

R. Pol

- [11] S. P. Gulko, On the properties of subspaces of Σ-products, DAN SSR 237 (1977), pp. 505-508 (in Russian).
- [12] D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to l₁(I'), J. Func. Analysis 12 (1973), pp. 177-187.
- [13] V. I. Malyhin, On the tightness and the Souslin number of exp X and of a product spaces, DAN SSSR 203 (1972), pp. 1001-1003 (in Russian).
- [14] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), pp. 361-382.
- [15] S. Mrówka, Some set-theoretic constructions in topology, Fund. Math. 94 (1977), pp. 83-92.
- [16] R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), pp. 279–285.
- [17] Concerning function spaces on separable compact spaces, Bull. Polon. Acad. Sci. 25 (1977), pp. 993–997.
- [18] H. H. Schaefer, Topological Vector Spaces, New York 1966.
- [19] Z. Semadeni, Banach Spaces of Continuous Functions, Warszawa 1971.
- [20] B. E. Šapirovskii, On decomposition of a perfect mapping into an irreducible mapping and a retraction. Proc. VII Top. Conf. Minsk 1977 (in Russian).
- [21] M. Talagrand, Sur une conjecture de H.H. Corson, Bull. Soc. Math. 99 (1975), pp. 211-212.
- [22] Espaces de Banach faiblement K-analytiques, Comp. Rend. Acad. Sci. 284 (1977), pp. 745-748.
- [23] Espaces de Banach faiblement K-analytiques, (to appear).

DEPARTMENT OF MATHEMATICS AND MECHANICS WARSAW UNIVERSITY WYDZIAŁ MATEMATYKI I MECHANIKI UNIWERSYTET WARSZAWSKI

Accepté par la Rédaction le 23, 3, 1978

On families of σ -complete ideals

by

Adam Krawczyk and Andrzej Pelc (Warszawa)

Abstract. Our main results are the following: Assume Martin's Axiom. Then

- 1. For every $\lambda < 2^{\omega}$ and every family $\{\mu_{\alpha}: \alpha < \lambda\}$ of two-valued uniform measures on 2^{ω} there exists an $X \subset 2^{\omega}$ non-measurable with respect to any of them
- 2. For every cardinal \varkappa such that $2^{\omega} < \varkappa < 1$ st cardinal carrying a 2^{ω} -complete 2^{ω} -saturated ideal the following holds: if $\lambda < 2^{\omega}$ and $\{\mu_{\alpha}: \alpha < \lambda\}$ is a family of 2^{ω} -additive two-valued measures on \varkappa , then there exists an $X \subset \varkappa$ non-measurable with respect to any of them.
- **0. Terminology and preliminaries.** We shall use standard set-theoretical notation and terminology. Letters \varkappa , λ , μ will always denote uncountable cardinals. "I is an ideal on X" will mean "I is a σ -complete proper ideal of subsets of X such that $\{x\} \in I$ for all $x \in X$ ". An ideal I is λ -complete iff $\{x_{\xi} : \xi < \eta\} \subset I$ implies $\bigcup \{X_{\xi} : \xi < \eta\} \in I$ for $\eta < \lambda$. A cardinal λ is called the *character of an ideal I* on \varkappa (ch $I = \lambda$) iff I is the least cardinal such that $\exists X \subset \varkappa$, $|X| = \lambda$, $X \notin I$. An ideal I on \varkappa is uniform iff ch $I = \varkappa$. If I is an ideal on \varkappa , then I^* will denote the dual filter.

Ideals I_1 and I_2 on \varkappa are called *compatible* iff there exists an ideal I_3 on \varkappa such that $I_1 \cup I_2 \subset I_3$. It is easy to see that I_1 , I_2 are compatible iff $I_1 \cap I_2^* = \emptyset$ iff $I_2 \cap I_1^* = \emptyset$. Otherwise I_1 , I_2 are incompatible.

MA will denote Martin's Axiom. We shall use the following consequence of MA (see [4]):

1. The union of $< 2^{\circ}$ closed nowhere dense subsets of a metric complete separable space is nowhere dense.

A subset \mathscr{L} of the reals is called *strongly Lusin* if for every Lebesgue measurable set $A \mid \mathscr{L} \cap A \mid < 2^{\omega}$ iff A has Lebesgue measure 0. It is also a consequence of MA (see [2], cf. also [1], [4], [6]) that

2. A strongly Lusin set exists.

We use the following notation:

 $U(\alpha, \lambda, \mu)$ — For every family $\{I_{\alpha}: \alpha < \lambda\}$ of μ -complete ideals on κ we have $\bigcup_{\alpha} (I_{\alpha} \cup I_{\alpha}^{*}) \neq P(\kappa)$.

 $U^*(\varkappa,\lambda,\mu)$ — For every family $\{I_\alpha\colon\alpha<\lambda\}$ of μ -complete uniform ideals on \varkappa we have $\bigcup (I_\alpha\cup I_\alpha^*)\neq P(\varkappa)$.

Using this notation, we can formulate the classical problem of Ulam on sets of measures as follows:

Let \varkappa be less than the first measurable cardinal. What is the minimal cardinal λ such that non $U(\varkappa,\lambda,\omega_1)$?

A particularly interesting case is $\varkappa=2^{\omega}$. If 2^{ω} is less than the first cardinal carrying a σ -complete σ -saturated ideal, then the Erdös–Alaoglu theorem (cf. e.g. [7]) gives $U(2^{\omega}, \omega, \omega_1)$.

On the other hand, the second author proved in [5] that $U(2^{\omega}, \omega, 2^{\omega})$. In [8] A. Taylor strengthened this result to $U^*(2^{\omega}, \omega, \omega_1)$.

In the present paper we investigate the case when the family of ideals is uncountable. It turns out that under some additional set-theoretical assumptions it is possible to get information in this case as well.

1. Main results. We begin with the following

Lemma 1.1. Let \varkappa be an uncountable cardinal. Let f be an atomless measure defined on a σ -algebra $S{\subset}P(\varkappa)$ and I_f the ideal of f-null sets. Then

- (i) For every family $\{I_n\colon n\in\omega\}$ of ideals on \varkappa which are compatible with I_f we have $\bigcup (I_n\cup I_n^*)\neq P(\varkappa)$.
- (ii) If, in addition, f is such that the metric space $S|I_f$ with the metric $\varrho([A], [B]) = f(A \triangle B)$ is a separable space, then MA implies that for every family $\{I_\alpha: \alpha < \lambda\}$, $\lambda < 2^\omega$, of ideals on \varkappa which are compatible with I_f we have $\bigcup_{\alpha < \lambda} (I_\alpha \cup I_n^*) \neq P(\varkappa)$.

Proof. (i) Since I_n are compatible with I_f , there exist ideals $J_n \supset I_n \cup I_f$ and it suffices to show that $\bigcup_{n \in I_n} (J_n \cup J_n^*) \neq P(\varkappa)$.

Write $S_n = (J_n \cup J_n^*) \cap S$. S_n are of course σ -algebras. Let $\widetilde{S} = S/I_f$, $\widetilde{S}_n = S_n/I_f$. We have $\widetilde{S}_n \subset \widetilde{S}$. We show that $\widetilde{S}_n \neq \widetilde{S}$ for $n \in \omega$. Assume that $\widetilde{S}_n = \widetilde{S}$. Hence for every $A \in S$ there is a $B \in S_n$ such that $A \equiv B \pmod{I_f}$. But in view of the inclusion $J_n \supset I_f$ we get $S = S_n$.

Now since f is atomless, we can construct a tree of sets $A_s \in S$ for $s \in 2^{<\omega}$ such that $A_{\varnothing} = \varkappa$, $A_{s \cap \langle 0 \rangle}$, $A_{s \cap \langle 1 \rangle}$ is a disjoint partition of A_s and $f(A_s) = 2^{-lhs}$. For every s we have $A_{s \cap \langle 0 \rangle} \in J_n^*$ or $A_{s \cap \langle 1 \rangle} \in J_n^*$ and we get a branch $\{A_{g \nmid n} : n \in \omega\}$ for a certain $g \in 2^{\omega}$ s.t. $\bigcap \{A_{g \nmid n} : n \in \omega\} \in J_n^*$. But it follows from the construction that $f(\bigcap A_{g \nmid n} : n \in \omega) = 0$ for every $g \in 2^{\omega}$, contradicting the assumption that $J_n \supset I_f$.

Let us view \tilde{S} as a metric space with the distance $\varrho([A], [B]) = f(A\Delta B)$. It is well known that it is a complete metric space. \tilde{S}_n is also a complete metric space with the same distance and hence it is a closed subset of \tilde{S} .

CLAIM. \tilde{S}_n is a nowhere dense subset of \tilde{S} .

Assume that it is not. Then there exist a set A and a positive real ε such that $K_{\varrho}([A], \varepsilon) \subset \widetilde{S}_n$. Consider any $B \in S$ such that $[A] \cap [B] = 0$. Since f is atomless, there exists a partition $\{B_t \colon l < k\}$ of B such that $f(B_l) < \varepsilon$. Hence $[A] \cup [B_l] \in \widetilde{S}_n$, and since S_n is a σ -algebra, we get $[A] \cup [B] \in \widetilde{S}_n$ and $[B] \in \widetilde{S}_n$. In a similar way

We have shown that \widetilde{S}_n are closed nowhere dense subsets of \widetilde{S} . Using the Baire Category Theorem, we get $\bigcup_{n\in\omega}\widetilde{S}_n\neq\widetilde{S}$ and hence there exists an $X\in S$ such that $X\notin\bigcup(J_n\cup J_n^*)$.

(ii) In this case we use the Strong Baire Category Theorem. It is possible since we have MA and the space \tilde{S} is separable.

Before stating the next lemma we need another terminological convention: let \mathcal{J}_1 , \mathcal{J}_2 be families of ideals on \varkappa . Then $I_i = \bigcap \mathcal{J}_i$ is also an ideal on \varkappa . We say that the families \mathcal{J}_1 , \mathcal{J}_2 are compatible iff I_1 , I_2 are compatible.

If \mathcal{J} is a family of ideals, then $\mathcal{J}^* = \{I^*: I \in \mathcal{J}\}.$

LEMMA 1.2. Let $\lambda < \mu \leq \varkappa$ be uncountable cardinals. For $\alpha < \lambda$ let \mathcal{J}_{α} be a family of μ -complete ideals on \varkappa such that $\bigcup \mathcal{J}_{\alpha} \cup \bigcup \mathcal{J}_{\alpha}^* \neq P(\varkappa)$. Assume moreover that the families $\mathcal{J}_{\alpha} \colon \alpha < \lambda$ are pairwise incompatible. Then $\bigcup_{\alpha < \lambda} (\bigcup \mathcal{J}_{\alpha} \cup \bigcup \mathcal{J}_{\alpha}^*) \neq P(\varkappa)$.

Proof. Let $I_{\alpha} = \bigcap \mathscr{J}_{\alpha}$ for $\alpha < \lambda$. We shall construct a family $\{A_{\beta}^{\alpha} \colon \beta \leqslant \alpha < \lambda\}$ such that the following conditions hold:

- (i) $A^{\alpha}_{\alpha} \in I^*_{\alpha}$.
- (ii) $A^{\alpha}_{\beta} \subset A^{\gamma}_{\beta}$ and $A^{\gamma}_{\beta} \setminus A^{\alpha}_{\beta} \in I_{\beta}$ for $\gamma < \alpha$.
- (iii) $A^{\alpha}_{\beta} \cap A^{\alpha}_{\gamma} = \emptyset$ for $\beta \neq \gamma$.

First we show how our lemma follows from the existence of such a family. Let $A_{\beta} = \bigcap_{\beta \leqslant \alpha < \lambda} A_{\beta}^{\alpha}$. Condition (iii) implies that $A_{\alpha} \cap A_{\beta} = \emptyset$ for $\alpha \neq \beta$. Since I_{α} is μ -complete, it follows from (i) and (ii) that $A_{\alpha} \in I_{\alpha}^{*}$.

Claim. For $\alpha < \lambda$ there exists a $B_{\alpha} \subset A_{\alpha}$ such that $B_{\alpha} \notin \bigcup \mathscr{J}_{\alpha} \cup \bigcup \mathscr{J}_{\alpha}^*$.

Using the assumption of our lemma, we take $B \notin \bigcup \mathscr{J}_{\alpha} \cup \bigcup \mathscr{J}_{\alpha}^{*}$. Since $A_{\alpha} \in I_{\alpha}^{*}$, it is easy to see that $B \cap A_{\alpha} \notin \bigcup \mathscr{J}_{\alpha} \cup \bigcup \mathscr{J}_{\alpha}^{*}$ and we put $B_{\alpha} = A_{\alpha} \cap B$. Now $\bigcup_{\alpha < 1} B_{\alpha} \notin \bigcup_{\alpha < 1} (\bigcup \mathscr{J}_{\alpha} \cup \bigcup \mathscr{J}_{\alpha}^{*})$ by $A_{\alpha} \in I_{\alpha}^{*}$ and disjointness of A_{α} 's.

Hence it suffices to construct the sets A^{α}_{β} . We proceed by induction. As A^0_{γ} we take an arbitrary element of I^{*}_{0} . Assume that A^{α}_{γ} are already constructed for $\alpha < \beta$. We put $B^{\beta}_{\gamma} = \bigcap_{\gamma \leq \alpha < \beta} A^{\alpha}_{\gamma}$. Then we take $U_{\gamma} \in I_{\gamma} \cap I^{*}_{\beta}$ for $\gamma < \beta$. It can be done since $\{I_{\alpha} : \alpha < \lambda\}$ are pairwise incompatible. Clearly, $\bigcap_{\gamma < \beta} U_{\gamma} \in I_{\gamma} \cap I^{*}_{\beta}$ for $\gamma < \beta$ (by μ -completeness). We put $A^{\beta}_{\beta} = \bigcap_{\gamma < \beta} U_{\gamma}$ and $A^{\beta}_{\gamma} = B^{\beta}_{\gamma} M^{\beta}_{\beta}$ for $\gamma < \beta$. It is easy to see that conditions (i), (ii) and (iii) are satisfied.

We are now ready to prove

THEOREM 1.3. Assume MA. Then $U^*(2^{\omega}, \lambda, \omega_1)$ for $\lambda < 2^{\omega}$.

Proof. Let $\mathscr L$ be a strongly Lusin set. Denote by $\mathscr B$ the family $\{B\cap \mathscr L\colon B \text{ is a Borel subset of the reals}\}$. Clearly $\mathscr B$ is a σ -algebra on $\mathscr L$. Denote by m the Lebesgue measure. We define for $A\in \mathscr B$

$$f(A) = m(B)$$
 if $A = B \cap \mathcal{L}$.

Since $\mathscr L$ is a strongly Lusin set, the function f is well defined. Indeed, take B_1 , B_2 s.t. $A = B_1 \cap \mathscr L = B_2 \cap \mathscr L$. Then $(B_1 \triangle B_2) \cap \mathscr L = \emptyset$; hence $m(B_1 \triangle B_2) = 0$ and

finally $m(B_1) = m(B_2)$.

The function f is an atomless measure on \mathcal{B} , and \mathcal{B}/I_f with the usual distance is a separable space. Applying Lemma 1.1, we conclude that for every family $\{I_\alpha\colon \alpha<\lambda\}$, $\lambda<2^\omega$, of ideals on \mathcal{L} compatible with I_f we have $\bigcup_{\alpha<\lambda}(I_\alpha\cup I_\alpha^*)\neq P(\mathcal{L})$. Since $|\mathcal{L}|=2^\omega$, it is sufficient to show that every uniform ideal on \mathcal{L} is compatible with I_f .

It turns out that every uniform ideal I on $\mathcal L$ contains I_f . Indeed, if f(X) = 0 for $X \subset \mathcal L$, then $|X \cap \mathcal L| = |X| < 2^\omega$. Since I is uniform, $X \in I$. This completes the proof.

Our next theorem gives some information about sets of ideals on cardinals greater than 2^{ω} .

THEOREM 1.4. Let θ be the first cardinal carrying a 2^{ω} -complete 2^{ω} -saturated ideal. Assume MA. Then $2^{\omega} < \varkappa < \theta$ implies $U(\varkappa, \lambda, 2^{\omega})$ for $\lambda < 2^{\omega}$.

Proof. Let I be a 2^ω -complete ideal in \varkappa . Since $\varkappa < \theta$, there exists a pairwise disjoint partition $\{A_g\colon g\in 2^\omega\}$ of \varkappa such that $A_g\notin I$. Let $A_B=\bigcup_{g\in B}A_g$ for Borel $B\subset 2^\omega$. $\mathscr{B}'=\{A_B\colon B$ —Borel subset of $2^\omega\}$ is a σ -algebra on \varkappa . Let $\mathscr{B}=\{X\Delta N\colon X\in \mathscr{B}',\ N\in I\}$. We define for $Y\in \mathscr{B},\ Y=A_B\Delta N$,

$$f(Y) = m(B).$$

It is easy to see that f is an atomless measure on $\mathscr B$ and $I_f\supset I$. Also $\mathscr B/I_f$ is separable. For $\lambda<2^\omega$, let $\{I_\alpha\colon \alpha<\lambda\}$ be an arbitrary family of 2^ω -complete ideals on \varkappa . For every I_α let f_α be the above atomless measure. It suffices to show that $\bigcup_{\alpha<\lambda}(I_{f_\alpha}\cup I_{f_\alpha}^*)\neq P(\varkappa)$.

We construct the following sequence of families of ideals:

Consider the sequence $\{I_{f_{\alpha}}: \alpha < \lambda\}$. Put $I^0 = I_{f_0}$. Let $J_0 = \{I_{f_{\alpha}}: I_{f_{\alpha}} \text{ is compatible with } I^0\}$. If I^{ξ} , I_{ξ} are defined for $\xi < \eta$, let I^{η} be the first $I_{f_{\alpha}}$ which is incompatible with any I^{ξ} for $\xi < \eta$ and

$$J_{\eta} = \left\{ I_{f_{\alpha}} \colon \ I_{f_{\alpha}} \notin \bigcup_{\xi < \eta} J_{\xi} \ \text{and} \ I_{f_{\alpha}} \ \text{is compatible with} \ I^{\eta} \right\}.$$

We proceed in this way for all $\eta < \lambda$. Then we define $\tilde{J}_{\xi} = \{I^{\xi} \cup I_{f_{\alpha}} : I_{f_{\alpha}} \in J_{\xi}\}$ for $\xi < \lambda$. Clearly, $I^{\xi} \subset \bigcap \tilde{J}_{\xi}$ and it follows from the construction that the families $\tilde{J}_{\xi} : \xi < \lambda$ are pairwise incompatible. Now it follows from Lemma 1.1 that, for every $\xi < \lambda$, $\bigcup \tilde{J}_{\xi} \cup \bigcup \tilde{J}_{\xi}^* \neq P(\varkappa)$. The assumptions of Lemma 1.2 are fulfilled and hence $\bigcup (\bigcup \tilde{J}_{\xi} \cup \bigcup \tilde{J}_{\xi}^*) \neq P(\varkappa)$ and we get $\bigcup_{\alpha < \lambda} (I_{\alpha} \cup I_{\alpha}^*) \neq P(\varkappa)$.

2. Applications to the countable case. We begin with the following fact connecting properties U and U^* :

PROPOSITION 2.1. Let $\lambda < \mu \leqslant \varkappa$ be uncountable cardinals. Then $U(\varkappa, \lambda, \mu)$ iff $\forall \alpha [\mu \leqslant \alpha \leqslant \varkappa \to U^*(\alpha, \lambda, \mu)].$

Proof. In both cases we argue by contradiction:

 \Rightarrow Assume that $\alpha < \varkappa$ is such that $\{I_{\xi} \colon \xi < \lambda\}$ are uniform μ -complete ideals on α such that $\bigcup_{\xi < \lambda} (I_{\xi} \cup I_{\xi}^*) = P(\alpha)$. Let $J_{\xi} = \{A \subset \varkappa \colon A \cap \alpha \in I_{\xi}\}$. Clearly, $\bigcup_{\xi < \lambda} (J_{\xi} \cup J_{\xi}^*) = P(\varkappa)$ and J_{ξ} are μ -complete, a contradiction.

 \Leftarrow Let $\{I_{\xi}: \xi < \lambda\}$ be μ -complete ideals on \varkappa such that $\bigcup_{\xi < \lambda} (I_{\xi} \cup I_{\xi}^*) = P(\varkappa)$.

Let $\mathscr{A} = \{\operatorname{ch}(I_{\xi}) \colon \xi < \lambda\}$. We enumerate the set $\mathscr{A} \colon \{a_{\eta} \colon \eta < \gamma\}$, where $\gamma \leqslant \lambda$. Let $\{I_{\eta}^{\eta} \colon \xi < \lambda\}$ be the family of those ideals which have character a_{η} (it is possible that some of them appear in the enumeration several times).

For I_{ξ}^{η} let A_{ξ}^{η} be a set of cardinality a_{η} such that $A_{\xi}^{\eta} \notin I_{\xi}^{\eta}$ and let $A^{\eta} = \bigcup_{\xi < \lambda} A_{\xi}^{\eta}$. Hence $|A^{\eta}| = a_{\eta}$ and $A^{\eta} \notin I_{\xi}^{\eta}$ for $\xi < \lambda$.

Consider $J_{\xi}^{\eta} = \{X \subset \varkappa \colon X \cap A_{\eta} \in I_{\xi}^{\eta}\}$. J_{ξ}^{η} are μ -complete ideals. Write $J^{\eta} = \{J_{\xi}^{\eta} \colon \xi < \lambda\}$. The families $J^{\eta} \colon \eta < \lambda$ are pairwise incompatible and by the assumption $\bigcup J^{\eta} \cup \bigcup J^{\eta *} \neq P(\varkappa)$. Hence by Lemma 1.2 we get $\bigcup_{\xi,\eta} (J_{\xi}^{\eta} \cup J_{\xi}^{\eta *}) \neq P(\varkappa)$, and thus $\bigcup_{\xi,\eta} (I_{\xi}^{\eta} \cup I_{\xi}^{\eta *}) \neq P(\varkappa)$, contrary to our assumption.

Theorem 2.2. Assume that 2^{ω} is the first cardinal carrying a σ -complete σ -saturated ideal. Then $U(2^{\omega}, \omega, \omega_1)$.

Proof. The theorem follows from the Erdös-Alaoglu theorem, and $U^*(2^o, \omega, \omega_1)$ by the above proposition where $\varkappa = 2^o$, $\lambda = \omega$, $\mu = \omega_1$.

Ulam's problem in the countable case (i.e. $U(\varkappa, \omega, \mu)$) is closely connected with the existence of ideals I on \varkappa such that $P(\varkappa)/I$ has a countable dense set. Such ideals are called separable. Actually it is proved in [7] that $U^*(\varkappa, \omega, \omega_1)$ iff no uniform ideal on \varkappa is separable. A closer inspection of this proof gives, for every $\mu \leqslant \varkappa$, $U(\varkappa, \omega, \mu)$ iff no μ -complete ideal on \varkappa is separable. Thus the investigation of ideals I such that $P(\varkappa)/I$ has a dense set of a given cardinality seems to be interesting.

PROPOSITION 2.3. Let $2^{\lambda} < \varkappa < 1$ st measurable cardinal. Then $P(\varkappa)/I$ does not have dense sets of cardinality λ for any $(2^{\lambda})^+$ -complete ideal I on \varkappa .

Proof. Let I be a $(2^{\lambda})^+$ -complete ideal on \varkappa . Let $s: \lambda \to P(\varkappa)$; a function $t: \lambda \to P(\varkappa)$ will be called a flip of s iff, for all $\alpha < \lambda$, $t(\alpha) = s(\alpha)$ or $t(\alpha) = \varkappa - s(\alpha)$. Let F(s) denote the family of all flips of s. Clearly, $|F(s)| = 2^{\lambda}$. By definition $\bigcup_{u \in F(s)} \bigcap_{\xi < \lambda} u(\xi) = \varkappa$; hence there exists a $u \in F(s)$ such that $\bigcap_{\xi < \lambda} u(\xi) \notin I$.

Assume that $s = \{s(\xi): \xi < \lambda\}$ is such that $\{[s(\xi)]: \xi < \lambda\}$ is dense in $P(\varkappa)/I$. Take a flip u of s such that $\bigcap_{\xi < \lambda} u(\xi) \notin I$. Hence there is an $s(\eta)$ such that $s(\eta) \subset \bigcap_{\xi < \lambda} u(\xi) \pmod{I}$, but $P(\varkappa)/I$ is atomless, a contradiction.

COROLLARY 2.4. Let $2^{\omega} < \varkappa < 1$ st measurable cardinal. Then $U(\varkappa, \omega, (2^{\omega})^+)$. \blacksquare We conclude this section with the following proposition, pointed out by R. Sztencel.

6 - Fundamenta Mathematicae CIX

PROPOSITION 2.5. Let $\{f_n\colon n\in\omega\}$ be a family of atomless measures on 2^ω such that $\mathrm{Dom} f_n\neq 2^\omega$. Then there exists a subset of 2^ω non-measurable with respect to any of them.

A. Krawczyk and A. Pelc

Proof. Use the proof of Lemma 1.1. Notice that each atomless measure f_n can be extended to an outer atomless measure f_n^* . Consider $h = \sum_{n=1}^{\infty} (1/2^n) f_n^{**}$. Then h is an atomless outer measure and if $I = \{A \subset 2^{\infty} : h(A) = 0, \text{ then } P(2^{\infty})/I \text{ with the metric } \varrho([A], [B]) = h(A\Delta B) \text{ forms a complete space.}$

3. Some remarks on consistency. Our Theorems 1.3 and 1.4 give some information about the consistency of sentences $U(\kappa, \lambda, \mu)$ for uncountable λ .

Proposition 3.1. (i) Let \varkappa be a regular uncountable cardinal and $\lambda < \varkappa$. Then

$$Con(ZFC) \rightarrow Con(ZFC + U^*(\varkappa, \lambda, \omega_1))$$
.

(ii) Let θ be the first cardinal carrying a 2^{ω} -complete 2^{ω} -saturated ideal and $\lambda < \mu = \operatorname{cf} \mu \leq \kappa$. Then

$$Con(ZFC) \rightarrow Con(ZFC + U(\varkappa, \lambda, \mu))$$
.

Proof. (i) We force $MA + 2^{\omega} = \varkappa$ and apply Theorem 1.3.

(ii) We force $MA + 2^{\omega} = \mu$ and apply Theorem 1.4.

Our next remark refers to the countable case. It is a consequence of a result of R. Laver (cf. [3]), namely, that Con(ZFC+a measurable cardinal exists) implies $Con(ZFC+2^{\omega}$ carries a 2^{ω} -complete σ -saturated ideal+ $U(2^{\omega}, \lambda, \omega_1)$ for $\lambda < 2^{\omega}$). The proof, however, does not seem to generalize so as to allow the real-valued measurability of 2^{ω} even if $\lambda = \omega$. In view of that, consider

PROPOSITION 3.2. Con(ZFC+ a measurable cardinal exists) \rightarrow Con(ZFC+2° is real-valued measurable + $U(2^{\circ}, \omega, \omega_1)$).

Proof. It is possible to make 2^{ω} real-valued measurable without any cardinal carrying a σ -complete σ -saturated ideal below. Hence our proposition follows from Theorem 2.2.

- 4. Problems. We close our paper with a list of open problems.
- A. Is it possible to prove in ZFC that $U(2^{\circ}, \omega, \omega_1)$?

In view of Proposition 2.1 Problem A is equivalent to the question whether $\forall \alpha < 2^{\omega} U^*(\alpha, \omega, \omega_1)$? On the other hand, by Taylor's result and Corollary 2.4, we have $U(\kappa, \omega, \kappa)$ for all κ s.t. $2^{\omega} < \kappa < 1$ st measurable cardinal. This yields the following problem, less general than A:

B. Is it possible to prove in ZFC that $U(\varkappa, \omega, \varkappa)$ for all $\varkappa < 2^{\omega}$?

Of course, in view of the Erdös-Alaoglu theorem, problems A and B are interesting only in the case where 2^{ω} is large.

What about results of the type: non $U^*(\varkappa, \varkappa, \omega_1)$? The only one known is due to Magidor (cf. [7]): if there exists a huge cardinal, then $Con(non\ U^*(\omega_3, \omega_3, \omega_1))$.

C. Is non $U^*(2^{\omega}, 2^{\omega}, \omega_1)$ consistent with ZFC?

Notice that if we change non $U^*(2^\omega, 2^\omega, \omega_1)$ into non $U(2^\omega, 2^\omega, \omega_1)$, problem C has an easy affirmative answer. Finally, notice that for all \varkappa : non $U(\varkappa, 2^\varkappa, \omega_1)$. This yields the following problem:

D. Is $U(\varkappa, \varkappa^+, \omega_1)$ consistent with ZFC for some \varkappa (e.g. $\varkappa = 2^\omega$)?

References

- J. Brzuchowski, J. Cichoń and B. Weglorz, Some applications of strongly Lusin sets, to appear.
- [2] T. G. McLaughlin, Martin's Axiom and some classical constructions, Bull. Austral. Math. Soc. 12 (1975).
- [3] R. Laver, A saturation property of ideals, Comp. Math. 36.
- [4] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), pp. 143-178.
- [5] A. Pelc, Ideals on the real line and Ulam's problem, Fund. Math. (to appear).
- [6] W. Sierpiński, Hypothèse du Continu, Warszawa-Lwów 1935.
- [7] A. D. Taylor, On saturated sets of ideals and Ulam's problem, Fund. Math. 109 (1980), pp. 37-53.
- [8] On the cardinality of reduced products and the Boolean Algebra $\mathfrak{T}(z)/I$, to appear.
- [9] On the cardinality of $\Im(\kappa)/I$, handwritten pages.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW

6*

Accepté par la Rédaction le 23, 7, 1979