

On the number of models of the Kelley-Morse theory of classes

by

W. Marek and P. Zbierski (Warszawa)

Abstract. A result on the number of β -models for various "second-order type" theories is proved. The technique of a definable quantifier introduced by Keisler and Mostowski and thoroughly investigated by Krivine and McAloon [2] has numerous applications. Here, we employ it to calculate the number of extensions of a given model (with a fixed definable subset). We prove a lemma on a definable quantifier in the case of the Kelley-Morse theory of classes — which is our principal interest — and then generalize it to a class of theories called "set theory like". This allows us to handle cases of higher order arithmetics, higher order set theories etc.

We generalize the results of Mostowski and Srebrny [4], and Keisler's and our own [3].

Section 1. Models of the Kelley-Morse theory of classes. Models of the Kelley-Morse (abbr. KM) theory of classes are of the form $M = \langle C^M, E \rangle$, where the universe C^M is a set and E is a binary (membership) relation on C^M . For general model theoretic reasons we may assume that the universal class V^M of the model M is a set and every proper class $A \in C^M$ is a subset of V^M . Thus, the membership E between sets and proper classes of M is standard, although we do not assume that M is standard.

Note, that every finite subset of \mathcal{V}^M is in a natural way codable as an element of \mathcal{V}^M and hence we may assume that

Let M be a fixed countable model of KM. By a definable quantifier Q over M we mean a definable, monotone, additive and σ -additive quantifier, i.e. Q is supposed to satisfy the following conditions:

- 1) $M \models QxF \rightarrow (Ex, y)[x \neq y \& F(x) \& F(y)],$
- 2) if $M \models QxF$ and $M \models (x)F \rightarrow G$ then $M \models QxG$,
- 3) $M \models Qx[F \lor G]$ iff $M \models QxF \lor QxG$,
- 4) $M \models Qx(Ey)_V F \rightarrow (Ey)_V QxF$.

Every model of KM plus the scheme of choice has a definable quantifier satisfying 1)-4).

We mention two examples:

a) "There are uncodably many x such that F"

$$\neg (Ey)(x)[F(x) \equiv x \eta y]$$

where $x \eta y$ is $(Ez)[x = \{u: \langle z, u \rangle \in y\}].$

b) "There are arbitrarily large wellorderings x such that F"

$$(x)$$
 {WO $(x) \rightarrow (Ey)$ [WO (y) & $x \prec y$ & $F(y)$]}

where $x \prec y$ means that x is embeddable into y,

We treat the set $P(V^M)$ as a topological space with the usual product topology.

LEMMA 1.1. Let M be a countable model of KM with a definable quantifier Q and let W be an F_{σ} subset of $P(V^M)$ disjoint from M. Then, there is a proper countable elementary extension M_1 of M such that $V^{M_1} = V^M$ and $M_1 \cap W = \emptyset$.

Proof. The set W is of the form $W = \bigcup_{n \in \omega} W_n$, with all W_n 's closed, i.e. $W_n = \bigcap_{\substack{s \in b_n \\ s \in b_n}} (P(V^M) \setminus U_s)$, where $s = \langle s_1, s_2 \rangle$ is a pair of finite subsets of $P(V^M)$ and $x \in U_s$ iff $s_1 \subseteq x \& s_2 \cap x = \emptyset$.

Let $\psi(s, x)$ be a formula of KM such that

$$x \notin U_s$$
 iff $\psi(s, x)$.

Let L be the language of M, i.e. L has constants c_a for every $a \in C^M$. L(d) denotes the language obtained from L by adding a new constant d. Let p_n be an enumeration of all sentences of L true in M, q_n —an enumeration of all sentences of L(d) and, finally, r_n —an enumeration of all sentences of L(d) of the form $(Ex)(x \notin V \& F)$.

We may assume that all the above-mentioned formulas are restricted, that is all quantifiers are followed by $x \in V$ or $x \notin V$. As in Mostowski's original proof, we define inductively the sequence Z_n of finite sets of sentences of L(d), such that the set $Z = \bigcup_{n \in \mathbb{Z}} Z_n$ has a model satisfying the conclusion of the lemma.

We start with $Z_0 = \{d \notin V\}$. Assume that Z_j , j < n, are defined and satisfy the following conditions (c_n) is an enumeration of constants denoting elements of V^M):

- (i) $p_{i-1} \in Z_i$ and $d \neq c_{i-1} \in Z_i$,
- (ii) $q_{i-1} \in Z_i$ or $\neg q_{i-1} \in Z_i$,
- (iii) if a sentence of the form (Ex)F is in Z_j , then $F(c_k)$ is in Z_j , for some c_k ,
- (iv) if $r_{K(J)} = (\operatorname{Ex})[x \notin V \& F]$ is in Z_J , then for some $s \in b_{L(J)}$ the sentence $(\operatorname{Ex})[x \notin V \& F \& \neg \psi(s, x)]$ is in Z_J (here K and L are the converses of a pairing function: $\omega \times \omega \to \omega$),
- (v) $M \models Qx \bigwedge \bigwedge Z_j(x/d)$ where Q is a definable quantifier over M, $\bigwedge \bigwedge Z_j$ is the conjunction of Z_j and x/d is the substitution of x for d.

To define Z_n we proceed as follows: we put $Z'_n = Z_{n-1} \cup \{p_{n-1}, d \neq c_{n-1}\}$. Obviously, $M \models Qx \bigwedge \bigwedge Z'_n(x/d)$, since Q is nontrivial.

Then, since $M \models Qx \left[\bigwedge \bigwedge Z'_n \& q_{n-1} \lor \bigwedge \bigwedge Z'_n \& \lnot q_{n-1} \right] (x/d)$ holds, we adjoin to Z'_n the sentence q_{n-1} or $\lnot q_{n-1}$ depending on whether the first or the second part is true. In this way we have

$$Z_n'' = Z_n' \cup \{\pm q_{n-1}\}$$
 and $M \models Qx \land \land Z_n''(x/d)$ holds.

In order to satisfy (iii) we use the σ -additivity of Q in an obvious way. Finally, let $r_{k(n)} = (Ex)[x \notin V \& F]$ be in Z''_n and let $b = b_{L(n)}$.

We have to find an $s \in b$ in such a way that the sentence $(Ex)[x \in V \& F \& \neg \psi(s, x)]$ can be adjoined to $Z_n^{\prime\prime}$ without destroying (v).

Replacing variables if necessary, we may write the sentence $\bigwedge \bigwedge Z''_n$ in the form:

$$(Ex)[x \notin V \& F \& F_1].$$

Consider the class

$$S = \{s \colon \neg Qz [(Ex)(x \notin V \& F \& F_1 \& \neg \psi(s, x))](z/d)\}.$$

Since Q is a definable quantifier, $S \in M$. By σ -additivity of Q we have

$$M \models \neg Qz(Es, x)[s \in S \& x \notin V \& F \& F_1 \& \neg \psi(s, x)](z/d)$$
,

or, equivalently,

$$M \models \neg Qz[Ex)\{x \notin V \& F \& F_1 \& (Es)[s \in S \& \neg \psi(s, x)]\}(z/d)$$
.

Suppose that $b \subseteq S$. Then

$$M \models (x)(Es)[s \in S \& \neg \psi(s, x)]$$

since $W_{L(n)} \cap M = \emptyset$ and hence such an s can be found in $b = b_{L(n)}$. It follows that

$$M \models \neg Qz(Ex)[x \notin V \& F \& F_1](z/d)$$
,

which implies $M \models \neg Qz \bigwedge \backslash Z''_n(z/d)$, a contradiction. Thus $b-S \neq \emptyset$ and for $s \in b-S$ we have

$$M \models Qz(Ex)[x \notin V \& F \& F_1 \& \neg \psi(s, x)](z/d)$$
.

Now, we adjoin the sentence $(Ex)[x \notin V \& F \& \exists \psi(s,x)]$ to obtain Z_n and $M \models Qz \bigwedge \bigwedge Z_n(z/d)$ holds.

Conditions (i)-(v) imply that the set $Z=\bigcup\limits_{n\in\omega} Z_n$ is consistent, complete, and V^M -closed and that the types $\{x\neq c_n\colon n\in\omega\}$ and $\{\psi(s,x)\colon s\in b_n\}$ are non-principal with respect to Z. By the omitting types theorem Z has a countable model M_1 which omits all these types. Obviously M_1 is an elementary extension of M and $V^M=V^{M_1}$.

We now prove the main theorem of this section:

Theorem 1.2. Every countable model M of KM having a definable quantifier has 2^{ω_0} countable elementary extensions and 2^{ω_1} elementary extensions of cardinality ω_1 . In addition, all the above-mentioned extensions have the same universal class, namely that of M.

Proof. Let $T=\bigcup_{\xi<\omega_1}2^\xi$ be the full binary tree of height ω_1 . With each $\varphi\in T$ we associate a countable $M(\varphi)$ in such a way that $\varphi\subseteq\psi$ implies $M(\varphi)\prec M(\psi)$.

Note that if a model has a definable quantifier, then its elementary extension also has such. We put $M(\emptyset) = M$. Let $\varphi \in T$ and $Dm(\varphi) \notin Lim$.

Assuming inductively that all $M(\psi)$ with $\mathrm{Dm}(\psi) \leqslant \mathrm{Dm}(\varphi)$ are defined and the countable set

$$X = \bigcup_{\xi < \operatorname{Dm}(\varphi)} M(\varphi|\xi + 1 \widehat{} (1 - \varphi(\xi + 1))) \setminus M(\varphi|\xi + 1)$$

is disjoint from $M(\varphi)$, we apply the lemma to find a countable $M(\varphi^{\sim}(0)) > M(\varphi)$ which omits X and whose universal class is $V^{M(\varphi)}$. Again by the lemma we find $M(\varphi^{\sim}(1))$ omitting

$$X \cup (M(\varphi \cap \langle 0 \rangle) \setminus M(\varphi))$$
.

If $Dm(\phi) \in Lim$ and all $M(\phi|\xi)$, for $\xi < Dm(\phi)$ are given, then we put $M(\phi)$ to be the union of the elementary chain $M(\phi|\xi)$.

By construction all $M(\varphi)$'s are distinct, all are elementary extensions of $M(\emptyset) = M$ and $V^{M(\varphi)} = V^M$.

- Section 2. Generalization. Given a countable 1-st order language containing a binary predicate ε , we say that a consistent theory Y in this language is "set-theory like w.r.t. U(x)" (where U(x) is a formula with a single variable x) iff the following holds:
- a) Y contains extensionality axioms for ε and the comprehension schema in the form

$$(Ey)(x)[x \in y \equiv U(x) \& F]$$

where F is an arbitrary formula not containing y.

b) For each $n \in \omega$ there is an operation definable in X, which to any sequence $\langle x_1, ..., x_n \rangle$ of elements of U assigns an element of U.

It is easy to check that the proof of Lemma 1.1 works in the case of "set-theory like" theories. Hence, we have

THEOREM 2.1. Let Y be "set-theory like" and let M be a countable model of Y having a definable quantifier Q satisfying $M \models \neg (Qx)U(x)$. If W is an F_{σ} subset of $\gamma(U^M)$ disjoint from M, then M has $2^{\infty 0}$ countable elementary extensions omitting W and $2^{\infty 1}$ elementary extensions of cardinality ω_1 . In addition, the class U in these extensions is equal to U^M .

We shall now list some applications of Theorem 2.1.

- 2.2 (Keisler). If M is a countable ω -model of A_2 (2-nd order arithmetic with choice scheme), then M has 2^{ω_0} countable elementary extensions and 2^{ω_1} elementary extensions of cardinality ω_1 , which are ω -models.
 - 2.3. Generalization of 2.2 to arbitrary (not ω^-) models of A_2 .
 - 2.3 Theorem 1.2 of this paper.
- 2.4. Let M be a countable model of A_n , $n \ge 2$, and let $k \le n-1$. There are 2^{ω_0} countable elementary extensions and 2^{ω_1} elementary extensions of cardinality ω_1 of M with the same objects of order $\le k$.

2.5. An analogue of 2.4 for higher order set theories.

Consider now the case of standard models. Let Y be the following theory:

$$Y = \mathrm{ZFC}(-)$$
 plus " $P(\omega)$ exists" plus " ω_2 exists" plus " $|P(\omega)| \ge \omega_2$ ".

We say that a model M of A_2 has property (A) iff M is the continuum of a countable model of Y whose ω_1 is standard.

Obviously, if M has property (A), then M is a β -model. The theory Y is "settheory like w.r.t. U(x)", where U(x) is " $x \in \omega_1$ ". There is also a suitable definable quantifier Q — "there is more than ω_1 …".

Theorem 2.6. Every β -model M of A_2 having property (A) has 2^{ω_0} countable elementary extensions and 2^{ω_1} elementary extensions of cardinality ω_1 , which are also β -models. In addition, all these extensions have the same height, namely that of M.

Proof. By property (A), there is a countable M_1 such that $M_1 \models Y$, $M = P(\omega)^{M_1}$ and $\omega_1^{M_1}$ is standard. We extend M_1 using Theorem 2.1 with the above-mentioned quantifier Q. Since $|P(\omega)| \geqslant \omega_2$ in M_1 , the continuum has been enlarged. On the other hand, ω_1 in the extension is standard as it is equal to $\omega_1^{M_1}$. Thus, the continuum of the extension is a β -model.

In a similar manner we treat the case of models of KM with the scheme of choice. Let Z be the following theory:

 $Z = \mathrm{ZFC}(-)$ plus "an inaccessible cardinal α exists" plus " α^{++} exists" plus " $P(\alpha)$ exists" plus " $P(\alpha) > \alpha^{++}$ ".

A model M of KMC has property (B) iff M is R_{z+1} of a model N of Z with standard $(\alpha^+)^N$ and also $V^M = R_z^N$ holds.

An analogous reasoning gives

Theorem 2.7. Every countable β -model of KMC with property (B) has 2^{ω_0} countable elementary extensions and 2^{ω_1} elementary extensions of cardinality ω_1 , which are also β -models.

Obviously an analogous property (C_n) can be formulated for A_n and an analogous theorem can be proved.

References

- [1] H. J. Keisler, Model theory for infinitary logic, Amsterdam 1971.
- [2] J. L. Krivine and K. McAloon, Forcing and generalized quantifiers, Ann. of Math. Logic 5 (1973), pp. 199-255.
- [3] W. Marek and P. Zbierski, On higher order set theories, Bull. Acad. Polon. Sci. 21 (1973), pp. 97-101.
- [4] M. Srebrny, *Note on Mostowski's theorem*, Bull. Acad. Polon. Sci. 22 (1974), pp. 997-1000. INSTITUTE OF MATHEMATICS

UNIVERSITY OF WARSAW

Accepté par la Rédaction le 20, 3, 1978