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Collectionwise normality and extensions of locally finite coverings
by

Teodor C. Przymusidski* (Warszawa)
and Michael L. Wage ** (New Haven, Conn.)

Abstract. We study the following properties of a space X:
(1) X is collectionwise normal and countably paracompact.

(2) X is normal and every locally finite open covering of a closed subspace F of X can be
extended to a locally finite open .covering of X.

(3) X is normal and every locally finite functionally open covering of a closed subspace F
of X can be extended to a locally finite open (or — equivalently — functionally open) covering of X.

(4) X is collectionwise normal.

Kat8tov proved in 1958 that (1) — (2) = (3) = (4) and raised the problem of the validity
of inverse implications. We present three examples showing that none of the implications above
can be reversed. We also prove the following.

THEOREM. A Ty-space X is collectionwise normal (resp. satisfies (3)) if and only if every locally
finite partition of unity on a closed subspace F of X can be extended to a partition (resp. locally finite
partition) of unity on X.

§ 1. Introduction. In his 1958 paper [6], M. Kat&tov studied extensions of locally
finite coverings and raised several problems that have long remained open. Consider
the following properties of a space X:

(1) X is collectionwise normal and countably paracompact.

(2) X is normal and every locally finite open covering of a closed subspace F
of X can be extended to a locally finite open covering of X.

(3) X is normal and every locally finite functionally open covering of a closed
subspace F of X can be extended to a locally finite open (or — equivalently —
functionally open) covering of X.

(4) X is collectionwise normal.

* This paper was completed while the first author was visiting the University of Pittsburgh
as a Mellon Postdoctoral Fellow (1975-76) and a Visiting Assistant Professor (1976-77).

*& Partially supported by the Institute for Medicine and Mathematics (Ohio University)
and NSF Grant 3#MCS74-08550.

The authors are indebted to Dr J. Chaber, whise remarks helped to eliminate numerous
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We define a space X to be Katétov if it satisfies (2) and to be functionally Katétov
if it satisfies (3). Katé&tov proved that (1) implies (2) implies (3) implies (4). We record
his result, using our terminology, in the diagram below.

collectionwise normal

and countably paracompact
Katétov
functionally Katétov

collectionwise normal

Katétov asked whether every Kat&tov space is countably paracompact ([6]; p. 243)
and whether every collectionwise normal space is Kat&tov ([6]; p. 244).

The main purpose of this paper is to provide negative answers to Kat&tov's
questions. The following three examples show that none of the implications in the
above diagram can be reversed. Example 1 is constructed under the assumption
of the G&del Axiom of Constructibility, V = L (see e.g. [4]) and also seems to be
the first example of a hereditarily (collectionwise) normal Dowker space.

Exampie 1. (V =1) A hereditarily normal, hereditarily separable, first
countable, locally countable and locally compact Kat&tov space, which is not count-
ably paracompact.

ExaMPLE 2. The Dowker space constructed by M. E. Rudin in [11] is a func-
tionally Katétov space which is not Katgtov.

ExaMPLE 3. A collectionwise normal space which is not functionally Kat&tov.

We also prove the following two theorems characterizing collectionwise normal
and functionally Kat8tov spaces in terms of extensions of partitions of unity and
sheding some light on the relationship between these two classes of spaces.

THEOREM 1. A Ty-space X is collectionwise normal if and only if every locally
Sinite partition of unity on a closed subspace F of X can be extended to a partition of
unity on X.

THEOREM 2. 4 Ty-space X is Junctionally Karétoy if and only if every locally
finite partition of unity on a closed subspace F of X can be extended to a locally finite
partition of unity on X.

We say that a space X is countably Katétov (resp. countably functionally Katéiov)
if it satisfies the condition (2) (resp. (3)) with coverings assumed to be countable.
Kat€tov’s proofs show, in fact, that the following implications hold.
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normal
i and countably paracompact

|
¥

countably Katé&tov

countably functionally Katétov
|

v

normal

Examples 1-3 show in effect that none of the implications in the above diagram
can be reversed.

The following counterparts of Theorems 1 and 2 hold.

THEOREM 3. A T-space X is normal if and only if every countable locally finite
partition of unity on a closed subspace F of X can be extended to a partition of unity
on X.

THEOREM 4. A4 Ty-space X is countably functionally Katétov if and only if every
countable locally finite partition of unity on a closed subspace F of X can be extended
to a locally finite partition of unity on X.

Though hereditarily normal spaces are not necessarily countably paracompact
(cf. Example 1), nevertheless we have the following

THEOREM 5. Hereditarily normal spaces are countably Katétov.

Theorems 1-5 are proved in Section 2 and Examples 1-3 are constructed in

"

Section 3. We conclude the paper with a few open questions.

Notation and definitions. Throughout this paper a cardinalis an initial ordinal and
an ordinal is the set of smaller ordinals. By cf(%) we mean the cofinality of 1. By
N, R and I we denote, respectively, the set of natural numbers, the real line and the
unit interval [0, 1].

A T,-space is called countably paracompact if every countable open covering
has a locally finite refinement. In a normal space, this is equivalent to saying that
whenever {F,},.y is a decreasing sequence of closed sets having empty intersection,
then there exists a sequence, {U,}ny, Of open sets having empty intersection
such that for each ne N, F,cU,. A Dowker space is a normal space that is not
countably paracompact. If K< X and {V}s is a family of subsets of X, then we say
that, {U}es, a family of subsets of X, extends {V },esif U;n K = V, forallse §
A subset of a space X is called functionally open (= cozero) if it can be represented
as {xe X| f(x) # 0} for some continuous function f: X — R. In a normal space,
a set is functionally open if and only if it is an open F,. A collection, 5, of subsets
of X is called discrete if each point in X has a neighborhood that meets at most one
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member of #. A Ty-space is collectionwise normal if every discrete collection of
closed subsets of the space can be separated by pairwise disjoint open sets. A family
= { fi};es Of continuous functions f;: F — I'is a partition of unity on Fif L f(x)=1

for all x e F. This partition is locally finite if the family {7 '(0, 1D} es 1s locally
finite in F. A partition 4 = {g,},cs on X F is an extension of F if g |y = f, for all
se S. A covering % of X is uniformly locally finite if there exists a locally finite open
covering ¥~ of X such that each Ve ¥” intersects only finitely many elements of /.
For the undefined notions and symbols, the reader is refered to [3].

Remark 1. Notice that in the definitions above of Katétov and functionally
Katétov spaces, we can replace the term “covering” by “family” and obtain equivalent
definitions. A family {4} of subsets of F can be extended in the specified manner
if and only if the covering {F} U {4} can be extended. We will use this equivalence
freely in our proofs and constructions. B

Remark 2. Theimplications in the first diagram are consequences of the follow-
ing two, interesting in themselves, results:

THEOREM A ([2], [6]). 4 normal space X is collectionwise normal and countably
paracompact if and only if for every locally finite covering {A}ces of a closed subspace F
of X there exists a locally finite open covering {V}sws of X such that A, V,, for
ses.

THEOREM B [1]. 4 normal space X is collectionwise normal if and only if every
locally finite open covering of a closed subspace F of X has a refinement that can be
extended to a locally finite open covering of X.

Example 1 shows that Theorem A becomes false if the sets A, are additionally
assumed to be open in F and Examples 2 and 3 show that the sequence ... “has
a refinement that” ... cannot be omitted in Theorem B.

Another interesting characterization of collectionwise normality has been
obtained by Katé&tov.

THEOREM C [6]. A normal space X is collectionwise normal if and only if every
uniformly locally finite open covering of a closed subspace F of X can be extended
to a locally finite open covering of X.

Examples 2 and 3 show that the assumption of uniformity in Theorem C is
essential. A simple example of a collectionwise normal space with a countable
functlonally open locally finite covering which is not umf01m1y locally finite is given

n [10]. On the other hand we have

THEOREM D [6]. Every locally finite covering of a collectionwise normal and
countably paracompact space is uniformly locally finite. B

Remark 3. Extra set-theoretic assumptions can be used to strengthen our
results. Assuming V = L one can construct a locally countable, locally compact
and hereditarily separable functionally Katétov space which is not Katétov and
a locally countable and hereditarily separable collectionwise normal space which is not
functionally Kat&tov (cf. [13])). ®

icm

Collectionwise normality and extensions of locally finite coverings 179

§ 2. Proofs of the theorems.

Proof of Theorem 1. < Let {F,} s be a discrete collection of closed subsets
of X, F= Uqu and let f;: F— I = [0, 1] be defined for se S by

0 ={;

Clearly the family # = { f,}..c is a locally finite partition of unity on F and hence

we can find a partition of wnity ¢ = {g,}..s on X extending F. The open sets
= {xe X: g(x)>1} are clearly disjoint and F,=U,, for s S.

= Let & = {f.}ss be a locally finite partition of unity on a closed subspace F

of a collectionwise normal space X and let B = [,(S) be the Banach space of all

sequences z = {z}ss Of real numbers such that ¥ |z/<oo, with the norm

seS
Izl = 3 Iz

se§

Denote by p;: B— R the continuous projections of B onto the real line R
defined by py(z) = z, and consider the mapping ¥: F— B, where ¥ (x) = {fi(*)}ses
for x e F. Let us observe that f; = p, o ¥ and that the mapping ¥ is continuous.
Indeed, for every x,, € F and £>0 there exists a neighborhood U of x in F and a finite
subset SoS such that for xe U

S =0, if

if xe F,,
otherwise .

se S\Sp,»

ses,.

| fixo) —JZ(-’C)|>|—S% for

Therefore, for xe U we have

P (o) =P = )= = 3 Lileo) ~£a91 <ol % =e.
Se. seSo 0

The set K = {ze B: ||zl| = 1} n ) {z€ B: p,(z)=0} is a closed convex subset
se§

of B and clearly ¥ (F)c K. Since X is collectionwise normal there exists a continuous

extension ¢: X — K< B of ¥ onto X (see e.g. [7]). Let us put g, = p,e@: X — L

One easily sees that gyF =7, and Y g,(x) = Y p{ox)) = lle(x)l] =1, hence
s&S seS

{goses 18 a partition of unity on X and extends F. B

Remark 4. A similar proof shows that the following — more general —
result holds (see e.g. [9] for the definition of a P-embedded subset):

THEOREM 1*. A subset A of a space X is P-embedded if and only if every locally

finite partition of unity on 4 can be extended to a partition of unify on X.

Analogously, P-embedded subsets can be characterized. H
Proof of Theorem 3 is completely analogous. B

Proof of Theorem 2. <« It follows from Theorem 1 that X is normal. Let
U = {U}es be a locally finite functionally open covering of a closed subspace F
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of X. For each s € § choose a continuous function /,: F— I such that AN, 10) = U,

and Jet i: F— R be defined by A(x) = 3" Ay(x). Clearly A is continuous and h(x) >0
se8

for xe F. The family & = {f}.s, where £, = h/h, is a locally finite partition of

unity on F and f71((0, 1]) = U,. Let 4 = {g},s be a locally finite partition of

unity on X extending F. Clearly the locally finite open covering ¥" = {g.*((0, 1D} es

of X is an extension of #.

= Let F = {f,},es be a locally finite partition of unity on a closed subspace F
of a functionally Katétov space X and let ¥ = {V.}ses be a locally finite open
covering of X such that £7*((0,1]) = ¥, n F, for se S. Let i*: Fu (X\V,) =T
be a continuous function defined by
fo,
/69,

Since X is normal, the functions 4¥ can be continuously extended onto X.
Let hg: X — I be an extension of /¥, Obviously, 4] ((0, 1)= ¥, and therefore the
function /: X — R defined by h(x) = Y h(x) is continuous. Choose so €S and

seS

if xe X\V,,

* =
hs () = if xe F.

put
fhs(x) H
() + 11~ R(x)],

Let ¢: X— R be defined by p(x) = 2 @4(x). Clearly ¢>0 and the family

seS

if 54 sy,

Pux) = if §=us,.

9 = {gg}ses» Where g, = o fpisa locally finite partition of unity on X' extending F. H

Proof of Theorem 4 is analogous. B

Proof of Theorem 5. Let # = {U,}1<o be a locally finite open covering
of a closed subspace F of a hereditarily normal space X. Let G, = {xe F: there
exists a neighbourhood G, of x in F such that Gz Uy = @, for k>n}. Clearly G,’s

are openin F, G, n Uy = @, for kznand F = U G,. Since X is hereditarily normal
n<w
we can find disjoint open subsets G, H* of X such that Gy~ F=G, and

HYnF= |JU, The closed set K = N(XNGY) = X\ U G¥ is disjoint from F

kzn n<e n<w
and we can find a neighbourhood H of F such that H A K=@.1etV, = Uy u X\F
and for each n>1 choose an open subset ¥, of X such that ¥, A F = U, and
VicHn () HY. The open covering ¥ = {¥,},«, of X extends % and is locally

i<a

finite. Indeed, X\H > K can intersect only ¥, and if x e X\K then there exists an
such that x e GF. But

Gy V=G n NH'«GNUGr =0, if
i<k

isk

kzn+1. &

§ 3. Construction of the examples. Since every locally finite open covering
of a separable space is countable, we infer from Theorem 5 that every hereditarily
normal and hereditarily separable space is Kat&tov.

icm®
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In [5] a normal and heredttarily separable non-countably paracompact space Z is
constructed assuming Continuum Hypothesis (Z can be made locally compact
assuming V = L). The authors do not know, however, whether Z is hereditarily
normal.

ExAmMPLE 1 (V = L). A hereditarily normal, hereditarily separable, - first
countable, locally countable and locally compact space X which is not countably
paracompact.

Since our construction is a modification of the example Z from [5], we omit
many of the details. Let us recall, that V = L implies w, = 2°.

Let X = w, be the set of all countable ordinals and let A=, denote the set
of all limit ordinals <w;. Find disjoint subsets I,, n<w, of X such that

() X= UL, and

n<ao
(2) for every Ae 4 and n<w the set {k: i+keL,} is infinite.
Sets L, are schematically shown on the picture below.

¢
@,

|

|

i
|
|
¢
i
I
I

Ly Ly Le o —
Fig. 1.

=aulLicXandlet {4,,,}5<,, be the
i<n

family of all countable subsets of X, ,. One easily finds a function ¢ from 4 onto

(o, +1)x 0 xw; such that

(3) dpncA*<h, where MFed v {0}. ‘ '

The assumption of V = L implies that there exists (see [8] or [12]) a family
{S;}sea Of subsets of w; such that

(4) S, is cofinal in A,

(5) if Scw, is uncountable, then there exists a A€ A such that §;=S, and
obviously we can assume additionally that

(6) for each A€ A there exists an m(1)<w such that §;cLy.

By induction on A we construct for each pe 4 a topology 7, on K and for_ e:dch
a<p a family &, = {By(@)}i<, of subsets of X satisfying the following conditions
(let us notice that sets By(o) do not depend on p): '

(N, t, is metrizable and for each a<p the family 4, is a base of compact

e tp ¢
neighborhoods of « in 7,

For each a<{¢,; and n<o put X, ,
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(8), Bloyc(a+1) n _ULi for k<w and aeL

o
isn

(9),, for each limit A<y and a such that A<y, if e L, and n=m(A), then «
belongs to the closure of S, in 7,

(10), for each limit A<y, if @(2) = («,n, p) and 4, = Aguyp 15 closed in
A n X, then there exists a set ¥, (independent of z) such that 4,< ¥, =¥ and ¥, is
a closed-and-open subset of X,, n p (both An X,, and pn X,, are considered
as subspaces of the space (u, 1,)).

For p= o and m, k<o we put B(m) = {m} and the conditions (7),-(10),
are clearly satisfied.

Assume that for each limit A<pe A the topology 7, satisfying conditions
(Nx(10), has been constructed. If g is a limit of limit ordinals, then the topology Ty
induced on u by the bases %, of points a<y also satisfies conditions (7),-(10),,.

Otherwise, pt = A+ for some limit 1 and it is sufficient to construct bases
Bysm = {Bi(2+m)} <, of points A+m, for m<w in such a way that the conditions
(7),-(10), are satisfied.

If (%) = (o, n, B) and the set A, = A, , is closed in . A X,.»» then since 4 is
countable and metrizable, 1* is open in 1 and 4,<2* <, there exists an open-and-
closed subset ¥, of 1 n X, such that 4, ¥, 2*. If 4, is not closed we skip this
step. Let us enumerate by x,, %,, ... all limit ordinals %< for which the sets ¥,
have been constructed (in this and preceding steps).

By (2) and (4) there exists an increasing sequence 7" = {a}s < Of ordinals con-
verging to 4 such that

@) T'n L, is infinite for every n<ow:

(ify T~ S, is infinite.

Clearly, we can decompose T into countably many subsequences 7, m<a,
each of which satisfies counterparts of (i) and (ii).

Since the set T is closed and discrete in A there exists a discrete in A collection
1G}s<. of basic neighborhoods of points o, in A and we can assume that

(i) G, nV,, = B, for every m<s such that ag ¢,V .

Let k, m<w and let A+meL,. We define sets By(A+m) by putting:

ByA+m) = {A+m} U U {G,: s>k and o,e T, n UL} .
i€n
One easily sees that conditions (D,~(10), are satisfied.
The space X with the topology determined by bases %, of neighborhoods

of points o<, is locally countable, locally compact, first countable and has the
following properties:

(11) For each uncountable Sc[Z,, there exists a e A such that
@) S,=S,
() S\Aex\(Lu UL) = X\X,,=5, (use (5) and (9)).

i<n
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(12) X is hereditarily separable.
(13) The sets F, = {J L, are closed and () F, = @ (use (8)).

k>n n<e

(14) For each open U containing F, the set L,\U is countable (use (11)).

(15) X is not countably paracompact.

(16) For each a<w,, n<w and a countable closed subset 4 of X, , there exists
a countable closed-and-open subset ¥ of X,, containing 4 (use (10)).

(17) For each Y= X and two disjoint closed subsets 4 and B of Y such that
clyd and clyB are uncountable there exist A<w, and n<o so that Y<Z = X, ,
and either cl, 4 or cl, B is countable.

Indeed, let ny be the first natural number such that clyd N L, is uncountable
and let ny be the first natural number such that clyB n L,, is uncountable. By (11)
there exist Ay,d, €4 such that I\X, ,cclyd and X\X,,,<clyB. Let
n = max{n, ny} and A = max{l, J,}. Clearly X\X, ,=clyA4 n cly B and since 4
and B are closed and disjoint in ¥, it follows that Y< X, ,.

(18) X is hereditarily normal.

Let A and B be closed disjoint subsets of a subspace ¥ of X. By (17) there exist
a<w, and n<wsuchthat Y=Z = X, and either cl, 4 or cl,Bis countable. Without
loss of generality we can assume that cl, 4 is countable. By (16) there exists a closed-
and-open countable subset I of Z containing cl, 4. Since ¥ is metrizable, there exist
disjoint open subsets U and G of Y such that ¥>U>4 and GoV n B. Clearly
BecGuUXV and (Gu YN\ nU=@.

This completes the proof of the properties of Example 1. B

ExaMPLE 2. M. E. Rudin’s Dowker space X [11] is a functionally Kat&tov
space which is not Katétov.

Proof. We recall first the definition of X. Let F= {f: N— a0,: f(1)<w®,,
for all ne N} and let X = { fe F: there exists an i e V such that o<cf(fm)<w;
for all ne N}. Suppose f and g belong to F. If f(m)<g(n) for all ne N, we write
f<g and if f(n)<g(n), for all ne N then we write f<g. The family of all sets

Uy, = {heX: f<h<g},

where f, g e F is a basis for topology on X.

Since every F, subset of X is closed ([11], Lemma 4) every functionally open
subset of a closed subspace K of X is closed-and-open in K, which easily implies
that X is functionally Katétov.

Indeed, let {U,},s be a locally finite clopen covering of K. For every xe K
let V() = () {U;: xe UNU {Us: x ¢ U} The family {V(x)} decomposes K into
a disjoint collection of clopen subsets. Since X is collectionwise normal there exists
a discrete in X collection {G(x)} of open subsets of X such that V(x)=G(x). The
locally finite family {UX}es, where U = U {G(x): xeU,}, is the required
extension.

We prove that X is not Katgtov.
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LetK = {fe X| f(n) = w,for somen>1}, and for each n>1set V, = { fe X|
f() = w;if and only if i = n or i = 1}. Clearly K is closed in X and each V¥, is an
open subset of K. The collection {¥,| n>1} is locally finite since if fe X, then
f@)<o; for all i sufficiently large, so {g € X| g<f} is an open set containing f that
intersects only a finite number of elements of {V,| n>1}. Fix n>1 and assume that
U, is open in X and V,cU,. We claim there exists g,€ X—K such that
{fe X—K| g,<f}=U,. Suppose the claim is faise. Then we can inductively choose
aset {f] a<o,}cX—(K v U,) such that f,(i) </f,({) whenever izn and f<a<w,.
(The induction proceeds as follows. Having chosen {f,| a<x} for some x<aw,,
define g by g (i) = @, when i<nand g (i) = sup f,(i) forizn Theset {fe X— K| g<f}

a<x

is guaranteed to be nonempty by the assumption that the claim is false. Let f, be
any element of {fe X—K| g<f}.) Since there are only w,., functions from »
into @,_,, there exist oy, 0y, ..., %,~, such that {&f f(i) = «; for all i<n} has
cardinality w,. Define fe X by f(i) = «; for each i<n, and f (i) = sup {f,(i)| a<w,}
for i>n. Notice that f'e ¥, = U,, but fis in the closure of { f,| «<,}. This contradicts
the assumption that U, is open, and hence proves the claim, Now suppose that
{U,| n>1} is an open extension of {¥,| n>1} to X. For each n>1, let g, be the
function guaranteed by the claim above. Define g € F by g(i) = sup {g,(i)| n>1}.
Then @ # {fe X—K| f>g}=N{U,| n>1}, so {U,| n>1} is not locally finite
and it follows that X is not Katétov. H

ExAMPLE 3. A collectionwise normal space that is not functionally Kat&tov.

For all n>0, define

W, = {fe X] f(@) = w; iff i<n and Vi(cf(f(D)<o,)] .

Let W = {J {W,},>0 and give W the subspace topology from X. We will use W to
construct a collectionwise normal space, Z, that is not functionally Katétov.

~ We assume the reader is familiar with Rudin’s proof that X is a Dowker space.
We need a few lemmas concerning W and its subspaces.

Levma A. Let I be a subset of positive integers and set W* = () {W,,: meI}.
Then W* is a collectionwise normal subspace of W.

Proof. Let s be a discrete collection of pairwise disjoint closed subsects of W*,
Since W* is a subspace of X, if we can separate the collection # in X we can certainly
separate it in W*. Rudin’s proof that X is collectionwise normal shows that some
collections called # can be separated, so we will try it on this 2#. Follow Rudin’s
argument and notice that everything works perfectly except for the phrase “since
g e X™, on line 13 of the last page of the proof of Lemma 6. She uses the fact that
ge X and s is discrete in X to conclude that there exists a neighbourhood of g
that intersects at most one element of . For each n we must either find a different
proof of Lemma 6 or show that g € W*. For each n such that U, # U,_, (forn = 1
this should be interpreted to mean U, # ©) it is indeed true that g € W*. To see
this, note that U, # U,_, implies W,cW* and, for all i<n, g@i) = 1() = o,
(since W, 0 U, # @ and for every fe W, and every i<n f(i) = ), s0 g eW,c W*.
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Now we can prove Rudin’s Lemma 6 holds for our collection 3 by induction.
Assume the desired function g exists for all integers less than some fixed . By the
comments above, if U, # U,_; Rudin’s proof shows that the nth desired function
also exists. If U, = U,.,, then we can simply let the function g of step n be the
same as the function ¢ defined at the step n—1 (or if n = 1, g = 0). B

Lemma B. For each m>1, Wy U W,, is countably paracompact.

Proof. Fix m>1 and assume that {F,},.y is a decreasing sequence of closed
subsets of Wy U W, having empty intersection. We modify Rudin’s proof that X is
collectionwise normal by constructing for each u<w,, a cover 7, of F; consisting
of disjoint open sets such that the following conditions hold:

If f<a<w; and Ve T, then there is a Ue 7, such that:

) veu,

(2) if’ V intersects infinitely many F, then 7, # #y, and

(3) if U intersects finitely many F,, then U = V.

Proceed as in Rudin’s construction, replacing statements such as “intersects
more than one term of #” by “intersects infinitely many F,”. The only part of the
construction that needs modification is the proof of Lemma 6, which is handled as
in the proof of Lemma A above. Thus the sequence {7 ,},<,, exists.

Let U,, be defined from {7,} as in [11]. Set U, = U {U,,: fe F}. Then
F,cU, for each k and () U, = @. Thus W, u W,, is countably paracompact. &

Note. Letm>1 and assume {B,},.y is a locally finite collection of closed subsets
of the space W, u W,,. Then, the family {cly B,}iey is locally finite in . To prove
this, let te WN\(W; u W,) and set U = {fe W: f<t} and F, = B, n U. Then
we can apply the proof of Lemma B to {F,},.y. In the construction of &, it is shown
that there exists a g <t such that U,, = {fe W: g<f<t} intersects only finitely
many F, and U, is open in W. B

Lemma C. Fix n>1 and let U be open in the subspace Wy u W,. If W,c U,
then there exists fe Wy such that {ge Wy: f<g}cU.

Proof. We modify the proof of Lemma 6 of [[1]. Assume the lemma is false,
that is, for each f'e W, there exists an /1 € W, such that f<h and k ¢ U. Define s; .,
as in Lemma 6 of [I1] in the casc where for all ie N #(i) = w; and n is the nin the
statement of our lerima.

For cach ordinal A<, we inductively select an f; € Fand /i, € W, \U as follows.
Define f, by letting fo(/) = Spnqp for j<n and fo(j) = 0, for j>n. Then choose
hy € W,NU such that f,<h,. Fix A<w, and assume /,& W,\U has been chosen
for cach y< A, Define f; by letting £,(/) = 8,.,5» for j<n and f,(j) = sup {h(V}y<s
for j>n. Then f; e F and there is g, € W, with f;<g;, so we can fix a function
hye W,N\U with hy>g,21,.

Define g & F by letting g(j) = w; for j<n and g(j) = sup{(}s.<p, Tor j>n.
Then g e W, yet ¢ is in the closure of {h3}1<wne WiNU. Hence U is not an open
neighbourhood of W,. This contradiction proves the lemma. B
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‘We now modify W to obtain the desired example, Z. For n,me N and A=W,

let A™™ denote Ax {(n,m)} and A" denofe A x {n}. Define

Z=WoU Wi n,meN, m>1} 0 U {W: k>1,meN}.

We generate a base for Z from the open sets in W. For each U, open in W,
and each n,me N with m>1 and sequence of integers {k;},.y, the following two
sets are declared to be basic open subsets of Z:

Unw)"™ulnW,)
and
UoU{Un W)": ik} o U {Un W) i>k}.

Z is not functionally Katétov. Let K = Z\(W{ U U {W{™}, men) and for each
m>1,let V,, = U {Wp}ey. Then {V,},,»1 is a locally ﬁmte functionally open family
in K. Yet suppose that for each m>1 U, is openin Z and U, n K = V,,. Then, by
Lemma C, for each 2 and m there exists £, ,, € W, such that {ge W,: g>f, V"< U,,.
But then if fis defined by f (?) = sup{ f, (i)}, men for eachnand m, {g e W, : g>f}"
<U,, and hence {g e W,: g>f}<cl, U, for each m. Thus {U,},.- is not locally
finite and Z is not functionally Katgtov.

Z is collectionwise normal. Let {H,}, ., be a discrete collection of closed subsets
of Z. If | {H,}.>,<= W, then a separation in W gives rise to a separation in Z. If
U {H, }u<: SZ\W, then the H,’s can be separated by disjoint open sets since Z\W
is the disjoint union of the collectionwise normal (by Lemma A) and clopen sets
W™ U Wy . It is easy to show that we will have proved the collectionwise normality
of Z once we know that if H=Z\W and H is closed, then there exists an open set, U,
containing W such that U n H = @. For each m>1, let

- W:l Y VVm - U W"m o VmeneN‘

Then 4,, is normal since it is homeomorphic to (W, U W) x(w+1) and W, U W,,
is normal and countably paracompact. Hence for each m> 1, there is a U,, open
in A, such that U, n H =@ and W, U W,cU,. Let U = J {U o1 -

The collection {U,,},,» 1 is locally finite at points in Z\W, and hence H ~ U = @.
Since W< U by construction, all we need do is show that U is a neighbourhood
of W.

Let fe W. We will show that f is in the interior of U. Set
By = (WNU) v (W™\U) .
Let m(B,) be the projection of B into W. Then since U is a neighbourhood of
Wiw W, in 4, the family {z(B!)},ey is locally finite in W, v W,. Thus, by the
note after Lemma B, the family {clpm(Bi}en is also locally finite. This implies
that f'¢ cl,(U {B), J,,SN), so there exists an open neighbourhood ¥,, of fin Wand k, e N

suchthat ¥, x {i};,, is disjoint from () {Bplen» i.€. Vux{i}ise, < U. Let V¥
= U {Vultn>:. Thén Vis open in W (by Lemma 4 of [11]) so

VOoU{Va Wy ik} o U {(Un W) i>k)

icm®
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is a basic open subset of Z that contains f and is contained in U. Thus U is open
in Z H

QUESTIONS

1. 1Is there an absolute example of a Kat&tov space that is not countably para-
compact? Is the space W constructed above an example of such a space?

2. Is every hereditarily collectionwise normal space Katétov?
3. Is every collectionwise normal countably Kat&tov space Kat&tov?

It follows from Theorem 5 that a positive answer to 3 would imply a positive
answer to 2. Let us notice that Bing’s Example (see [3], Example 5.1.23) is her-
editarily 1101ma] but not collectionwise normal, hence it is not Katgtov.
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