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On families of o-complete ideals
by

Adam Krawezyk and Andrzej Pelc (Warszawa)

Abstract. Our main results are the following: Assume Martin's Axiom. Then

1. For every A4-22° and every family {u,: a<A} of two-valued uniform measures on 2% there
exists an X< 2® non-measurable with respect to any of them.

2. For every cardinal % such that 2% <x<1st cardinal carrying a 2%-complete 2%-saturated
ideal the following holds: il 2<2° and {1zt <A} is a family of 2@-additive two-valued measures
on %, then there exists an X'<x non-measurable with respect to any of them.

0. Terminology and preliminaries. We shall use standard set-theoretical notation
and terminology. Letters %, A, u will always denote uncountable cardinals. “J is an
ideal on X will mean “J is a o-complete proper ideal of subsets of X such that
{x}eIforall x & X™. Anideal Tis A-complete iff {x;: &<n}cTimplies U{X;: E<n}
el forn<A, Acardinal A is called the character of an ideal I on % (chl = A)iff 1is the
least cardinal such that 3X'<w, |X| = 1, X ¢ I. Anideal I on x is uniform iff chf = x.
If 7 is an ideal on %, then J* will denote the dual filter.

Ideals I; and I, on % arc called compatible iff there exists an ideal 7 on % such
that I, u I, I,. It is casy to sec that I;, I, are compatible iff [, A I5 = @ iff
I, n I = @&, Otherwise I, I, are incompatible.

MA. will denote Martin’s Axiom. We shall use the following consequence of
MA (see [4]):

1. The union of < 2° ¢closed nowhere dense subsets of a metric complete separable
space is nowhere dense.

A subset & of the reals is calted strongly Lusin if for every Lebesgue measurable
sct A |2 Al<22” I A has Lebesgue measure 0. It is also a consequence of MA.
(see [2], ef. also [11, [4], [6]) that

2. A strongly Lusin set exists,

We use the following notation:
U, Ay ) - For cvery family {I,: <A} of u-complete ideals on x we have
Ul(fa I P().
L3S
U*(x, A, j0) — For cvery family {I,: a<A} of p-complete uniform ideals
on x we have U (L, u ) 5 P().
ad
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Using this notation, we can formulate the classical problem of Ulam on sets
of measures as follows:

Let % be less than the first measurable cardinal. What is the minimal cardinal 4
such that non U(x, 4, w;)?

A particularly interesting case is 3 = 2°. If 2% is less than the first cardinal
carrying a o'-complete g-saturated ideal, then the Erdgs-Alaoglu theorem (cf. ¢. g. [7)
gives U(2°, w, w,).

On the other hand, the second author proved in [5] that U(2”, w, 2%). In [8]
A. Taylor strengthened this result to U*(2%, @, w;).

In the present paper we investigate the case when the family of ideals is un-
countable. It turns out that under some additional set-theoretical assumptions it is
possible to get information in this case as well.

1. Main results. We begin with the following

LemMA 1.1, Let % be an uncountable cardinal. Let f be an atomless measure
defined on a c-algebra Sc=P(x) and I, the ideal of f-null sets. Then

(i) For every family {I,: ne w} of ideals on % which are compatible with I - we
have \J (I, U IF) # P(x).

new
(1) If; in addition, f is such that the metric space S|T ' with the metric o([A4], [B])
= f(A4B) is a separable space, then MA. implies that for every family {I: a<i},
A<2%, of ideals on % which are compatible with I we have ) (I, U 1Y) # P(x).
<A

Proof. (i) Since 7, are compatible with 7, there exist ideals Jy2 1, 0 I and it
suffices to show that {J (J, uJJ) % P(x).
! new

Write S, =(J,uJH)NnS. S, are of course c-algebras. Let § = S/,
8. = S,/I;. We have §,=5. We show that §, # § for ne w. Assume that 8, =8
Hence for every 4 € S there is a Be S, such that 4 = B(modI,). But in view of the
inclusion J,=71, we get S = S,.

Now since f'is atomless, we can construct a tree of sets Age S for 5&2<° such
that Ag = 3%, Asnoys Agngyy is @ disjoint partition of A and f(4,) = 27", For
every s we have A0y €Jy or Agngis € Jy and we get a branch {4yt ne w} for
a certain g € 2 s.t. () {4, 1l nEw} ey Butit follows from the construction that
SN 4gyn: new) =0 for every ge2°, contradicting the assumption that S I,

Let us view § as a metric space with the distance e([A], [B]) = f(A44B). It is
well known that it is a complete metric space. 8, is also a complete metric space
with the same distance and hence it is a closed subset of S,

Cram. §, is a nowhere dense subset of §.

Assume that it is not. Then there exist a set 4 and a positive real e such that
K ([4], &=8§,. Consider any Be S such that [4] ~ [B] = 0. Since f is atomless,
there exists a partition {B,: I<k} of B such that JS(B)<e. Hence [4] U [B]eS,,
and since S, is a o-algebra, we get [4] U [B]e §, and [Ble§,. In a similar way
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(using [ — A] instead of [4]) we get [B]
a contradiction.
We have shown that §, are closed nowhere dens
Category Theorem, we get (J §, = §
new
X¢ U@, b

new

(i) In this case we use the Strong Baire Cate
we have MA and the space § is scparable. M

Before stating the next lemma we need another terminological convention:
let 7, 5, be families of ideals on 5. Then Iy =) #; is also an ideal on ». We say
that the families 7y, &, are compatible iff Iy, I, are compatible,

IC 7 is a family of ideals, then g% = {I*: Ie #}.

€ 8, for every B 4. Tt follows that§, = § —
e subsets of §. Using the Baire
and hence there exists an Y € 5 such that

gory Theorem. It is possible since

LemMa 1.2, Let A<u<x be uncountable cardinals. For a<llet #, be a family
of u-complete ideals on % such that \) FoulU F¥ P(%). Assume moreover that the
Jomilies J,: a<d are pairwise incompatible. Then UL, vl gl P(x).

a<i

Proof. Let I, = () £, for a<A We shall construct a family {47: B<a<l}
such that the following conditions hold:
(i) Aserr.
(ii) A=A} and AjNdfjel, for y<a.
(D) A 0 A = @ for f 1y,
First we show how our lemma follows from -the existence of such a family.
Let Ay = ﬂcuﬂ” Ajf. Condition (ili) implics that Ay Ay = O for o # B. Since I,

is p-complete, it follows from (i) and (ii) that Ay eIt ‘

CLAIM. For a<) there exists a B, A, such that B¢\ g, ol 28

Using the assumption of our lemma, we take B gU L, 0 £y Since 4 e 17,
it is casy to sce that B A, ¢l) £,0 U £F and we put B, = 4, n B. Now
UB ¢ UM Sul L) by d,61F and disjointness of 4.
&< sl

Hence it suffices to construct the sets Af. We proceed by induction. As 43 we
take an arbitrary element of /3, Assume that A5 are already constructed for o< .

We put B} == () A% Then we take U, e I, A I} for y<f. It can be done since
pianf

{I,t <A} are pairwise incompatible, Clearly, N U, el,n J,}" for y<p (by
y<f
u-completeness). We put 45 = () U, and 4% = BINAS for p<p. It is easy to see
y<p

that conditions (i), (ii) and (iii) arc satisfied.

We arc now ready o prove

Turorim L3, Assume MA. Then U*Q°, A, w,) for A<2°.

Proof. Lot & be a strongly Lusin set. Denote by 48 the family {B n Z: B is
aBorel subsct of the reals}, Clearly #is a o-algebra on %. Denote by m the Lebesgue:
measure, We define for 4 e @ -

fA)=mB) if A=BnZ.
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Since % is a strongly Lusin set, the function fis well defined. Indeed, take B, , B, s.t.
A=B,NnY% =B,n%. Then (Bi4B))n ¥ =@; hence m(B;4B,) = 0 and
finally m(B,) = m(B,).

The function f is an atomless measure on %, and /7, with the usual distance
is a separable space. Applying Lemma 1.1, we conclude that for every fam‘ily
{I,: a< 2}, 2<2®, of ideals on & compatible with I, we have ME)A(I',t U L) # P(2).

Since |.#} = 2°, it is sufficient to show that every uniform ideal on % is compatible
with 7.

It turns out that every uniform ideal I on & contains I,. Indeed, if f(X) = 0
for X<, then |X n &| = |X|<2®. Since I is uniform, X e J. This completes the
proof. B

Our next theorem gives some information about sets of ideals on cardinals
greater than 2%,

THEOREM 1.4. Let 0 be the first cardinal carrying a 2°-complete 2°-saturated
ideal. Assume MA. Then 2°<x<0 implies U(x, 1, 2%) for A<2®.

Proof. Let I be a 2°-complete ideal in %. Since %<0, there exists a pairwise
disjoint partition {4,: g&2°} of » such that 4,¢ 1 Let 4y = LgAg for Borel

gei

Bc2®. @' = {Ap: B— Borel subset of 2°} is a g-algebra on x. Let & = {XAN:
Xe®', Nel}. We define for Ye @, ¥ = AzAN,
f(Y) = m(B).
It is easy to see that fis an atomless measure on % and I, o 1. Also #/], is separable.
For 4<2°, let {I,: u<1} be an arbitrary family of 2“-complete ideals on .

For every I, let f, be the above atomless measure. It suffices to show that
Uy, v I # P
a<i

We construct the following sequence of families of ideals:

Consider the sequence {I,: a<A}.Put]® = I . LetJ, = {I,,: I, iscompatible
with J°}. If J%, J, are defined for &<, let I be the first 1, which is incompatible
with any I° for é<y and

Jy={I;: I, ¢ E(()ﬂ]; and I, is compatible with 1"} .

We proceed in this way for all n<A. Then we define J, = {I*U I, I, eJ,} for
&<l Clearly, I*c)J, and it follows from the construction that the familics
Je: <A are pairwise incompatible. Now it follows from Lemma 1.1 that, for every
E<), UJ sl j:f # P(x). The assumptions of Lemma 1.2 are fulfilled and hence
;U;'(U Jeu UJE) # P and we get UA([“ Ul # P(x). B

< <

2. Applications to the countable ease. We begin with the following fact connecting
properties U and U*:

PrOPOSITION 2.1. Let A<u<x be uncountable cardinals. Then U(x, A, u) iff
Volu<asx — U, A, p)].
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Proof. In both cases we argue by contradiction:
=> Assume that o< is such that {I,: £<1} are uniform p-complete ideals
on « such that U (Lulf)=P@. Let Jy={dcx: dnael). Clearly,
E<A
éU v Jg‘) = P(x) and J; are p-complete, a contradiction.
<2
<= Let {I;: £<A} be p-complete ideals on % such that U (Z; v 1) = P(x).
£<2

Let o = {ch(Iy): £<A}. We enumerate the set &f: {a,: 1<y}, where y<A. Let
{I}: £<4} be the family of those ideals which have character a, (it is possible that
some of them appear in the enumeration several times).

For I} let A} be a set of cardinality a, such that Al ¢ I7 and let 4" = () 4].

<
Hence |4"| = a, and A"¢ I} for E<A. =
Consider Jf = {Xcx: X d4,el}}. J] are p-complete ideals. Write J”
= {J}: £<2}. The families J": <A are pairwise incompatible and by the assumption
UJ"u U J™ s P(x). Hence by Lemma 1.2 we get () (J§ U JP) 5 P(x), and thus
&n

U (I u If*) 5 P(x), contrary to our assumption. B
&n.

THEOREM 2.2. Assume that 2° is the first cardinel carrying a o-complete
o-saturated ideal. Then U(2°, », w,).

Proof. The theorem follows from the Erdds-Alaoglu theorem, and U*(2%, , ®,)
by the above proposition where % = 2%, 1 =0, g = w,. B

Ulam’s problem in the countable case (i.e. U(x, w, ) is closely connected
with the existence of ideals 7 on » such that P(x)/I has a countable dense set. Such
ideals are called separable. Actually it is proved in [7]that U*(x, , w,) iff no uniform
ideal on x is separable. A closer inspection of this proof gives, for every u<s,
U(x, , 1) iff no u-complete ideal on x is separable. Thus the investigation of
ideals I such that P (3)/I has a dense set of a given cardinality seems to be interesting.

ProrosiTION 2.3. Let 2*<n<lst measurable cardinal. Then P(x)/I does not
have dense sets of cardinality X for any (2%)*-complete ideal I on 2.

Proof. Let I be a (2%*-complete ideal on %. Let s: A— P(x); a function
t: 2 — P(x) will be called a flip of 5 iff, for all a<4, #(a) = s(e) or #(x) = x—s5(00).
Let F(s) denote the family of all flips of s. Clearly, |F(s)| = 2*. By definition
U Nu® = x; hence there exists a ue F(s) such that N u(§) ¢ L
g<i

nel(s) &<
Assume that s = {s(&): <A} is such that {[s(&)]: £<A} is dense in P(x)/L
Take a flip u of s such that () u(¢) ¢ Hence there is an s(y) such that s(n)
&<

< N u(®)(@nodI), but P(x)/I is atomless, a contradiction. B
E<i

COROLLARY 2.4, Let 2°<x<1st measurable cardinal. Then U, », (2*)*). B

We conclude this section with the following proposition, pointed out by
R. Sztencel.

6 -~ Fundamenta Mathematicae CIX
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PrOPOSITION 2.5. Let {f,: new} be a family of atomless measures on 2°
such that Domf, # 2°. Then there exists a subset of 2° non-measurable with respect
to any of them.

Proof. Use the proof of Lemma 1.1. Notice that each atomless mcasure f,

o)
. . O i
can be extended to an outer atomless measure f;. Consider /1 = 3 (1/2")f,". Then
n=1

h is an atomless outer measure and if I = {A4<=2": Ni(4) = 0, then P(2°)/I with the
metric o([4], [B]) = h(A44B) forms a complete space.
3. Some remarks on conmsistency. Our Theorems 1.3 and 1.4 give some in-
formation about the conmsistency of sentences U(x, A, ) for uncountable A,
ProrostTioN 3.1. (i) Let » be a regular uncountable cardinal and A<x. Then

Con(ZFC) — Con(ZFC+ U*(x, %, wy)) .
(ii) Let 0 be the first cardinal carrying a 2°-compleie 2°-saturated ideal and
A<y = cfu<u. Then
Con(ZFC) — Con(ZFC+U(x, A, 1)) .

Proof. (i) We force MA +2° = 3 and apply Theorem 1.3.
(if) We force MA+2® = u and apply Theorem 1.4. 8

Our next remark refers to the countable case. It is a consequence of a result
of R. Laver (cf. [3]), namely, that Con(ZFC+a measurable cardinal exists) implics

Con(ZFC+2° carries a 2°-complete o-saturated ideal + U(2%, 1, @) for A< 2%). The:

proof, however, does not seem to generalize so as to allow the real-valued measur-
ability of 2° even if 1 = . In view of that, consider

ProrosiTION 3.2. Con(ZFC+ a measurable cardinal exists) — Con(ZFC+2°
is real-valued measurable+ U(2°, @, w,)).

Proof. It is possible to make 2 real-valued measurable without any cardinal
cartying a o-complete o-saturated ideal below. Hence our proposition follows from
Theorem 2.2. B

4. Problems. We close our paper with a list of open problems.

A. Is it possible to prove in ZFC that UQ2°, w, »,)?

In view of Proposition 2.1 Problem A is equivalent to the question whether
Voa<2°U*(x, 0, ;)7 On the other hand, by Taylor’s result and Corollary 2.4,
we have U(x, , %) for all » s.t. 2°<x<1st measurable cardinal. This yields the
following problem, less general than A:

B. Is it possible to prove in ZFC that U(x, w, %) for all %x<2??

Of course, in view of the Erdds~Alaoglu theorem, problems A and B are inter-
esting only in the case where 2° is large.

~What about results of the type: non U*(x, %, w,)? The only one known is duc
to Magidor (cf. [7]): if there exists a huge cardinal, then Con(non U*(w;, w3, a)i)).
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C. Is nonU*(2°, 2°, w,) consistent with ZFC?

Notice that if we change non U*(2°, 2°, w,) into non U/(2¢, 22, @), problem C
has an easy affirmative answer. Finally, notice that for all x: non U(x, 2%, o,). This
yields the following problem:

D. Is U(x, ", w,) consistent with ZFC for some » (e.g. % = 2)?

References

[1] " J. Brzuchowski, J. Cichoi and B. Weglorz, Some applications of strongly Lusin sets,
to appear.

[2] T.G. McLaughlin, Marti’s Axiom and some classical constructions, Bull. Austral. Math.
Soc. 12 (1975).

[31 R. Laver, A saturation properly of ideals, Comp. Math. 36,

[4] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970),
pp. 143-178. '

[51 A. Pelc, Ideals on the real line and Ulam’s problem, Fund. Math. (to appear).

[6] W. Sierpinski, Hypothése du Continu, Warszawa-Lwow 1935,

[71 A.D. Taylor, On saturated sets of ideals and Ulam’s problem, Fund. Math. 109 (1980),
pp. 37-53.

[8] —- On the cardinality of reduced products and the Boolean Algebra 3 (%)/I, to appear.

[91 - On the cardinality of §(0)/I, handwritien pages.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW

Accepté par la Rédaction le 23. 7. 1979


GUEST




