Calculating self-referential statements
by

C. Smoryfiski (Westmont, Il1.)

Abstract. The successful application of self-reference in- metamathematics has been somewhat
overshadowed by the even greater success of recursion theory and the occasional application of
the latter in metamathematics. This overshadowing has a two-fold negative effect on metamath-
emaltical investigations: First, the resulting de-emphasis of self-reference in expositions creates
a vacuum in which every use of self-reference is met with surprise. Second, the illusion of the greater
applicability and ease of application of recursion theoretic techniques to metamathematical problems
is nurtured. The author attempts to set the record straight: Applications of self-reference usually
require little imagination and, it appears, yield stronger results than those obtained by a compar-
able amount of recursion theoretic effort.

To establish his thesis that applications of self-reference require little imagination, the author
offers a couple of explanations. The shallowest is the statistical evidence that most known appli-
cations rely on instances of the same self-referential formula — one first introduced by Shepherdson
and termed the Shepherdson fixed point by the author. The explanation for this seems not to
be the lack of imagination of the many users of the Shepherdson fixed point — a glance at the
bibliographies of the various papers shows that most were unaware of Shepherdson’s work — but in
a very useful fact about this fixed point: It is a very simple matter to determine (the calculation
of the title) exact conditions on the provability and refutability of its numerical instances and those
of certain of its variants. To illustrate the importance of this fact for applications, the author
systematically considers several variants of the Shepherdson fixed point and performs the corre~
sponding calculations — thereby enabling him to routinely obtain a number of new results and
refinements of old ones.

The author’s contention that application of internal diagonalization (i.e. self-referential
formulae) is superior to that of external diagonalization (i.e. recursion theory) is, if only temporarily,
an established fact: He offers a number of examples (complete with fanfare) of results obtainable
both via internal and external diagonalization for which the natural internal diagonalization yields
immediate refinements which either require deeper recursion theoretic results for their proofs via
external diagonalization or are not yet so obtainable.

0. Introduction. Initially, the application of diagonalization to metamathematics
was limited to the simulation of various paradoxes to prove incompleteness results
or other, philosophically oriented (or even philosophically pretentious), results.
Since Bernays [1], the scene has changed. Self-referential formulae have been cleverly
used in a variety of ways to yield a number of (occasiopally surprising) resuits.
In Part I [33], we promised to review and extend our knowledge of post-Bernays
applications of diagonalization, and to explain away the cleverness behind them by
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means of “non-explicit” calculations of the self-referential formulae involved. This
is actually quite an easy task: An examination of the literature reveals that most
applications of diagonalization use minor variants of the same self-referential formula.

The self-referential formula in question first made its appearance in [32]. Briefly
put, the reason for the popularity of Shepherdson’s self-referential formula is the
control one has over its provability and refutability. The verification of this control
constitutes a non-explicit calculation of the self-referential formula, or fixed-point.
Following some preliminaries in Section 1, we devote Sections 2-5 to the calculation
and application of variants of Shepherdson’s fixed-point, In Section 2; we calculate
the basic Shepherdson fixed-point and give applications to the metamathematics
of consistent r.e. extensions of Robinson’s theory #. In Section 3, we generalize
the fixed-point, the calculation, and the applications to r.e. sequences of such theories.
In Section 4, the basic Shepherdson fixed-point is modified for the purpose of giving
non-uniform results. In Section 5, a functorially generalized Shepherdson fixed-point
appears. Finally, in Section 6, we consider a few other closely related fixed-points.
‘We should mention that it is possible to combine the features of the fixed-points of
Sections 2-4 and 6 into two general fixed-points, which we might call left and right
quasi-uniform modified partial Shepherdson fixed-points, and give only the two
calculations. For the sake of exposition, however, we take a more concrete approach.

The types of applications included are three-fold: i. basic incompleteness results
(Rosser [29], Mostowski [21], this paper); ii. results on semi-representability in r.c.
theories (Shepherdson [32], this paper); and iii. characterizations of X,-soundness
among r.e. theories (Friedman [6], Jensen and Ehrenfeucht [12], Guaspari [9],
this paper). Not all of the results presented nor their proofs are new: If we are to
convince the reader that non-explicit calculations offer a usable guideline to the
applications of fixed-points, we must demonstrate that they routinely: i. account
for many known applications of fixed-points; ii. yield new proofs of results originally
proven by other means; and iii. allow us to obtain new results.

The “other means” referred to are recursion-theoretic diagonalizations external
to the formal theory. Such recursion-theoeretic proofs are often prima facie simpler
than their formal counterparts. There seems to be a reason for this: The simple
proofs only yield special cases of the results obtainable. (Compare the recursion-
theoretic results of Ehrenfeucht and Feferman [3], Putnam and Smullyan [26],
and Hdjkovd and Hajek [10] with those obtained by formal diagonalization in
Shepherdson [32].) With respect to self-referential formulae, the special results cannot
be considered that special — for, we have routinely obtained improvements not
previously accessible to recursion-theoretic techniques. (Compare: a. nothing in the
literature with the uniform semi-representability result of Section 3; b. the relevant
partial results of Di Paola [24] and [25] with those of Section 4; and c¢. the result
of Ritchie and Young [27] with the sharp uniform result of Section 5.) We say “not
previously accessible” because we have, via a devious trick, been able to extend the
recursion-theoretic proofs to obtain some of the improved results — cf, Smoryfski
[34]. Some Tresults still have no recursion-theoretic proofs.
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With respect to this dichotomy of methods, we should note that P. Pippinghaus
has devised a scheme for transforming the recursion-theoretic diagonalizations into
formal ones.

The new results of this paper (and, indeed, its general orientation) grew out
of our background research on a book on the Metamathematics of Arithmetic for
Springer-Verlag. More detailed proofs of some results are deferred to this book.

We offer our thanks to: Dave Guaspari for his inspiring notation and informative
correspondence; Peter Pappinghaus for an informative discussion of diagonalization;
and to Gert H. Miiller for having provided us with an environment conducive to work.

1. Preliminaries. This section is devoted to notation and a review of basic results
of which we will make heavy use in the sequel.

Language. For convenience, we consider only the usual arithmetical languages —
each including a numeral X for each natural number x. Arithmetical formulae are
denoted by the lower case Greek letters ¢, ¥, x, 0. Special classes of arithmetical
formulae are singled out: The class of 4, formulae is the smallest class of arithmetical
formulae containing the atomic formulae and closed under application of prop-
ositional connectives and bounded quantification. The class of X formulae is the
smallest class of formulae containing the 4, formulae and closed under conjunction,
disjunction, bounded quantification, and existential quantification. The class of
formulae is the subclass of the class of X formulae consisting of the formulae of the
form Jvep, @€ 4dq.

Theories. Depending on the desired extent of the arithmetization of metamath-
ematics, we can appeal to any of a number of basic formal theories in which to work.
The basic theory for applications of the sorts i (incompleteness) and ii (semi-re-
presentability), as outlined in the Introduction, is Robinson’s Z. Results of sort iii
(characterization of Z,-soundness) require some induction. For this purpose, we use
the wastefully powerful Peano arithmetic, 2.«/. When we need to formalize an argu-~
ment, we work in a definitional extension of .o/ by constants naming primitive
recursive functions.

%-Completeness. One of the two reasons behind the popularity of £ as a basic
theory is its ability to prove every true ¥ sentence. This result is the following theorem,
which we cite with two important corollaries:

¥-COMPLETENESS THEOREM. Let ¢ be a X sentence. Then Nk @ = &I ¢.

7-SOUNDNESS THEOREM (Significance of consistency). Let I be a consistent
extension of & and let @ be a m sentence (i.e. ¢ = N for some € X). Then,
Tt = NEo.

Ay~ COMPLETENESS THEOREM. Let 7 be a consistent extension of & and let @ be
a 4, sentence. Then

i Negp < T to,
iil. NETlp <= 7+ T1o.
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Comparison of witnesses. Any number x satisfying ¢X is said to be a witness
to v, @v,. The method of comparison of witnesses is as useful in metamathematical
arguments as in recursion-theoretic ones and, for this reason, we incorporate the
notation of Guaspari [9]. If ¢ = Jv,0v,, ¥ = vy yv,, we define

Q=Y Avg [Ove A Vo, <vo1x0,],
o<y dvg[vg A Vo <o T30,] -

=y asserts that ¢ is witnessed and, moreover, it is witnessed at least as early as y is
witnessed. @< asserts that ¢ is witnessed and, in fact, it is witnessed earlier than y
is witnessed. (N. B. By the existential import of the notation, =<, we do not necessarily
have p=\¢ — this sentence is true only when ¢ is. When restricted to true existentially
quantified sentences, however, =< becomes a prewellordering — if not provably
so in weak theories. (We should mention that the need to assert comparability,
(e<¥) v (<), on assumption of ¢ or ¥, is one of the reasons for occasionally
restricting our attention to extensions of 2./ : Note that, for ¢ = v, 0v,, the least
number principle for 0 is just ¢ — . p=<¢.)) We shall be especially fond of applying
this notation in the X; case: Note that, if ¢, y are Z;, then so are o<y, p<ij.
Finally, an occurrence of ¢V in a context, (o vyt or 1<X(p v ), is assumed
rewritten with only one outer existential quantifier via the equivalence oV
<« Foy(Bvg Vv 7v0).

Reduction theorem. The second reason for the popularity of # is the for-
malization within # of a syntactic version of the Reduction Theorem.

SYNTACTIC REDUCTION THEOREM. Léf Qg ... Dy, Yty .. _, € 2. Then,
Jor all x4, ..., X1,

La. NE (oY% .. Xpmy = R F (9= Tp . %y
= Rt oXy ... Xy qs
b. NEW<p)Xg .. Xyey = B (<) Xg oo Fpy
= BEYXy ... Xy,
a. NE@<)Zo . Fyey = BF IW<0)Rg - Koy

b NEW<0)% .. By = BF oY Rg oo Ky

Hi. NEQXy..X-y of NEYX,..X,_, = &+ (p<Y)Xy ... %,y OF
A WY<P)Xy oo Ky -

Semi-representability. Let 7 be an arithmetical theory. A formula PUg ... Vyoy
semi-represents a relation ReN" if, for all x,, ..., X,_, € N, we have

T b QXg . Xyoq <> Rxg .. X,_y .

¢ represents R if @, 71¢ semi-represent R, —IR, respectively. The representation
of a function f: N"— N by a formula @u, ... v, requires that i. ¢ represents the graph
of f, and ii. ¢ satisfies a weak functionality condition: For all Xp5 eney Xy, A
X = fXg e X1, T & 9%y . X, yv—v = X,. The Zy-soundness of & together
with ¥; completeness yields the semi-representability of all r.e. relations in 4. In the
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presence of the Syntactic Reduction Theorem, this yields the representability of all
recursive relations and functions in # and all of its consistent extensions.

Codes. We ambiguously denote the code and the numeral designating the code
of a syntactic object « (a term, formula, or derivation) by "o \. In particular, ™ v, !
is the code of a formula with a free variable. For the function,

% Tpug 1o Tpx 1,

we follow Feferman [4] and write ", . An occurrence of this function in a context
W oo D is an abbreviation for Iv[e(Tev, | vy, v)AYr], where augv v, is
a formula representing the given function.

Diagonalization. The representability of the substitution function rather quickly
yields the Diagonalization Theorem — a result which one can almost describe
as the best known and least known of all results on the metamathematics of arithmetic.
Implicit in the pioneering papers of the 1930’s (Gdel [7], Godel [8], and Rosser [29]),
the Diagonalization Theorem seems first to have been singled out as a lemma worthy
of mention in an expository paper (Rosser [30]) the year following the appearance
of the Recursion Theorem (Kleene [14]). Moreover, the first explicit statement
of the definitive version the author could find in the literature is from Montague [20]:

DIAGONALIZATION THEOREM. Let vy .. v, be an arithmetical formula with
only vy, ..., v, free. There is a formula @ug ... v,_, with only vq, ..., v, ( free and such
that

B g oo Dyeg > Y0gs cres Vygs | OV e Uyy )

Proof predicates. For each n0, welet Thm}-, Ref}- denote arbitrary X; formulae
defining over N the respective relations:

T(xg, -er X, JY[Y has exactly vy, .., 0, free &
& x,="Yvg . vy y & T YT, ... %115
Ri(xg, s X,): 3P has exactly v, ..., v, free &

& X, = FI/IUO U,,_l—l&.g'l' —|]/I5€-O wee fn—l] .

For results that require formalization, we must be particular about the choice of
Thm’-. For 7 224, thereisa Z; formula Pry(vp) = Iy Provg(vy, o) for which
the most familiar properties of the set of theorems of 7 are derivable (e.g. Z-Com-
pleteness: For ¢ug...v,-q €2 with the free variables as shown, we have
T F vg .. gy — Pro(T i ... By ). When formalizing resulis, we use

Thmz(vg, <5 Vy-15 rf/’”o “nd—]): Prf(l_‘/”:'o 1.7;;—-1_!) 5
R0 wvvs Tpeis | Pl woe Vymy Pry(neg( @by ... By=1 D),

where neg is a function constant for a similarly natural representation of negation.
We finally define Cony = Pra(0=17.
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2. The unadorned Shepherdson fixed-point. Throughout this section, 7~ will be
a fixed consistent r.e. extension of Robinson’s #. For all X, formulae v, ... Uyt
Ao -+ Vy—y, With only vy, ..., v, free, define

D"Wos vy 0): (ReFG(0g, oy )V Yy o 0, ). (Thm (v, ..o DIV Y0, .. Upet) -

FIXED-POINT CALCULATION. Let @vg ... 0,_, be Shepherdson’s fixed-point:
T F Qg e Vg > B0y, ey Uy gy | PV e ey D).
Then, for all x,, ..., x,_, €N,
LI FoXg .. %oy < NEW<PTg o By
e T F 9%y . Byey = NE (<)% ... %,
Proof. For notational convenience we assume n = 0. Write
Thm(ve) = v, ™oy ,
R‘?fag("o) = Jv;0vgvy ,
Yo=Y,
= v x'vg .
Note that any of the conditions, 7 + ¢, 7+ T, Nk, Nk ¥ and hence any of the

conditions, 7 F @, 7 F T1p, NE Y=<y, Nk y<, will make ("o (and hence )
provably 4,. But

Tte = A7 FIn <z [0 L v)vihn) AV, <o, (e (To v)V 1'0,)]
= IxNE I, < [0 v)vio)a Vo, <0, (o, v v a',)]
= NF3o,(f'v; A Vo, <v;71)'2,), by the consistency of 7~

= NEy<y.
Similarly,
TF e = NEy<y.
But also,
NEY<y = Tt o or 7+ g, since ¢ becomes 4,

= J Lo or NEy<y

=T to.
Similarly,

NExy<fy = JF¢p. B

From the calculation, we can read off a number of applications. The simplest
such application is Rosser’s incompleteness theorem.

APPLICATION 1 (Rosser’s theorem). Let 7 F ¢ «» Ref2(Tp ) ThmS ("o ).
Then

i. T nott ¢,

il. I notk To.
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Proof. Observe. 7 F g «» &% o V), where , y are (say) Ju,(v, # v,). H

Rosser’s Theorem formalizes: If7 2 2.7, and ¢ is the sentence of Application 1,
then

i. 7 +Cony + T1Pr (T,

ii. 7 +Cony F 1Prg(" 1o M.

Our next application is due to P. Pappinghaus. 1t gives an independence result
for a theory &, not formalizable in another theory 77,.

APPLICATION 2. Let 7y, J | be consistent r.e. extension of #. Let

R o [Ref2(To Hv RefL (TThmS (o ) )].<.
< [Thmg ("¢ v Ref?,("Refz, ("o H ] -
Then
j.a. Ty notk o,
b. I, nott e,
ila. 77, not+ ~1Thm% ("o ),
b. 7y notF IRefF (o).
Proof., i. By the Fixed-point calculation,
Tot o = NERefS(ThmS(Tp ) )<RefS,(TRef2,(To )
= NERefy(TThmy (T )
= 7 F1Thm%,(Te ).
But
Tobo = R+FThmG (o H
= 7 is inconsistent .

Thus J, not  ¢. Similarly, 9, nott Te.
il. From 7, F 7Thm$,(T¢ ) or 75 F TIRefy (T¢ 1) we conclude

NERefS,(TThmS (o)) or  NERefy(TRef3 (o V7).

Reduction yields
NE Ref2,(TThm (¢ <Ref2,(TRefS,(o M)
or
Nk Ref)(TRef%,("¢ ) )<Ref (TThmZo ("o ) -
From these and the Fixed-point calculation, we conclude o F ¢ or I+ T,
which we have just demonstrated to be false. H
As we said in the Introduction, after incompleteness results there_are other types
of applications of diagonalization. Shepherdson proved the following
APPLICATION 3 (Dual semi-representability theorem). Let R, S be disjoint
n-ary r.e. relations. There is a Iy Jormula @ug ... v, with the free variables shown

such that
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i. ¢ semi-represents R in 7.
ii. Tl semi-represents S in I .
Proof. Let i, x be X, definitions of R, S, respectively, and notice that, if we
define
T F @ug e tyq > B0y, s Dye gy T PO e Byeq ),
then @, Tl semi-represent R, S, respectively in 7. In £, ¢ will not quite be X,
(having an extra existential quantifier), but the equivalent formula

D"(Vgs cvvr Dygs ' QUG o Doy D S 2. B
The X, semi-representation of the relation R has a curious feature: It is correct.

That is (provided we assume the diagonalization to be within % or any other sound
theory), ¢ defines R in NV as well as semi-represents R in .7 : For all xg, ..., x,_, € N,

T F@Xg . Xy <> Rxg .. X,
< NE@X, .. %,_q.

Traditionally, the recursion-theoretic constructions of semi-representations either
have not had this correctness property (Ehrenfeucht and Feferman [3], Putnam and
Smullyan [26])-or have not resulted in X, formulae (Héjkovd and Hdjek [10]). In
Smoryfiski [34], we achieve a correct ¥; semi-representation recursion-theoretically
only by mimicking Shepherdson’s fixed-point to derive a recursion-theoretic lemma.

The third type of application we offer has been described in the Introduction
as characterizing Z;-soundness among r.e. theories. While such a characterization
is not the intent of such applications, it is the most obvious common feature of these
applications. Our first application of this type is due independently to Jensen and

Ehrenfeucht [12] and Guaspari [9], and is closely related to a result of Friedman [6].
We present Guaspari’s proof.

DEFINITION. Let 7 be given.

1. 7 is Zy-sound iff, for all I sentences ¢, T F ¢ = Nk .

2. 7 has the X-disjunction property iff, for all ¥, sentences o, T Fovi
= J ko or T Fiy.

3. A X, sentence ¢ is 7 -provably 4, iff there is a X, sentence  such that
T+ e - .

4. J decides a sentence ¢ iff T+ ¢ or 7 F To.

APPLICATION 4. Let 7224, The following are equivalent:

i. J is Z-sound.

ii. I has the Z;-disjunction property.

iii. & decides all T -provably A, sentences.

Proof. The implications i=>1ii=>iii are trivial. We prove iii=-i contra-
positively. Let ¥ be a false ¥, sentence such that 7+ and define ¢ by

T Lo o (Ref2(Co Hvi)<ThmI ("o ).
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Note that, for any 0,ye 2,

a. Pt b O<0)A <O,

b, 240 — (0<y)Vv (x=<0),
whence

P 0 — [(7<0) = TO<P] .-
Letting 0 = Ref2(" ¢ v, z = Thm3(T¢ ), we see that
T F Tip o Thmi(T o HY<(RefH @ Hvi).
Hence ¢ is 7 -provably 4,. By the Fixed-point calculation, 7~ does not decide ¢. B

Jensen and Ehrenfeucht proved the theorem by means of a simultaneous diagonal-
ization which we comment on in Section 6. The related result of Friedman is an
intuitionistic generalization of the equivalence i <>ii. His sclf-referential sentence
differs from the one we use only in that he does not assume  to be ;. The underlying
calculation is slightly different and we discuss this also in Section 6.

The final application of this section is new.

DEFINITION. Let I" be a set of sentences. A sentence ¢ is I -conservative over 7~
iff, for all Y e I, we have T+ = T F{.

As first observed in Kreisel [15] (but cf. also Macintyre and Simmons [18]),
for 72254, 7| Con, is always ©,-conservative (though not necessarily independent).
For Con,, we have the following

APPLICATION 5. Let T 2Psf. The following are equivalent:

i. 7 is Z;-sound. ’

ii. Every  -independent m, sentence is X,-conservative over 7.

iii. Cony is Z,-conservative over 7.

Proof. The implications i = ii = iii are trivial (as is, indeed, the equivalence
i< ii). We will prove iii=1 by formalizing the Fixed-point calculation.

Let  be an as yet unspecified X, sentence and define

) T+ oo (P e WP ).
The Fixed-point calculation assumed only the consistency of 7. Thus, formalization
yields
1) T +Cony FPry(To h« .
Further, the proof that ¢ is 4o under the assumption Pr ("o "), together with the
significance of consistency, yields upon formalization:
) F+Cony FPr( o DV —o.
Combining (1) and (2) we get
(%) T +CongFy—¢.

Now suppose 7 is not Z;-sound. Then there is a false € X, such that ?/"‘I- Y.
Defining ¢ ‘bv (#), the Fixed-point calculation vields & not b @, but (+#) yields
F +Coun F @, whence Cony is not ¥,-conservative over 7. H
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3. The Mostowski-Shepherdson fixed-point. By generalizing Rosser’s self-
referential sentence to an r.e. sequence of consistent extensions of £, Mostowski [21]
obtained a generalization of Rosser’s Theorem. In this section, we similarly generalize
Shepherdon’s fixed-point.

Throughout this section, 7 ¢, 7 ¢, ..., will be a fixed r.c. sequence of consistent
extensions of #. For n=0, let Thm"(v,, ..., v,), Ref"(vg, ..., v,) be arbitrary X,
definitions of the respective relations

T™(Xgs - X0 I [f has exactly v, ..., v,_, free &
& x, =g .. v,y V& T, F Ty .. Xyoq]
R'xgs o X,): A3 [ has exactly vg, ..., v,_; free &

& x, =Yg .., V& T F YR o Ty q]
In analogy to Section 2, define for ¥, y 2,
(0o v Uy) (ReFY g5 vy ) VDG oo 0, ). K (ThM (g, ey D)V %G v Uy -
UNIFORM FIXED-POINT CALCULATION. Let qug ... v,_, satisfy:
RE vy v,y <> DP(vg, ...
Then, for all xq, ..., x,-; €N,
L 32T,k 0% . %oy = NEWSOT o %y
< YT, b o%; .. 8-y,
i 3y7, F X . Koy o NE (<)X, .. X,y
= Y37,k e%, .. %,y
Proof_. As before, any condition, 7, @, 7, F 719, Nk <y, NFE <, makes
@("p ) and hence ¢ probably Ay. Thus, for all

™ I
s Up—gs ' PUg .o Uy )

T,k <= NEo,
T,k Te =« NEp.
Thus the provability or refutability of ¢ is uniform in all 7, and we can simply
repeat the proof of the non-uniform result of Section 2. B

A first application is Mostowski’s geheralized incompleteness theorem:

APPLICATION | (Uniform Rosser Let RF @ o Ref% 9
<Thm®" ¢ ). Then, for all yeN,

i. T, not - g,

i 7, not b T,

DERINITION. A sequence ¢, ¢, ..., of sentences is absolutely  independent
over a theory 7 iff every theory & +{of, ¢}, ...} is consistent, where ¢, e 10,1}
and ¢° = @, ¢! = "¢

A corollary to Application 1 is this: Thereis a sequence ¢, ¢, ... of | sentences
such that, for each y, the sequence is absolutely independent over 77,. (Proof. Use

theorem).
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Application 1 to find successively sentences ¢, independent every each &~ v Qg in-
dependent over cach 7+, and 7,4 T1¢,; etc. B) We shall shortly improve
on this. First, however, we shall give some simpler direct applications.

The results of Pippinghaus and Shepherdson can also be generalized via the
Uniform fixed-point calculation. The latter reads:

APPLICATION 2 (Uniform dual semi-representability theorem). Ler R, S be
disjoint n-ary r.e. relations. There is o 2, formula @v, ... v,_ , with the free variables
shown, such that, for all y,

1. ¢ semi-represents R in T,

il. T semi-represents S in T .

As in the non-uniform case, the ¥, semi-representation is correct. In the non-
uniform case, however, this is no revelation: Letting 4 _, be # (or any other
Z;-sound theory), any uniform X, semi-representation of Rin 7 _,, 7, ... must be
correct,

The Uniform dual semi-representability Theorem has a minor corollaty —
the dual semi-representability theorem for 7 = N 7,.

APPLICATION 3. Let each T, 2Ps4. The falloywing are equivalent:
i. Each 7 is Z;-sound.
il. For all I, sentences @, \, and all p,

Tyboviy = 32(T . ko or T, ).

The less direct application promised is another result from Mostowski [21].

DEFINITION. A formula ¢uv, is absolutely independent over .7 iff the sequence
@0, o1, ... is absolutely independent over 7. )

APPLICATION 4. There is a X, formula vy which is absolutely independent
over each 7.

Proof., To prove this, we shall concoct a uniform fixed-point that simulates
the Iterated Application 1 used (parenthetically) above to establish the existence
of absolutely independent sentences.

First, some notation: We assume a primitive recursive 1-1 correspondence
between natural numbers and finite binary sequences. We write Th(z) for the length n
of the sequence, say (Zy, -, Z,—1), encoded by z. For y<lIh(z), (z), denotes the yth
element of this sequence, z,. If v, has only v, free, we define, for all e N,

#@ = AN (0D,
s<lIn(x)
where 9 = @, p' = ¢. (The sentence ¢(z) asserts that the course-of-truth-values
of ¢ up to Ih(z)—1 is just the sequence encoded by z.)
Let Thm*, Ref* be X, definitions of the following respective relations,

T*(xy, X1s X2, X3): Jzv@[p, Y have only v, free & x;, = &
& xa=" ¢ &) = x &T,F ¢(2)— YT, ;
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R*(xq, Xy, X3, X3): Azye[p,  have only vy free & x, = "y ' &
& x; =T &I = 5 & T, 3(2) — WX, .

Then choose the fixed-point ¢:
R & pug < Ref*(vg, 09, " 0o . gy NSThm* (v, v, " 0o "oy ) .
Note that, for fixed x,

Ref*(v,, X, vy, ’—(onj) = Ref'(vq, vy),
X,

Thm*(vy, X, v,, " vy ) = Thm'(v,, v,)

for the sequence of theories J,+@(z), all y and all z with Ih(z) = x. Thus,
R F % > Ref'(%, v, HKThm'(%, Tov, M,
which is not quite equal to, but is sufficiently similar to
R % — RefO(Tpx NXThm®(Tpx Y,

for us to conclude that we know how to prove ¢X to be independent of every I, + ¢i(z)
(Ih(z) = x). Treating this last assumption as an inductive hypothesis completes
the proof. For, we know every J ,+ @(z) to be consistent, whence ¢0, o1, ... is
absolutely independent. B

Notice that we have not added side-formulae 1, y to the above fixed-point. The
reason is simple: Let () =<(})X be true. Then we would have 7, I X. But then we
could not proceed to step x-+ 1 because many of the theories 7, + @(2) (Ih(z) = x+1)
are inconsistent. To circumvent this obstacle, we would add conditions

NEW=<pF = (2),=0,
NE@=<P)F = (9, =1,

to our definitions of T*, R* Unfortunately, these conditions are not X i

About recursion-theoretic proofs: Myhill [22] obtained Applications 1 and 4
by means of effectively inseparable sets. Applications 2 and 3 are new, if not novel,
and hence have not previously been given recursion-theoretic proofs. In [34], we
apply a result for a configuration of pairs of effectively inseparable r.e. sets to obtain
Application 2 recursion-theoretically.

4. The modified Shepherdson fixed-point. We now wish to consider some non-
uniform results. Let & be a fixed consistent r.e. extension of # and, for
Yo wv. Uy 5 XVg - Uy —q € Ty, define as usual

Py (0o, oos 0,)1 (Ref5(vg, oy DIV LG ... 0, 1)< (Thmly(vg, ooy 0)V 10 oo 0y y) -

We modify Shepherdson’s fixed-point by attaching additional formulae to Dy

MODIFIED ~ FIXED-POINT CALCULATION. Ler 0, Vg o Uy > 010g oo 0, have
only the indicated free variables and define
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LTk Qg . gy & 0,0 ... Upm 1V 0100 vve Uy g A (D0 cns Uy g, T 03 B,
B T7F @20 e Opmy > Bo00 e g A [0y 00 w0,y v Do, s 001, T3 D,
il T F @30 ... 0,2y > 0500 ... Vney VO3 (09, ey 0,1, T3 D),
Uu=1 > o0 e 0y g A D50y, ey By, oy .
Then, for all x,, ..., x,_, €N,
ia. T ko< TF0 or [TF Oov 8 & NFY=yl,
b. Ik gy < T+ 10, &7+ eV 0y) or NE x<f],
iLa. T kg, < T FOyAb, or [TF0,&NE Y=<y,
b Tk gy <« T+ UB,A0,) &[T F 16, or Nk y<y],
iiia. Tk oy < T+l or NEYy,
b. Tt gz e T 10, &NE y<if,
iva. T ko, < THO,&NEY<y,
b. T F g, < T+ 16, or Nk x<i,
(where each sentence @;, 0;, Y=<y, x<\ abbreviates @i Xg vn Xy g, elC).
Proof. First observe that ii reduces to i by defining 6} = oA 04, 0] = 8, and
noting 07 < 04v 0. Partsiii and iv reduce to parts i and ii, respectively, by taking 8,
to be provable and refutable, respectively.

To prove i, note that, as usual, ¢} has a propensity to be 4y, hence decidable.
To prove i.a, note

iv. T F@uug ...

Tho = TFOyvhAds.

IENE 10=<y), then @ is false and 7+ 0,. f Nk Y 7, then &% is either true and
I kv, or false and I+ 6,, whence 7 F 0,v0,. For the converse, suppose
T k8o or Tt 0yv; and NFy=<y. In the first case, evidently I F @. So assume
NEY=<xand T+ 0ov0,.If OF is true, I +6,v8; A DY, whence I F ¢. If -
is false, the fact that IV F if<(y means that N k Thm§(%o, ..., %1, @ 1), i.e. 7 I o.

We omit the similar verification of i.b. B

While there are few things of life more appealing than the above calculation
we must confess that our motivation for performing it was not purely aesthetic
We have in mind applications to the problem of semi-representing distinct relations
in distinct theories by a single formula.

APPLICATION 1. Let T4 %7y be consistent r.e. extension of & and let Ry R,
be n-ary r.e. relations. There is a formula @uv, ... v,_ 1 such that @ semi-represents R,
in I ;. Moreover, if 7y proves a Zy (1) sentence not provable in Ty, then ¢ can be
chosen 2, (my).

Proof. Let 6 be a sentence such that 77, 6, 7, not + 0. Let further ¥, € 2,
semi-represent R, in I, 7, and let Y, € Z, define R,. First define

B¢ @y« Ov[Refy ("o DV o)<Thmb (Tp, ],

where we suppress the variables for notational convenience. By the Calculation, for
any Xg, ., X,y €N,
3 — Fundamenta Mathematicae CIX
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Tob 01%5 o Koy = T b0 or NEYoX, .. X,y
<> NF Yo% o Xyy
<> Rxgp . Xpoy «

Tk @iXg. Xyy, since J,H+0.

Thus ¢, semi-represents Rg in g and N"in 77, . Letting ¢ = ¢y Ay, we see that ¢
semi-represents R; in 7. ‘

As to the logical form of g, if 8 € X, then prenexing ¢ will make it almost ¥, —
¢ has a few extra existential quantifiers. However, even in £ the class of X, formulae
is provably closed under existential quantification (cf. [2]). If O e n,, use a dual
argument. B

APPLICATION 2. Let 7 o, T be incomparable r.e. extensions of & and let Ry, R,
be n-ary r.e. relations. There is a formula @u, ... v,_, such that ¢ semi-represents R;
in T ;. Moreover, if each 7 ; proves a X, (r,) sentence not provable in 7, .;, then ¢
can be chosen X, (ny).

Proof. Let 7+ 0;, 7,_; notF 0; and let ;e >, define R;. Letting
7o ) = (Ref5- (@ DV )<Thmi (o),
define
Rt oA Dy (o WO Ay (oD,
again suppressing variables. For all xq, ..., x,_, € N, we have

T b oXg . Xyey = T F 0 APy, OF
(T kO Ay, VOENEYR, ... %, 1)
< NEY, Xy oo Xy ©
Hence ¢ semi-represénts R;in 7.
The complexity statement follows as before. B

Application 2 trivializes in the case in which 77, 97, are mutually inconsistent.
But, in that case, something more holds:

APPLICATION 3. Let Ty, 7y be consistent r.e. extensions of & and assume them
mutually inconsistent. Let (Ry, So) and (R, , Sy) be pairs of disjoint n-ary r.e. relations.
There is a formula @vy ... v, such that

i @ semi-represents R, in T,
ii. "¢ semi-represents S; in ;.

Moreover, if each theory proves a Xy sentence refuted by the other, @ can be
chosen 2.

Proof. Let 7, F 0;A 710, ., let ;, x; be ¥, definitions of R;, S;, respectively,
and finally let

259 ) = Ref7(To DV )<(Thm%y,(Tg Hvy,) .
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Defining
RlEo o Ay o Yo, Adl (Toh,
the Calculation yields: For all xq, ..., x,.; € N (suppressing their mention),

Tibo < T FO0_Ad5 _, or (T;F60,_;:n @5 VOENF =y
< NFy,<y
e Nl:l:l’iﬁ

Tk 710 = T3 F U0 %, ) &(T i+ 10, iA PF,_,v8) or NE ;<)
< NF <y,
< NEy, B

We leave to the reader the investigation of further applications to finite con-
figurations of theories and relations, noting only that, by results of Guaspari [9],
there are infinite r.e. chains of theories, 7S, <... such that any formula o,
must semi-represent the same set from some point on in the sequence.

Applications 1-3 compare favourably with the results so far obtained recursion-
theoretically. Di Paola ([24] and [25]) prove the special cases of Applications 1 and 2
in which R, and R, have a recursive interpolant and intersection, respectively. In [34],
we show that Application 1 can be given a completely recursion-theoretic proof
by a simple appeal to di Paola’s partial result and our uniform semi-representability
result. Applications 2 and 3 have yet to be obtained recursion-theoretically.

5. The functorial Shepherdson fixed-point. The Reduction theorem, which is a key
component in the recursion-theoretic mechanism behind the Shepherdson fixed-point
and its variants already discussed, is a special case of the Selection theorem. As the
Reduction theorem has its syntactic counterpart, so has the Selection theorem:

SYNTACTIC SELECTION THEOREM. Let ¢q0q...v,€2,. There is another
Pvg ... v, € Xy, which we denote by Sellp,vy ... v,]vg ... v, such that

LRE QU ... Uye y DA PV o Dy g V' — ¥ = 1,
il. ZF vy ... v, — @0 ... Oy,

iii. For all xq, ..., X,.1 €N,
NE 3,0 % ... ey = NE J0,0Xy ... Xyeq 0y -

Moreover, writing @uvg ... v, = Jofovy ... v,, we can assume
iva. & Fyovg ... v, — v, <oV o<,
b. For all xeN,

R ovg .. v, X — X<V,

We shall not prove this here. Essentially, Sel{op,]v, ... v, asserts, for the given
Vg, «es Uy—y, that v, is the value first witnessed to satisfy ¢, v, ... v,. The proofs
of the various parts of the theorem are unproblematic if we replace # by
3
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Bt = RB+Yvov,(ve<v, Vv, <vo). Working in # requires a small trick and some
minor bookkeeping.
We continue to assume Z to be a consistent r.e. extension of 4.

FUNCTORIAL FIXED-POINT CALCULATION. Let, for vy ... v,€ X},
Tt ovg ... v, > Sel[Ref5 T Hviplog ... v, -
Then, for all xy, ..., Xy—y, X, € N,
i TF@Xy... %, < NESel[yvg ... 0,]1%0 ... %,
. T F 19Xy .. %, < Ay # %, F 0%y .. Kyt 7
< 3y # x,NE Sel[Yvg ... v,]%0 .o Xyt J-

The proof is fairly straightforward. First, one notes that conclusion i of the
Syntactic selection theorem yields 7 + X4 ... X, — 19X ... X,~, J for any p # x,.
Thus, the condition 7 | ¢X,... X,, in addition to the co nditions N F Sel[y/]%; ... X,
and 7 F 19X, ... X,, makes ¢ provably 4, The customary argument is now
possible. We leave the details to the reader.

Our first application is a slight improvement of a result of Ritchie and Young [27]
and Ritter [28].

APPLICATION 1. Let f be an n-ary partial recursive function. There is a formula
Qvy ... v, € Xy such that, for all xg, ..., x,€N,

i T FeXy .. Xy < fXg o Xyey = Xy,

o JF 19Xy .. X, < Ty 52 x,(y = frg o Xy t)s

. T F QUy e Uy (DA QUG v Dy gV — 0 = 1",

Proof. Let Yy ... v, be a X; definition of the graph of f and define

Tt @ug ... v, +> Sel[Ref5" (T HYvy]. @

By Application 1, every partial recursive function is (correctly) semi-represent-
able in J~ by a X, formula — where we say that a partial recursive function f is
semi-represented by ¢ if, as in i, ¢ semi-represents the graph of f and, as in iii, some
unicity condition is satisfied. By conclusion ii of the Application, we can even impose
some control on the refutability of ¢X, ... %, when fx; ... X,y % x,. Without this
additional control, the semi-representability of fis easily established as a corollary
to the Syntactic selection theorem: If  is a correct Z; semi-representation of the
graph of f; then Sel[\/] is a correct X; semi-representation of f.

One use of the additional condition ii is this: The Dual semi-representability
theorem can be proven as a corollary to Application 1. For, let R, S be disjoint
n-ary r.e. relations and define f by

)0, Rxg..xyey,
Sy e Xymy = {1, S oo Xpey -
If @, is'the semi-representation of f supplied by Application 1, then QUG os Vyeny
= ;0 ... 0,1 0 offers the dual semi-representation.
Our second application is a proof via diagonalization of a theorem of Kripke [17],
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APPLICATION 2. Let 7 | v, < Sel|Reti(vy, “@v, Dvg. Then, for all
x,yeN.

i. J nott ¢x,

il. 7 nott T¢xX,

i if y #x, T F WexAed).

In words, @, is a formula each of whose instances is independent and any pair
of whose instances is inconsistent. In terms of the negations, it generalizes the failure
of the =;-Disjunction property: There are @,y en, such that 7 F v, but
J mothk ¢, 7 notky. As the Application is so simple, we omit the proof.

There is a uniform functorial Shepherdson fixed-point which allows us to extend
Applications 1 and 2 to r.e. sequences of consistent theories. We leave the details
to the reader.

We do not consider a modified functorial Shepherdson fixed-point since the
extra sentences adjoined will usually destroy the unicity condition.

The semi-representability of partial recursive functions was originally proven
recursion-theoretically in [27]. In [34] we supply an additional recursion-theoretic
lemma allowing a recursion-theoretic proof of the slightly more powerful Appli-
cation 1. This proof uniformizes. Kripke [17] proved Application 2 by appeal to the
semi-representability of partial recursive functions and the Recursion theorem.
A uniform proof via effectively inseparable sets ([23]) can also be given.

We should remark that the proof in [28] of the semi-representability of partial
recursive functions used a self-referential formula which we would describe as
a modified partial Shepherdson fixed-point (cf. the next section).

6. Other fixed-points. In the Introduction to Part I ([33]), we announced that
these two papers would constitute a sort of survey of self-referential formulae with
the present paper devoted to the more applicable ones. Our survey of applicable
self-referential formulae has been a bit narrow — we have really considered only
one such formula. In this final Section, we comment on a few other notable examples.

For convenience, we shall consider only sentences where possible.

We begin with the most Shepherdsonesque fixed-points.

Friedman’s fixed-point. For intuitionistic theories Z containing Heyting’s
arithmetic, Friedman [5] used the fixed-point,

T b o (RefH{To WVip)<Thmi(Tp B,

where i = Juglf'v, is not necessarily Z; (and so is not really a Shepherdson fixed-
point). In order to apply @ when ¢ £y, Friedman had to assume that 7~ had the
Disjunction property: For all sentences 0y, 0,,if 7 F0,vé;,then T F ot T F 6.
On this assumption, one can actually calculate . First, define a sentence v, 0v,
to be formally witnessed in 7 by a number x if J F 6%, Then, for y = vy,
¥ = dvgy’, if we define

T ko e (Refr(To Hvi)<(ThmAHT o Hvy)
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and assume Z to have the Disjunction property, then
T b < Y=<y is formally witnessed in 7 .
‘With respect to Friedman’s fixed-point, this reads
T F ¢ < Y is formally witnessed in .
Since Thmy € ¥,, evidently
T Fy — ovThmy(T o),
whence
Tty =Tte or FTFThmG( o).
But the Disjunction property implies the Z,-Disjunction property, which even in-
tuitionistically implies X,-soundness, whence 7 + Thm2(" ¢ ) = I F ¢, and
Try =Tte
= is formally witnessed in 7 .
This last implication is a result which surprised a number of proof-theorists (the

author included). Theoretically, the present discussion removes some of the mystery
behind it.

So much for our digression to intuitionistic metamathematics.

Shepherdson’s partial-Shepherdson fixed-points. In addition to the basic She-
pherdson fixed-point, Shepherdson [32] also considered the weaker fixed-points,
T to & -wﬁTthr(Frplj),

Tty & Refa(Co, )<y,
and offered the partial computations:

T te, <« NEY,
T F N, = NEy.
Shepherdon’s original application of these fixed-points was, of course, non-dual
semi-representability. These fixed-points and their mild generalizations,
T ko3 = Y=<(ThmG(o; Hvy),
T Foy o (Ref2(To, Hv =y,
which calculate to,
T Fos < NFY<y,
T F e, < NEy<y,
are rather popular among those who do not need to control both provability and
refutability in an application — either becausé they are not interested, or because

the coutrol is already there because the side formula (e.g. ¥ in ¢,) is implied by the
extra disjunct (here, Thmo( @, ).
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‘We promised in Section 2 to comment on

Jensen and Ehrenfeucht’s fixed-points. Jensen and Ehrenfeucht [12] proved the
equivalence of Z;-soundness and the decidability of all provably 4, sentences by
means of the simultaneous diagonalization:

Tty o (Refo{T o, V) <Refo(T o, D,

T+ @z« Refz(" o, D<(Ref7(Toy D).
The claim is that, if i is a false X theorem of 7, then 7 I ¢, < 19, and F does
not decide ¢4. Evidently, 7 F "1(p; A ¢,) and T+ — @,V @,. Thus, if 7+,
we have J F @y <> Tlp,. The partial calculation of the partial Shepherdson
fixed-points yields (<X and < are interchangeable in these matters),

T+ gy < NERefo(T o, '<Y),
TF g, < NERefH o, Hvyp.
Since N not ki we have e.g.
TE gy < NERefI (T, ).
But this yields
T Fe, < T F o,
while the equivalence J F ¢; < @, yields
Ttey T "¢,
and ¢, is not decided by Z. How does this compare with Guaspari’s proof? We
note that, if we make illegitimate substitutions based on the equivalence @, <+ ~1¢3,
we obtain
¢y © (Refo("p, WVP)<Thm3 (o, ),
@, < .TimH (o, H<(Ref3( @, Nvi).
which are the formulae used in Guaspari’s proof, presented in Section 2, of the
result.

OPEN PROBLEM. Find other applications of simultaneous diagonalization.
Occasionally, such an application ought to be more efficient than a corresponding
application of a single diagonalization.

We should also comment on

Ritter’s fixed-point. In the last section, we remarked that Ritter [28] proved
the semi-representability of partial recursive functions by means of a modified partial
Shepherdson fixed-point. In simplified form, the fixed-point is

T+ ooy > Sel[fugvsla [3U2¢U0UZ<T11H1§’(U0s o1, " ooty V1.
where
i, e X, defines the graph of a unary partial function f,
ii. We assume the two existential quantifiers of Jv,) to be contracted.
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Assuming a modified partial calculation, we get, for all x, ye N,

T Foxy < T+ Sel[fvyv,]37 & N E JvfXv,
<« NE Yy
< fx=y.

To conclude the second equivalence, note that the unicity condition yields, for x
in the domain of f,

Tt Selfpogv, 135 < fx = .

But the assertion N F Jv,/%p, means that x is in this domain.

Guaspari’s fixed-points. Guaspari [9] proves the existence of independent 7, (2,)
sentences which are - (r;-) conservative over a given J 2 #.s/. The proofs require
characterizations of such sentences and two fixed-points of the forms

ey,

T roy o Pra(T0 D=<x(To N,
g Ve,

T F s o Il (vo, Ty DPra(Te, M,

OPEN PROBLEM. Give a good accounting for the success of Guaspari’s fixed-
points. How general can a Guaspari fixed-point be ? It may be that some conditions
have to be imposed on ¥, x for a smooth calculation. How much uniformity can be
built into Guaspari fixed-points ? The unboundable existential quantifiers of Pyy @
preclude an easy uniformization.

Hierarchically generalized fixed-points. The literature abounds with hierarchical
generalizations of the fixed-points we have been discussing. Cf. e.g. [5], [11], [12],
[13], [16], [19], and [31]. While the applications can be novel (especially Kreisel
and Levy [16]), the fixed-points usually are not. One works in 7' 2&./ where truth
definitions, Tr,(* ) for sentences of bounded complexity are available (with occasionally
useful provable closure properties) and replace Pry(v,) by

2

Jv, [Tr W1) APT y(imp (01, ”o))] s

which asserts that the formula with code v, is derivable from some true sentence of
complexity at most #. In any non-standard model of #.27, 2,4+ Tormulae behave
like X, formulae relative to the true sentences of complexity at most n. Thus, in any
non-standard model of 7, the underlying calculation can be made. Hence, if the
application in mind is sufficiently invariant, it can be made. With these considerations,
we can cavalierly dismiss the hierarchically generalized fixed-points as being un-
problematic.

There are, of course, other fixed-points worth discussing. Probably, though, we
have considered sufficiently many to have demonstrated the usefulness of the program
of fixed-point calculations. So we shall stop here.
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On order locally finite and closure-preserving covers
by

Rastislay Telgarsky (Wroctaw) and Yukinobu Yajima (Yokohama)

Abstract. The present paper deals with structural properties of the covers and contains the
order locally finite sum theorem and the closure-preserving sum theorem for the covering dimension.

The purpose of this paper is to study structural properties of the covers and,
besides, by mean of that properties, to derive two general sum theorems for the
covering dimension dim. Section 1 contains a characterization of order star-finite
open covers. There are many tesults (cf. [2], [7], [8] and [9]) dealing with spaces
endowed with two order locally finite covers {E,: {<a} and {U;: & <o} such
that Ey is closed and has a topological property 2, while U, is an open neighborhood
of E, for each {<a. In Section 2 a structure of such spaces is described and, in
particular, the order locally finite sum theorem for the covering dimension is estab-
lished. Finally, Section 3 is concerned with closure-preserving closed covers con-
sisting of countably compact sets, where the closure-preserving sum theorem for the
covering dimension is proved. The last result turns out to be a special case of a state-
ment established by a topological game.

The set of natural numbers 1, 2, 3, ... is denoted by N, while natural numbers
by k, m and n. Ordinal numbers are denoted by o, ¢, n and &

Let {4;: ie I} be an indexed family of subsets of a space X. We shall denote
by {A;: ieI}* the set of all points x € X such that the set {iel. Un 4, # 0}
is infinite for each neighborhood U of x.

Let us note several properties of the operation :

(@) {d;: iel}* = 0iff {4;: iel} is locally finite.

(b) {4;: iel}¥ is closed in X.

(&) I U={d;: ieI}*, where U is open, then {4;—U: iel}* =0

(d) If B4, for each iel, then {B;: ie D¥c{d; iel}¥.

1. Oxder star-finite covers. A family {4;: i€ I} of subsets of a space X is said
to be order star-finite [9], if one can introduce a well ordering < in the index set [/
so that for each i e I the set 4; meets at most finitely many 4; with j<i. Since
every well ordered set is order isomorphic to an initial segment of ordinal num-
bers, we may use the notation {4;: <} instead of {d;: iel}.
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