that P is a standard representative of the shape of the given

polyhedron and let ¢ denote the center of P. If a wing W of P is a disk, then
P = P/W is a standard representative of Sh(P) such that:

1Py = 1(P), m(P)=mP)~1 and n(P)<n(P).
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By iterating this proceeding, one gets finally a standard polyhedron P* e Sh(P)
with center ¢ which satisfies the condition (10.1) and for which

IPYH =1P), m@PH<mP) and nPH<N(P).

Assume now that G is a component of P*\4 such that G is locally separated
by ¢. Let T be a triangulation of P,1 such that, with

U=Ste)n G,

UN(c) is not connected. One sees easily that there exists a compactification G of G

by 2 different points ¢y, ..., ¢;, where 4 is the number of components of UN(c).

There exist two trees L, and L, containing the points ¢y, ..., ¢, such that Ly n G

= (€15 oes €3), Where ¢y, ..., ¢, are all vertices of Ly, and Ly\(¢y, «.s 1) =G
Since G = (G ULy)/L,, we infer that

Sh(@, ¢) = Sh(G L Ly, ¢;) = Sh(G U Ly/L,, ¢;/L,)
and thus that .
Sh(P) = Sh{(P\G, )V (G U L)Ly, ¢i/Ls)) s
where v denotes the union of pointed spaces at their base points.

By iterating this proceeding, one gets finally a standard representative Py of

Sh(P) such that
IP)=I(P), mP)<m(P), n(Po)<n(P)

and that P, satisfies both conditions (10.1) and (10.2). Hence P, is a special poly-
hedron and the proof of Theorem (10.3) is finished.

Similarly as in the case of Theorem (7.5) (see Remark (7.8)) one can reformulate
Theorem (10.3) as follows:

For every connected polyhedron (of dimension <2) there is a special polyhedron
of the same simple homotopy type.

Theorem (10.3) implies the following

(10.4) CorOLLARY. If P is a special polyhedron with m(P) = 0, then P si
a bouguet for which each leaf is either a simple closed curve or a surface.

In fact, then the bouquet of ramification B of P reduces to the singleton (¢).
If A is the free bouquet of P, then the closure of cvery component of P\4 is a pinched
surface R with the peak c. Since ¢ does not locally separates it, R is a surface.

Let us add that, by a theorem of A. Kadlof if two bouquels, consisting of lcaves
which are either simple closed curves or surfaces, are of the same shape, then they
are homeomorphic. Consequently, there exists for a connected polyhedron P with
m(P) = 0 only one special polyhedron, which is a representative of Sh(P).

11, Coeflicients [,(P), my(P) and ny(P). For every connected polyhedron P
(of dimension <2) let us denote by I'(P) the collection of all standard polyhedra
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P’ & Sh(P). Obscrve that for every P’ e I'(P) the inequality I(P')<p,(P) holds true
Setting: )

I(Py = Max I(P'); my(P) = Min m(P");

Plar(p) Prer ) no(P) = Min n(P"),

[P'el(P)
we get threc non-negative integers Iy(P), my(P), no(P) and it is clear that those
integers are shape invariants of P. However, the problem how to compute their
values for a given polyhedron P remains open and it seems to be difficult. It is clear
that if P is a bouquet consisting of / simple closed curves, then Io(P) = I However
the problem if for every given non-negative number m (or ) there exists a connected
polyhedron P with mo(P) = m (or with ny(P) = x) remains open. The role of the
coeflicient no(P) is illustrated by the following

(11.1) TuroreM. For every natural number k there exists only a finite number
of different shapes of connected polyhedra P satisfying both conditions: Pk
and ny(P)<k.

Proof. First let us observe that

(11.2) If T is a triangulation of a polyhedron P and if 4 is the interior of
a triangle 4 € T, then

pi(PY<p(PNDY<p(PY+1.

Assume now that P is a standard polyhedron with n(P) = ny(P)<k. If Bis the
bouquet of ramification of P and W is a wing of P, then if T}, is a triangulation of W
and Ay is the interior of a triangle Ay Ty, then the polyhedron W4y can be
transformed by a collapsing onto the union of the boundary W of the wing W and
of a polybedron of dimension. 1. It follows that there exists a retraction of the
set WAy to W. Consequently

(11.3) P(W)<p(WNd)<p (W) +1.

The polyhedron P is obtained by the matching of all wings W of P with the bouquet B
by the natural homeomorphisms of all curves B} onto the curves B;. If we replace
every wing W of P by the sct WN\dy, then we get, instead of P a polyhedron B.
Using (11.3), one sees casily that this last polyhedron satisfies the condition
PPYSpy(P)+n(P).

Morcaver, since W is a retract of Wy, one sees easily that B is a retract

of P and we infer that
m = py(B)<py(P)+n(P).

Since both numbers p,(P) and n(P) are <k, we infer that m<2k. Then for

every wing W of P the following inequality holds true:

p(W)<py(B)<2% .


GUEST


icm°®

142

1t follows that the carrier ¢y of W is a pinched surface which satisfies the condition

Pi(C)<p (W) .

Hence p,(Cy)<2k. We infer by (5.3) that the collection of all topological types of
carriers Cy, is finite. Since also the number / = /(P)< pi(P)<k is finite, we infer
that there exists only a finite number of shapes of polyhedra P with p,(P)<k and
no(P)<k. Thus the proof of Theorem (11.1) is finished.

The limitation of the values of p,(P) and of p,(P) does not suffice for the finity
of the collection of shapes of P. In fact, consider the 3-dimensional Poincaré sphere M
(i.e. a polyhedron which is a closed 3-manifold with (M) = p(M) =0 and
p3(M) = 1, but with a non-trivial fundamental group). Let 4 be a 3-dimensional
simplex of a triangulation of M. Then N = M4 is an acyclic 3-dimensional
polyhedron with a non-trivial fundamental group. Using the operation of collapsing,
one gets from N a 2-dimensional acyclic polyhedron P (of dimension <2) with
a non-trivial shape.

Consider now a system Py, ..., P, of polyhedra homeomorphic to P and con-
stituting a bouquet with center c. Setting Pf=P, U..UP, one gets for every
k =1,2,... an acyclic polyhedron P{f and one sees easily that Sh(Py) 5 Sh(Py)
for k = k'.

Let us add that the values of my(P) and of no(P) remain unknown. The following
problem remains open:

(11.4) PrOBLEM. Does there exist a connected polyhedron such that for every
standard representative of its shape not all carriers of wings are surfaces?

12. Non connected polyhedra. If Fy, ..., Py are components of a polyhedron P,
then every set P, is a connected polyhedron and we can assign to every standard
representative of it its scheme &;. The system consisting of those schemes is a finite
numerical system which can be considered as the scheme of the polyhedron P. It is

clear that Theorem (9.2) implies that this scheme determines the homotopy type
of P.
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On a question of H. H. Corson and
some related problems

by

Roman Pol (Warszawa)

Abstract. In this paper we investigate a property of a Banach space defined by Corson {7]
which is a convex counterpart to the Lindelsf property of weak topology.

1. Introduction. H. H. Corson defined in [7] the following property of a Banach
space J7 (which we shall call “the property (C)"): every collection of closed convex
subsets of I with empty intersection contains a countable subcollection with empty
intersection.

If a Banach space £ is Lindelsf in the weak topology then it has the property (C)
(as the closed convex sets are the same in the norm or weak topology) and Corson
asked [7, Remark (1), p. 7], whether the converse is true. It turns out that many
familiar function spaces C'(K) have the property (C) while their weak topology fails
to have the Lindeldf property (1), for example, this is the case, when X is the lexico-
graphic square. In fact, we show that the Banach spaces with the property (C) form
a rather wide class, closed under some standard operations.

We prove that the property (C) of a Banach space E is equivalent to a property
of the unit ball in the dual space E’ endowed with the weak-star topology, which
is & convex analogue to the countable tightness (%), We show further that for a compact
seattered space K the property (C) of the function space C(K) is equivalent to the
countable tightness of K in general, the property (C) of the function space C(K)
being, as stated above, related to a kind of the countable tightness in the space of
Radon measures on K, seems essentially stronger than the countable tightness of K —
however, we do not know a correspondent example. Another result about function
spaces is that if & is an Eberfein compact and E has the property (C), then so does
the space C(K, 1), but we do not know, for example, if C(S'x §) has .the pr.operty (©),
provided that €'(5) docs. We discuss these, and related, questions in the last

paragraph,

O} "l‘inﬁ 4h;«:uuntcrmrl to the classical characterization of compactness for the weak topology
[18, Theorem 11,2 (¢)) fails for the Lindeldf property:
(*) The terminology i explained in the next paragraph. - o
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