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-Algebraic topology for proper shape theory
by

R.E. Goad (Huntsville, Tex.)

Abstract. Theorems are proved which provide analogs in the proper shape category for the:
clagsical Whitehead theorems and Hurewicz theorems. These provide an analog for the homology
version of the classical Whitehead theorem. We define new algebraic functors which are obtained.
from known functors by a standard process and we provide an analog of standard obstruction
theory which is valid in the proper category.

Let f: X — Y be a continuous map. In [12], Whitehead shows that if X and ¥~
are CW complexes and if f: m,(X) — m4(¥) is an isomorphism then fis a homotopy
equivalence. This theorem has been very useful in subsequent work and it has been
modified by means of the Hurewicz theorem and Universal coefficient theorems
so that it is more easily aoplied. In [4], Farrel, Taylor and Wagoner show that if fis
in a certain nice category and fis properly o-connected and fy: 4 (X, {x}, 7y, nocov).
—A(Y, {y}, my, nocov) is an isomorphism, then fis a proper homotopy equivalence.
They have also obtained homology and cohomology versions of this theorem. In [5]
and [6], Mardesi¢ obtains shape versions of these theorems, using pro groups.

In this paper, corresponding theorems are obtained for the proper shape category,
using a “Pro” version of the “proper functors” of [4]. In the course of developing
this theory, we obtain a version of obsttuction theory in the proper category, a Hure--
wicz theorem for proper shape theory and a method for associating an inverse system'
of finite dimensional locally finite simplicial complexes to a finite dimensional locally
compact, paracompact Hausdorf{ space.

I. Notation and definitions.

1.1. DEFRINITION. A continuous function is proper if the inverse image of each.
compact set is compact. A topological pair (X, A) is proper if the inclusion of 4
into X is proper. ¢ & hindicates that g and /4 are homotopic via a proper homotopy..

1.2, NotaTioN, Let D represent the category whose objects are topological
spaces and whose morphisms are continuous functions. Let G represent the category
whose objects are groups and whose morphisms are homomorphisms. Suppose C
is a subcategory of D. We indicate some other categories by the following notational
system:
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C? is the category of pairs of objects of C.

C' is the category whose objects are objects of C, but whose morphisms are
proper morphisms of C.

C, is the category of objects of C with base point.

These modifications can be used in conjunction: C2 is the category of pointed
paits, Cg is the proper category of pointed spaces, (C’)? is the proper category,of
pairs, etc. The following definition is used for C§ and (Cg)*: A set of base points
for an object X of C', [4], is a set {x,},c satisfying:

1) {x}zcw is a locally finite subset of X,

2) for any compact subset of X, any infinite component of the complement
{i.e. one not contained in any compact subset of X) intersects {x,},.. and

3) any subset of {x,},. . satisfying 2 must have the same cardinality.

We will consider C, as a subcategory of Cj by identifying (X, xp) with
(X, x9, %5). We will apply these constructions to each of the following three
subcategories of D: k

1) P is the full subcategory whose objects are simplicial complexes,
2) T is the full subcategory whose objects are locally compact metric spaces,
3) W is the full subcategory of T whose objects are ANR’s for metric spaces.

II. A-groups and Pro-groups. The reader is referred to [5] for an excellent de-
scription of the Pro construction. Roughly, a pro-category is obtained from
a category C as follows: An object of Pro-C is an inverse system of objects and
morphisms of C, denoted A = (4;, p;;: A;— A;, A). A morphism in Pro-C from
Ato B = (B, q,,, M)isacollection of morphisms of C: f = (f: M—A,f,: A;y—B,).
The bonding maps are required to commute with each other and the coordinate
maps of each morphism are required to commute with the bonding maps, at least
when composed with some bonding map of the domain. The category for which we
obtain our main technical result is Pro(£3)>.

We recall the “4” construction of [4]:

IL.1. DEFINITION. Let F: P§ - G be a functor and let (X, 4, {x,}oc.) be an
«object in (Po)?. 4((X, 4, {x,}), F) is the pullback in the following diagram:

A((X, 4, ]{x,,}), F) > [T (F(X. 4, )

} ¢
lim [T (FOXNK, ANK, %) [T (F(X, 4. x,))

aed ae st
CPT -
KS XY (F(X\K, ANK, x,)) a;a(F(X’ A.x))
aeod

‘where the inverse limit is taken over compact subsets K of X and F(X\K, A\K, X
is taken to be 0 if x,e K.
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If £ is a morphism of (Pg)?, the homomorphism induced by f will be denoted
by 4(f, F). :
"~ We will need the following lemma (c.f. Theorem 1.2.4 of [117).

11.2. LeMMA. Let [ (X, A, {x},c) — (¥, B, {V}sea) be a morphism of (Pg)?
and suppose A(f, m,) = 0. Then, for every compact subset C of Y, there is a compact
subset D of X, D2f~X(C), such that f,: m(X\D, A\D, x,) — m{¥\C, B\C, f(x,))
is zero for all but finitely many x,.

Proof. Suppose not, then there is a C such that for all compact D=2/~1(C),
there are infinitely many x, such that the map is non zero. For each such o and D,
choose a z,;, in the domain which does not go to 0. We will construct an element y
of A((X, A, {x}), ) which goes nontrivially through the following composition:

ﬁHﬂnk(Y\C, B\C, yp)
Iy L1 £
A((X, 4, {x}), m)— 4((Y, B, {y}), m) — m\—c,m .

pes
First choose a compact exhaustion {D;}{Z of X, with D, = f~Y(C), and well-
order /. Now for each element o e o, assign one of the D, say Dy, and anelement
Yo € T XN\Dy(ay, ANDyy(qy» X,) inductively as follows: assign Dy to the first « and all
those following it until you hit an «, for which a z,,p, is defined. Then to u<a,,
assign the element 0 € m,(X\D;, A\Dy, x,) (recall that this is defined to be the zero
group if x, € D) and assign D, and z, 5, to «;. Now, begin assigning D, and 0
until you hit an a, such that z,,p, is defined and f(x,,) 5 f(x,,). This can be done,
as there are infinitely many « for which z,p, is defined and only finitely many o
satisfy a<ay or f(x,) = f(x,). Of course, y,, = z,,p,. Continuing in this way,
obtain a sequence {y,},e  Such that y, # 0 = y, = z,p ., and y, # 0 # y. = f(x,)
# f(x,). This sequence determines an element, y, of 4(X, 4, {x}) in a fairly
straightforward way: Its projection by the horizontal arrow has a-coordinate iy,
where i is the inclusion. Its other projection has D;-coordinate [{g,y,} ] Where

97 (XNDyy » ANDyg» %,) = (X\D;, AND;, %)

is inclusion whenever Dy, 2 Dy, and‘g* is O otherwise, and the square brackets
denote equivalence class in the quotient group. Observe that we have only used
a colinal sequence of the compact subsets of X, but this, of course, suffices to de-
termine an element of the inverse fimit. Also, we have used the standard construction
of the inverse limit as a subspace of the cartesian product, so the D;-coordinate
makes sense. Note that the D, -coordinate of y goes nontrivially into the C-coordinate
of A((Y, B, {¥}). m), so y is the clement we wished to construct. An immediate
corollary is that we may assume D is chosen so that f, is zero for all base points
simply by enlarging D to contain the finitely many exceptions.

113, Lemvia. Let (X, A, {X}ue ) and (¥, B, {75} a) be objects in (Po)* with
dimension of XNA<n and the n—1 skeleton of X, X" "' 4. Then if f: (X, 4, {¥Faeca)


GUEST


12

R.E. Goad

— (¥, B, {¥s}uca) is a proper map such that A(f, n,) = O, then f deforms properly
reld and {X,},c o 10 @ map into B.

Proof (cf. 3.2 of [4]). Write X = 4 U P U Q where each of P, Q is the disjoint
union of finite complexes P =P; UP, U .., Q= 0, U 0, .. We show that
f14 L P can be properly deformed rel4 down into B. The proper homotopy ex-
tensjon theorem [4] and a repeat of the argument, then completes the theorem.

According to 3.3 of 4, it suffices to show: (i) For each i=1 f: (P;, A P)
— (Y, B) deforms reld n P; down into B, and (ii) Given any compact set C< Y,
there is a compact set D ¥, D2C and a positive integer m such that f maps
(Pi, 4 0 Py) into (YND, AND) whenever im and such that the map f: (P;, 4 N P,)
— (YN\C, B\C) deformis rel 4 n P; down into B\C within ¥\C. Since 4(f, n,) = 0,
we get 7,( ) = 0 and so, we may push the n-skeleton of P, down into B one simplex
at a time. Extending to all of P; via the homotopy extension theorem and stacking
the homotopies provides a homotopy of P; which carriers all of P} into B. Thus,
condition (i) is satisfied.

To get (ii), let C<Y be compact. As 4(f, m,) = 0, there is a compact set D
containing C such that m,(f): m,(X\f~1(D), ANfH(D)) — m,(¥\C, B\C) is the
zero homomorphism. Choose m so large that whenever j=m, f (P is contained inan
infinite component of Y\D. Then ,(f): m,(P;, P; n A) — m,(X\f~1(D), ANf~1(D))
— T,(YN\C, B\C) is the zero homomorphism and as above, we obtain that
F2 (P, A Py — (YNC, B\C) deforms reld n P; down into B\C within Y\C.
This choice of D and m satisfies hypothesis (ii) of [4] Lemma 3.3.

IL4. DerNITION. If X = ((X, A4, {x};), P;;, 4) is an object of Pro(Py)? [5]
then 4(X, =,) is ((4(X, 4, {x};),m,), 4(P;;, m,), 4) and is called the n-th Pro4-
homotopy group of X. This will play the role of the homotopy group in our theoren.
We obtain from [4, Theorem 2.12] the following exact sequence of pro-groups and
pro-pointed sets:

IL5. For (X, 4, {x}) an object of (Py)*: ... > 4((4, {x}), m) — 4(X, {x}, =)

1L The main technical results. For this section, ~ denotes proper homotopy.
The principal result of this section is the following:

III.1. THEOREM 1. Let (X’A’_{f}_) =((X, 4, {x});, P, A) and (Y, B, {y})

= ((Y, B, {¥)» Q- M) be objects of (Py)* such that dim (X)<n for all A If

A(Y, B, {3}, m) =0 for 1<k<n+1 and M is closure Jfinite, then each morphism

[ (X, 4, {x}) > (Y, B, {¥]) admits a morphism g: (X, {x})— (B, {y}) such that
Jg = [ (X, {x)) = (Y, {y]) where j: (B, {y}) — (Y, {y}) is inclusion induced.

The proof involves two lemmas which assume the hypotheses of the theorem.
N1.2. LemMA 1. For each pe M, there is a p*> p such that Sor every relatively
n+1 dimensional polyhedral pair (P, Q, {x}) e (Po)* and for every proper map

®: (P, 0, {xPD— (Y, B, {y},s, there is a proper map \y: (P {x})— (B, {3}, such
that
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DY Hywo: (P, (X)) — (Y, {x), and

2) YI(Q, {x}) = Huw@l(Q, {xD): (Q, {x) — (B, {},.

In fact, = Hyno: (P, @, {x)—=(Y, B, {y}), where H,,« is a map represent-
ing the proper homotopy class q,,,«. Moreover, if u<y', then we may take p*<<u'*.

Proof. Let g = <y <...<p, = p* be a chain in M such that for each
k:1<k<n+1,thehomomorphismg,, . .: 4((Y; B, {0y = 4((Y, B, {¥Dup )
is 0, for j = n+1—k.

We define, by induction, maps ,: PxI, QxI— (Y, B, {¥Dins 1 - Such -that

D ¥l 8) = Hyp i popnn @(X) if £ =0 or xe Q and

2) ‘/’k(PkX {1})Q‘Bﬂu+l—k'

By use of the lemma of Section IT and the proper homotopy extension theorem [41,
we obtain 1, by properly deforming the kth skeleton of P into Byt

IIL.3. LeMMA 2. For each pin M, let p* > i be as given by Lemma 1. Let (P, {x})
be an object of Py, dim(P)<n. Now, let ¢q, p,: (P, {x}) — (B, {¥})u+ be proper
maps of pairs such that

J'p*(/)o = j;t*(pl: (Ps {x}) - (Ya {y})u*
then

Hyppg = Hymoy: (P, {x})— (B, {y})” .

Proof. We apply Lemma 1 to the given homotopy.
Proof of Theorem 1. Letf: (X, 4, {x}) — (¥, B, {y}) be given by f/: M — A
and relative proper homotopy classes of proper relative maps f,: (X, 4, {x}) 0

— (Y, B, {y}), having representatives ¢,. Since M is closure finite, we may assume f
is increasing and that

P
(X, 4, {xDron <— (X, 4, {xD)pgn

T | Iu' cominutes.

(Ys B: {J'}u <_L (Ya B? {)!)}p'

For each p in M, choose u* according to Lemma 1. Then for each p in 3, there is
a unique Y. (X, {x})pguen — (B, {#}),» such that

. v
(B-. {J'})ﬂm e (X, {x})f(“**)
j ol

}
"
(¥, {¥Due < (X, {yDyr
and
(A, {x}) e

v lp‘

|
(B, { Do (B, (3D

~ commute .
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Now, define g: M — 4 by g(i) = f(u**) and define éﬂz (X5 XDy — (B, {¥De
by g, = gyl

Claim. A) g = (g, {g,}) is a map of systems and
« B) (9, {9,}) satisfies the conclusion of Theorem 1.
Proof of A. Suppose p<u’, then '

. "
(B { 3Dy (X, {xD sy

J R
J
(7, 9D = (X, {7yon

and
1 ) .
(—Ba {,V}),u* h— (X: {x})f(n'**)
i (pl commute
H
(Y: {J"}),u* D (K {_V}),‘,**
Now, since
- 14
(X, 'i{x}) == (X, {3 pem
I s ' commutes
O HPELING A1) PN
we obtain ‘

(X, {x)pre < (X, {ad)ommy
j ,pl . .;,4, commutes at (¥, {) }),ﬂ
(7, {y})u* ~— (8, {y})n* ~— (B, {y})u*'

Thus, by Lemma 2, it commutes at (B, {3 L.e., g is a map of systems.
Proof of B. We have that I

/(X{)C)[(,4)"'{Xv‘x’)l(}l*)< — (Xt Dt

g

7B, <«

BN, / commutes
\ lj

N D < Ky

© thus jg = f.
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We also have .that:
‘(

, {l})f(m*— (4, \{xj)m**)
Ji N I i’ commutes

(B’ {y})y ""L' (A E {x})u**

so, gld = f4.

This completes the proof of Theorem 1.

ITL4. TueorEM 2. Let (X, 4, {x}) be an object of Pro(}’o)2 such that dim(X;)<n-
for all 2, A(X A, {Y} nk) = 0 for 1<k<n+1 and A is closure finite. Then there is
a morphism r: o, {x}) — 4, {xh in ProPg such that jr=Iand 1j=1|4, {x} = L.

That is, the morphism j (A, 1 })—»(X s \x}) given by inclusions is an lvomorphrsm
in Pro(Pg).

"Proof. Apply Theorem 1 to f=1: (X, 4, {x})— (X, 4, {x}). Note that
Theorem 2 m'ty be interpreted as a Whitehead theorem in Pro(Pg) for inclusions
x}) c (X, LXJ

IV. Good covers and a Whitehead theorem for proper shape theory. In [1],.
Ball shows that to each locally compact metric space one may associate an inverse
system of ANR’s. However, the methods he uses provide systems in which each
component space is infinite dimensional. We present here an alternate method,
using the nerves of certain open covers. This approach has the advantage that it
assigns to a finite dimensional space, X (finite dimensional in the sense of covering
dimension) an inverse system in which each component space has dimension no
greater than that of X. This will allow us to apply the results of the previous section
to Proper Shape Theory. !

1V.1. DeFNITION 1. Let X be an object of T7, a good cover of X is an open
cover {U,}aew Of X such that

1) U, is compact for all o &,

2) {U,}4e s 1s locally finite.

2. Let X = (X, {xﬂ}ﬂeﬂ) be an object of T then a good cover of X is a good
cover of X such that each x, is contained in only one U,.

3. Let X = (X, 4, {x;}pca) be an object of (Te)?, then a good cover of X is.
a good cover of (X, {x;}sem)-

IV.2. Itis easily seen that the set of good coversis cofinal in the set of all covers.
Thus the inverse system of nerves of good covers of Xis associated to X, (Theorem 1.3
of [9]). Tt is a matter of checking through the constructions in Lemmas 4.1 and 4.2
of [8] to see that it is in fact properly associated to X [1, Def. 3.1].

. IV.3. DermvrtioN. For X an object of T’, dim(X) is the covering dimension.
of X with respect to good covers.
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1V 4. Note if X is finite dimensional with respect to either ordinary open covers
.or to good covers, then it is finite dimensional with respect to the other and the
dimensions are the same. For if X has dimension # for ordinary open covers, let U be
an arbitrary good cover and let U’ be a dimension # open refinement, then U’ is
a good refinement by an easy argument. Thus, the dimension of x with respect
to open covers is greater than or equal to dim(x). The reverse inequality is trivial,

Theorem 2 yields a Whitehead theorem for maps in proper shape’ theory:

IV.5. TreOREM. If [ (X, {x}) — (Y, {¥}) is a properly o-connected morphism
0 A((Y, {¥)), m) for 0<k<n and an epimorphism for k = n--1, then f l'}'w;p/'oper
shape _é&;;;z_lence.

Proof. Choose an inverse system of nerves of good covers of (M, X, {x})
consisting of complexes of dimension less than or equal to n+ 1. Note that we may
assume the system is closure finite by 2.3 of [5]. IL.5 provides the algebraic hypotheses
of Theorem 1 and so we obtain IV.5. MY, of course, is the mapping cylinder of f.

V. The Hurewicz theorem and a homology version of the Whitehead theorem.
We prove the following analog of the Hurewicz theorem (c.f. [7]).

V.1 Let ((X,4,{x});,P,4) be an object of Pro(Po)*. If n>2 and
Pro{4((X, 4, {x}), m)) = 0 for k<n—1 and Pro(d((4, {x}), n,)) = O then

(1) Pro(4((X, 4, {x}), H,)) = 0 for 1<k<n—1 and

(2) @,: Prold((X, A, {x}), m,)) = Pro(d((X, 4, {x}), H,)) is an isomorphism
of pro groups.

@, is a Pro-map induced by the Hurewicz map of A-groups which is in turn. induced
by the ordinary Hurewicz map.

Proof. Let L = [0, o0) and for each A in 4, choose a proper map u: X; — L.

o
This can be done as follows: choose a compact exhaustion X} = (J K, with
i=1

K,c K], eachK;,, compact, and K, = ¢. Now choose Urysohn functions u;: }%;\Kz-x
o0

— [i, i—1] with u; (Frontier (K})) = {i}. Letu = (J u;. Now, define B, = 4, U X}
i=1

and (Y, C, {xP; = (X, U M,, B, U M,, {x},) for each AeA. Here M, denotes
the mapping cylinder of ». This construction plays the role of a “proper cone”
on X" and the usual coning constructions go through with very little modification
so that (¥, C, {3});, P, A) becomes an inverse system. P is the “proper cone” on P.
We will construct a Pro isomorphism of the system (Y, C, {x}) to the system
(X, 4, {x}). Since each component triple of (¥, C, {x}) satisfies the proper Hurewicz
‘theorem [11], the system satisfies the pro version of the Hurewicz theorem. The
Hurewicz homomorphismiseasily seen to be a natural transformation of the functors
Pro(4(-, m)) and Pro(4 (- Hy)) and so we obtain the result for the original system,
(X, 4, {x)).
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To obtain this pro-isomorphism, first note that the long exact sequence of pro-4
homotopy groups of the triple (X, 4, {x}) shows that Prod((X, {x}); ;) = 0.

P, .
Thus, for each X in A there is a Ao > 1 so that A((X, {x]),,7;) = A((X, {x})1,71) is 0.
In addition, we choose a chain ly<A;<4, ... <A,_, = A" so that for each %,

L<k<n—1 A((X, Ay {1,000 1) = A((X, 4, {3});, ) is 0, where j = n—k—L.

Now, using I1.2 and the proper homotopy extension theorem as in the proof
of TIL1, we obtain, inductively, maps 7, (X, 4, {x})r — (X, 4, {x});, so that
]uw(Xf{,)EA 4> and i ;0 is a member of the proper homotopy class P;-. Thus,
we may consider %, as a map from (X, B, {x}), to (X, 4, {x})s,-

To complete the construction of the map, note that Py, A, (X, B, {xDsr
—(X, 4, {x}); induces the zero map on4(-, n;) so that it extends to a proper map
Bt (Y, C, {x})p—(X, 4, {x}), which makes the following diagram proper homo-
topy commutative:

(K Cs {x})].'
h

/ J

(X, 4, (5 < (X, 4, (3
If one is careful to choose A'<1 whenever A</, then the resulting collection
Al BQ) = ') is a map of systems and according to the above diagram, it is an -
isomorphism of systems. This completes the proof of V.I.

V.1 and IV.5 yield the following homology version of the Whitehead theorem:

V.2. Turorem. Let f: (X, {x}) = (X, {¥}) be a properly o-connected map of
properly o-connected finite dimensional locally. compact metric spaces. Let
a=max(dim(X)+1, dim(Y)). If Pro4(X, {x}, m;) = O and f induces an isomorphism
of Pro (4((X, {x}), Hy)) to Pro (4((Y, {¥)), Hy) for k<n and an epimorphism for
k = n+1, then f is a proper shape equivalence.

V.3. Remarks toward a cohomology version. It seems clear that there
must be a corresponding version of the Whitehead theorem which would use a Pro-4
version of cohomology as its obstruction group. However, the complexity in stating
such a theorem may well outweigh the value in having it. The difficulty stems fi:om
the apparent necessity, in any proof, of using a “pro” form of the Universal coefficient
theorems (c.f. [6], Theorem 7.2). This would require that the 4 groups at each stage
be finitely generated and this last, unfortunately, is seldom the case.
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One-to-one Carathéedory representation theorem for
multifunctions with uncountable values

by

A. D. Toffe (Moscow)

Abstract. Tt is shown that, given a measurable set-valued mapping M from a complete
measure space T into a Polish space X such that all sets M(f) areuncountable, there are another
Polish space Z and a one-to-one Carathéodory mapping f: TXZ — X such that ft,Z) = M)
for all ¢

§ 1. Introduction. In [6] Wesley proved that, given a set-valued mapping M from 7
into I (I being the unit real interval) with Borel graph and uncountable values, there
exist a function f: Ix I— I which is Lebesgue measurable in the first variable and
Borel isomorphism from / onto M(#) in the second, Cenzer and Mauldin [1] streng-
thened this result having shown that, in the first argument, f can be chosen measur-
able with respect to the minimal o-algebra containing Borel subsets of I and closed
under A -operation of Souslin (which is a proper subalgebra of the algebra of Le-
besgue measurable sets). On the other hand, we proved in [2] that, given a multi-
function M from a measurable space (T, M) into a Polish space X with Souslin
(in an appropriate sense) graph, there are another Polish space Z and a Carathéodory
function f: I'xZ— X such that f (¢, Z) = M(t) for all 7 (such that M(t) # &).

The question arises if and how both results can be united. For instance, is it
possible to replace in Wesley’s theorem “Borel isomorphism” by “one-to-one and
continuous”? An affirmative answer will be given here even in a more general setting
that in [6] though not in so general as in [2]. The result to be proven here is stated
as follows.

TuroreM. Let (T, M, p) be a measure space. with o-finite complete positive
measure, and let X be an uncountable Polish space. Let M be a set-valued mapping
from T into X such that

(i) every M(t) is an uncountable subset of X;

(i) GrM = {(t. x) e Tx X]| xe€ M)}, the graph of M, Belongs to MRB(X).

Then M can be represented by a pair (Z,f), where Z is a Polish space,
[ TxZ— Xisa Carathéodory function and for any 1€ T, the mapping z— f(Z, z)
is one-to-one.
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