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On the number of models of the Kelley-Morse
theory of classes

by

W. Marek and P. Zbierski (Warszawa)

Abstract. A result on the number of f-models for various “second-order type” theories is
proved. The technique of a definable quantifier introduced by Keisler and Mostowski and thoroughly
investigated by Krivine and McAloon [2] has numerous applications. Here, we employ it to cal-
culate the number of extensions of a given model (with a fixed definable subset). We prove a lemma
on a definable quantifier in the case of the Kelley~Morse theory of classes — which is our principal
interest — and then generalize it to a class of theories called “set theory like”. This allows us to
handle cases of higher order arithmetics, higher order set theories etc.

We generalize the results of Mostowski and Srebray [4], and Keisler’s and our own [3].

Section 1. Models of the Kelley—Morse theory of classes. Models of the Kelley—
Morse (abbr. KM) theory of classes are of the form M = {C¥, E), where the universe
CM i3 a set and E is a binary (membership) relation on C™. For general model
theoretic reasons we may assume that the universal class ¥ of the model M is
a set and every proper class 4 € C¥ is a subset of V™. Thus, the membership E
between sets and proper classes of M is standard, although we do not assume that A
is standard.

Note, that every finite subset of 7™ is in a natural way codable as an element
of ¥ and hence we may assume that

P, (V™) = {xcVM; x — finite}= VM.

Let M be a fixed countable model of KM. By a definable quantifier Q over M
we mean a definable, monotone, additive and ¢-additive quantifier, i.e. Qis supposed
to satisfy the following conditions:

1) ME QxF— (Ex, ¥)[x & y & F(x) & F(»)],

2) if ME QxF and M E (x)F— G then M E QOxG,

3) Mk Ox[FvG] iff MEF QxFv 0xG,

4) Mk Ox(Ey)yF — (Ep)y OxF.

Every model of KM plus the scheme of choice has a definable quantifier satisfy-
ing 1)-4). ‘

We mention two examples:
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a) “There are uncodably many x such that F”
TEH[FE) = x1 )]

where xy y is (B2)[x = {u: {z, up e y}].
b) “There are arbitrarily large wellorderings x such that 7~

(x){WO(x) — (By) [WO(») & x<y & F())]}

where x<y means that x is embeddable into y,
We treat the set P(V'™) as a topological space with the usual product topology.

LEMMA 1.1. Let M be a countable model of KM with a definable quantifier O
and let W be an F, subset of P(V™) disjoint from M. Then, there is a proper countable
elementary extension M, of M such that V™' = V¥ and M, 0 W = @.

Proof. The set W is of the form W = |J W,, with all W’s closed, i.e.

new
W, = () (P(VY)\U,), where s = (s, 5,) is a pair of finite subsets of P(V™) and
sebn
xeU iff s;icx&s, nx =0.
Let Y(s, x) be a formula of KM such that

Vs, x).

Let L be the language of M, i.e. L has constants c, for every a € CM. L(d) denotes
the language obtained from L by adding a new constant d. Let p, be an enumeration
of all sentences of L true in M, g, — an enumeration of all sentences of L(d) and,
finally, r, — an enumeration of all sentences of L(d) of the form (Ex)(x ¢ V & F).

‘We may assume that all the above-mentioned formulas are restricted, that is
all quantifiers are followed by xe ¥ or x ¢ V. As in Mostowski’s original proof,
we define inductively the sequence Z, of finite sets of sentences of L(d), such that

the set Z = |J Z, has a model satisfying the conclusion of the lemma.
new

We start with Z, = {d ¢ V}. Assume that Z;, j<n, are defined and satisfy the
following conditions (c, is an enumeration of constants denoting elements of V'¥):

() pj-1€Z;and d # ¢;_1€Z;,

(i) g;-1€Z; or Tig;- €2y,

(iii) if a sentence of the form (Ex)F is in Z;, then F(c,) is in Z;, for some ¢,

(V) if rgey = (Bx)[x ¢ V& F] is in Z;, then for some s by the sentence
(Ex)[x ¢ V& F & (s, x)] is in Z; (here K and L are the converses of a pairing
function: o xw— w),

() Mk Qx\ N\Zx/d) where Q is a definable quantifier over M, A\ AZ; is
the conjunction of Z; and x/d is the substitution of x for d.

To define Z, we proceed as follows: we put Z, = Z,_; U {py—1, d # Cy1}+
Obviously, M k Ox A\ A\Z\(x/d), since Q is nontrivial.

x¢ U, iff
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:l“hen, since Mk Ox[AANZ, & g, v AAZi & T19,-,1(x/d) holds, we adjoin
to Z, the sentence g,_; or “1q,_, depending on whether the first or the second part
is true. In this way we have

Z, =2,0f{tq._} and ME Cx AAZ/(x/d) holds.

In order to satisfy (iii) we use the ¢-additivity of O in an obvious way. Finally, let
Iy = (Ex)[x ¢ V& F] be in Z, and let b = brom-

We have to find an s € bin such a way that the sentence (Ex) [xe V & F& 1 (s, %)}
can be adjoined to Z,' without destroying (v).

Replacing variables if necessary, we may write the sentence AAZ, in the form:

(Ex)[x¢ V& F& F,].
Consider the class
S = {s: T0z[(Ex)(x ¢ V& F& F, & "W (s, x))](z/d)} .

Since Q is a definable quantifier, Se M. By g-additivity of @ we have

MEQz(Es, X)[seS&x¢ V& F& F, & (s, x)](z/d),
or, equivalently,

MFEQz[Ex){x ¢ V& F&F, & (Es)[s e S& W (s, )1} (z/d) .
Suppose that b= S. Then
MEX(E)[seS& (s, x)]

since Wy, 0 M = @ and hence such an s can be found in & = by,.
It follows that
METQz(Ex)[x ¢ V& F& F||(z/d),

which implies M k 710z AAZ, (z/d), a contradiction. Thus b—S # @ and for
seb—S we have

ME Qz(Ex)[x¢ V& F& F, & (s, x))(z/d) .

Now, we adjoin the sentence (Ex)[x¢ V& F& ~1Y(s,x)] to obtain Z, and
Mk Qz AN\Z,(z/d) holds.
Conditions (i)-(v) imply that the set Z = (] Z, is consistent, complete, and

new
VM.closed and that the types {x # ¢,: ne w}and {(s, x): s € b,} are non-principal
with respect to Z. By the omitting types theorem Z has a countable model M, which
omits all these types. Obviously M, is an elementary extension of M and
M = yM m
We now prove the main theorem of this section:

THEOREM 1.2. Every countable model M of XM having a definable gquantifier
has 2°° countable elementary extensions and 2°* elementary extensions of cardinality w;.
In addition, all the above-mentioned extensions have the same universal class, namely
that of M.

Proof. Let T = |J 2° be the full binary tree of height w;. With each p € T
E<wy

we associate a countable M(p) in such a way that ¢ <y implies M(p)<M ().
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Note that if a model has a definable quantifier, then its elementary extension also
has such. We put M(Q) = M. Let p e T and Dm(p) ¢ Lim.
Assuming inductively that all M () with Dm(})<Dm(¢p) are defined and the
countable set
XY= U

&<Dm (@)

M(plE+ 17—+ IDIM(plE+1)

is disjoint from M(¢), we apply the lemma to find a countable M (p™C0>)>M ()
which omits X and whose universal class is ¥M®. Again by the lemma we find
M(p™¢1)) omitting

XO(M (900 \M(p).

If Dm () € Lim and all M(p|&), for é<Dm(p) are given, then we put M(p) to be
the union of the elementary chain M (p|&).

By construction all M (p)’s are distinct, all are elementary extensions of
M@) =M and VM9 = p¥M @

Section 2. Generalization. Given a countable 1-st order language containing
a binary predicate ¢, we say that a consistent theory ¥ in this language is “set-theory
like w.r.t. U(x)” (where U(x) is a formula with a single variable x) iff the following
holds:

a) Y contains extensionality axioms for ¢ and the comprehension schema in the
form .

(EN@Ixer = UR &F
where F is an arbitrary formula not containing y.

b) For each ne o there is an operation definable in X, which to any sequence
<Xy, wny X,y of elements of U assigns an element of U.

Tt is easy to check that the proof of Lemma 1.1 works in the case of “set-theory
like” theories. Hence, we have

THEOREM 2.1. Let Y be “set-theory like” and let M be a countable model of ¥
having a definable quantifier Q satisfving Mk 1(Qx)U(x). If W is an F, subset of
Y(UM) disjoint from M, then M has 2°° countable elementary extensions omitting W
and 27 elementary extensions of cardinality ;. In addition, the class U in these
extensions is equal to UM,

We shall now list some applications of Theorem 2.1.

2.2 (Keisler). If 3 is a countable w~model of 4, (2-nd order arithmetic with
choice scheme), then M has 2*° countable elementary extensions and 2°* elementary
extensions of cardinality w,, which are w-models.

2.3. Generalization of 2.2 to arbitrary (not ™) models of 4,.

2.3 — Theorem 1.2 of this paper.

24. Let M be a countable model of 4,, n>2, and let k< -1. There are 2%°

countable elementary extensions and 2°! elementary extensions of cardinality e,
of M with the same objects of order <k.
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2.5. An analogue of 2.4 for higher order set theories.
Consider now the case of standard models. Let ¥ be the following theory:
Y = ZFC(~) plus “P(w) exists” plus “o, exists” plus “|P(0)|>w,”.
We say that a model M of 4, has property (4) iff M is the continuum of a countable
model of ¥ whose w, is standard.
Obviously, if M has property (4), then M is a f-model. The theory Y is “set-

theory like w.r.t. U(x)”, where U(x) is “x € ,”. There is also a suitable definable
quantifier Q@ — “there is more than o, ...”.

THEOREM 2.6. Every fi-model M of A, having property (4) has 2°° countable
elementary extensions and 2°* elementary extensions of cardinality w,, which are also
B-models. In addition, all these extensions have the same height, namely that of M.

Proof. By property (4), there is a countable M, suchthat M, F ¥, M = P(w)M*
and o} is standard. We extend M, using Theorem 2.1 with the above-mentioned
quantifier Q. Since |P(w)|>w, in M, the continuum has been enlarged. On the
other hand, , in the extension is standard as it is equal to w}*. Thus, the continuum

of the extension is a f-model. H

In a similar manner we treat the case of models of KM withthe scheme of choice.
Let Z be the following theory:

Z = ZFC(~) plus “an inaccessible cardinal « exists” plus “a* ™ exists” plus
“P(a) exists” plus “|P(a)|=at ¥,

A model M of KMC has property (B)iff M is R, ., of a model N of Z with standard
(@™ and also ¥¥ = R holds.
An analogous reasoning gives

THEOREM 2.7. Every countable [-model of KMC with property (B) has 2°°
countable elementary extensions and 2°* elementary extensions of cardinality o,
which are also B-models.

Obviously an analogous property (C,) can be formulated for 4, and an analogous
theorem can be proved.

References

[11 H.J. Keisler, Model theory for infinitary logic, Amsterdam 1971.

[2]1 J. L. Krivine and K. McAloon, Forcing and generalized quantifiers, Ann. of Math. Logic
5 (1973), pp. 199-255.

[3] W. Marek and P. Zbierski, On higher order set theories, Bull. Acad. Polon. Sci. 21 (1973),
pp. 97-101.

[4] M. Srebrny, Note on Mostowski’s theorem, Bull. Acad. Polon. Sci. 22 (1974), pp. 997-1000.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WARSAW

Accepté par la Rédaction le 20. 3. 1978


GUEST




