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a homeomorph of the Cantor set. Next observe that (iv) implies that
N {ﬂ:l(f(Vzlzz.,..:k)): (61,855 s 8) €S} # D

It now follows that the set m,( f(C)) contains exactly one point, say, x,. Finally,
conditions (i) and (iv) imply that 7, o f, restricted to C, is one-one. So 4* contains
2 homeomorph of the Cantor set.

We now turn to the proof of the theorem. Assume that 4% is countable for
each x € X. Then, by Lemma 9, there is A<, such that Z; = @. Now Lemma 7
with « = 4 and B = @ yields a set He &, such that 4 = S(Z)S H. This completes
the proof of the theorem.

Discussions with H. Sarbadhikari and S.M. Srivastava are gratefully
acknowledged.

for each k1.
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On pure semi-simple Grothendieck categories IT
by
Dariel Simson (Torur)

Abstract. Given a pure semi-simple Grothendieck category #, we construct a new pure-
semi-simple functor category I(#) such that gl. dimst = gl. dimZ(#), The map # » I(/t) defines
a one-one correspondence between equivalence classes of hereditary pure semi-simple Grothendieck
categories and equivalence classes of hereditary pure semi-simple functor categories. Applications
of this result are given.

Introduction. In [13] the notion of a pure semi-simple Grothendieck category
is introduced as a “pure” counterpart of semi-simple categories (cf. [9]). We recall
that a Grothendieck category is pure semi-simple if each of its objects is a direct
sum of finitely presented objects. Pure semi-simple Grothendieck categories are
investigated in [11]-[17].

In the present paper we give two constructions of new pure semi—simpl'e
Grothendieck categories from a given pure semi-simple one. Given a pure semi-
simple Grothendieck category & a pure semi-simple functor category I(&f) is
constructed in a such a way that gl.dims/ = gl.dimI(«) and the category of all
noetherian injective objects in & is equivalent to the category of all finitely generated
projective objects in I(2). Further, given a skeletally small additive category € suc}1
that the functor category #-Mod is locally coherent and #°P-Mcd is pure semi-
simple, a pure semi-simple Grothendieck category @ is conmstructed. The map
s+ I(f) is the inverse (with respect to an equivalence) of the map ¥°*-Mod @,
and conversely. These maps define a one-one correspondence between equivalence
classes of hereditary pure semi-simple Grothendieck categories and equivalence
classes of hereditary pure semi~simple functor categories. In Section 2 we illustrate
our constructions by simple examples.

In Scction 1 we recall from [12]-[14] some background material on functor
categories and pure semi-simple Grothendieck categories. An extension of
Theorem A in [3] is given.

Section 2 contains the comstructions and main results mentioned above. _As
a consequence of our general considerations we get the following two corollaries.
Any injective noetherian object of a pure semi-simple Grothendieck categf)ry has
a right pure semi-simple endomorphism ring. If 4 is a skeletally small abelian Fat'
egory such that the category ¥-Mod is perfect, then @-Mod is locally noetherian.

3 — Fundamenta Mathematicae CX/2
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§ 1. Notation and preliminaries. We start by recalling the terminology and no-
tation from [9] and [12]-[14]. If & is a locally finitely presented Grothendieck category,
we denote by fp (&) the full subcategory of & consisting of all finitely presented
objects. By an additive category we mean a category with an abelian group structure
on each of its Hom sets.

Let % be a skeletally small additive category. We denote by ¥~-Mod the category
of all covariant additive functors from € to the category /b of abelian groups.
The objects of ¥-Mod are called ¥ -modules. Given an object X in %, the ¥ -module
(X, —) is denoted by A* and the #°P-module (—, X) is denoted by 4y. For con-
venience we will write fp, instead of fp(#-Mod). The category of finitely generated
projective €-modules will be denoted by prg.

If €' is a full additive subcategory of the category ¥, we denote by (%') the
two-sided ideal in 4 generated by %’. It is clear that (%") is the subfunctor of the two
variable functor (-, ?): ¥ x ¥ — &b defined as follows. Given two objects X
and Y in %, the group (¢')(X, Y) is the subgroup of (X, ¥) consisting of all finite
sums of morphisms from X to ¥ in ¢ which factor through objects in %'

We often use the following result proved in [4], § 6.

ProrositrioN 1.1, If € is a skeletally small additive category, then there exists
an equivalence fpg/(prg) = fPPo/(Pr%0).

We recall that ¥-Mod is perfect (resp. semi-perfect) if every %-module (resp.
every finitely generated - module) has a projective cover (cf. [1], [12]). The following
lemma results from Lemma 1.1 in [14] and in fact is proved in [14], p. 293.

LemMa 1.2. Let % be a skeletally small additive category and suppose that every
object in € is a finite direct sum of objects having local endomorphism rings. Then
%-Mod is semi-perfect.

For other basic notation and properties of pure semi-simple Grothendieck cat-
egories the reader is referred to [9] and [12]-[14].

We are now going to investigate pure semi-simple Grothendieck categories.
The following result is an extension of a theorem of Auslander [3] from module
categories over Artin algebras to arbitrary Grothendieck categories.

TeEOREM 1.3. Let o be a locally finitely presented Grothendieck category. The
Sollowing statements are equivalent:

(@)  is pure semi-simple,

() o is locally noetherian, and given any sequence

f1

X=X, - —»X—-» 1= .

of monomorphisms between indecomposable noetherian objects in s, there is an in-
teger n such that f; is an isomorphism for all izn.
(©) o is locally noetherian and every indecomposable object in sf is noetherian.

Proof. The implications (a)—(b) and (a)—(c) follow from Theorem 6.3 in [12].
The implications (b)—(a) and (c)—(a) may be proved by the method of Auslander [3].

icm
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For the convenience of the reader we sketch the proof. Let assume that o is locally
noetherian and not pure semi-simple. It follows from Theorem 1.9 in [13] that the
category fp(&#)-Mod is not semiartinian, i.e. that there exists an fp(«#)-module
F: fp(sf) — &b which has no simple submodules, or cquivalently, given an
object 4 in fp(«#) and a nonzero element x in F(A4) there is a morphism f: 4 — A4’
in fp(s/) which is not a splittable monomorphism and such that F(f)x # 0 (use
arguments from the proof of Proposition 2.9(a) in [2]). Since each object in fp(s?) is
noetherian, one can construct a sequence (see the proof of Theorem 1.5 in [3])

S fn
Mi—My—..—> M,— M, — ..

in fp (&) such that M, is indecomposable noetherian for each i = 1, 2, ..., each f; is
a proper monomorphism and limM, is indecomposable and not noetherian. Then
the required implications follow and the theorem is proved.

Let us replace in condition (b) of Theorem 1.3 the word “monomorphisms”
by the word “epimorphisms” and denote the new condition by (b’). It follows from
Theorem 2.4 in [14] that (b) and (b) are equivalent under the additional assumption
that & has only a finite number of isomornhism classes of simple objects. Now we
give an example showing that (b) and (b') are not equivalent for & locally finite.

ExaMPLE 1.4. Let K be a perfect field of finite characteristic p>0 and denote
by %, the category of all bicommutative graded connected primitively generated
Hopf K-algebras which are generated by elements of degrees 29, i=0,1,2, ..
(see [8], [16], [17]). Let %9 be the full subcategory of %, consisting of all directed
unions of finite dimensional Hopf algebras in &#,. It is clear that &, is hereditary
and by Theorem 5.3 in [16] it is pure semi-simple. It follows that 2 9 is also hereditary
and pure semi-simple. Denote by &7, the category Lex fp(£Y) of all left exact
covariant additive functors from fp(#?) to «b. Since fp(sfo) = fp (£9)°P, then
by Theorem 6.3 in [12] condition (b’) is satisfied for & = o/, whereas (b) does not
hold (see proof of Corollary 5.5 in [16]).

§ 2. Categories /(=) and &. Throughout this section =7 will denote a Grothen-
dieck category, and by i(s#) we denote the full subcategory of & consisting of finite
direct sums of indecomposable injective objects. Let us consider the category

I(£) = i(«£)°P-Mod .
We are going to prove that I(«) is pure semi-simple if and only if & is such. Before
proving our main results, we shall need some preliminary facts, We start with the
following useful proposition.

PROPOSITION 2.1. Suppose that € is a skeletally small additive category such that
every finitely generated projective €-module is a direct sum of indecomposable modules.
Let 6, be a full additive subcategory of 4. Then €-Mod is perfect if and only if € -Mod
and /(% ,)-Mod are perfect.

Proof. It follows from Proposition 3.1 in [1] that pre, can be considered as
a full subcategory of pre. Since there are natural equivalences ¥-Mod = prg’-Mod
3
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and %,-Mod = prgl-Mod, we have reduced the proposition to the case where %
and %, are closed under direct sums. Now, using the same type of arguments as
in the proof of Proposition 2.1 in [14], we get the required result.

COROLLARY 2.2. Let s and @B be locally finitely presented Grothendieck categories
such that each object in fp(sf) and also each object in fp(%) are finite direct sums
of indecomposable objects. Suppose that € is a full additive subcategory of fp(sf)
and €' is o full additive subcategory of fp(2) such that there are natural equivalences
@ =% and fp(L)(@) = fp(B)(E"). Then o is pure semi-simple if and only if & is
such.

Proof. Apply Theorem 6.3 in [12] and the previous proposition.

We will also need the following result.

ProrosiTioN 2.3. Let &7 be a locally noetherian Grothendieck category and
suppose that each indecomposable injective object in o4 is noetherian. Then there exist
equivalences of categories

® fp(t) = %y
(i) fp(d)/(i (o )) = fpl(.d)OP/(Pri(d)ep)a
(iii) i() = Pryayor

Proof. Let us consider a contravariant functor
h: of —i(sf)-Mod

defined by 2° = (., —). Suppose X is an object in fp(s#). By our assumption there
exists in & an exact sequence

j

0—X— Qy— 0,

with Qo and @, in i(&#). We derive the exact sequence in i(sf)-Mod
%]

K2 h® o p* 0
and therefore A* is a finitely presented i(«)-module. Let /5: fp(a?) — Picr, be the
restriction of " to fp(«). We claim that A is an equivalence. First we point out
that hy is faithful because by our assumption every noetherian object in @ can be

embedded into an injective object in i (/). Now we prove that hg is full. Let t: M — M’
be a morphism in fp,,. Then there exists a commutative diagram with exact rows

W
K p® s M ——0

b b

it
B s b s M —50

©
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where iyt Qo — Qo and iy: Q) — Q, are in (). We have a commutative diagram
in fp(ef)

0—Kerj — 0, — 0,
Tf Th Tn
0—Ker j'— Qq LN 0}
It then follows that # = A% and therefore A, is an equivalence. The existence of

equivalence (ii) is an immediate consequence of (i) and Proposition 1.1. Finally,
equivalence (iii) is established by the Yoneda functor. The proposition is proved.

Let % be an additive category. We recall from [4], p. 315, that a morphism

f: C'—Cissaidtobea pseudocokernel of a morphism g: C"" — C’ in % if the se-
118 he
quence ¥ — h* — h*'’ is exact in ¥-Mod. It is well known that the following three

statements are equivalent ([4], [10])

(a) ¢ has pseudocokernels.

(b) fpy is abelian.

(c) #-Mod is locally coherent.

Now let € be a skeletally small additive category with pseudocokernels. We
denote by .
@ = Lexfpe
the category consisting of all left exact covariant additive functors from fp, to &Zb.
We know from [10] that & is a locally coherent Grothendieck category, fpe is abelian,
there exists an equivalence

@ (@ = P
and the inclusion functor fp (@) = is exact. If we denote by inj% the full subcategory
of fp(%) consisting of all injective objects, then we have equivalences
(i) inj% = prgf = pryee
and using Proposition 1.1 we get the equivalence
(iii") _ p(@)/(inj%) = Peos/(Prgor) -
We are now able to prove our main result.

THEOREM 2.4. Let &f be a Grothendieck category and let € be a skeletally small
additive category with pseudocokernels.

@) If o is pure semi-simple, then I(sf) is pure semi-simple, gl.dimsf

-
= gl.dimI(s/) and there exists a natural equivalence of = i().

(b) If o is pure semi-simple and hereditary, then i(sf)-Mod is semihereditary
and hence i(f) has pseudocokernels.
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(c) If °°-Mod is pure semi-simple, then % is pure semi-simple, gl.dim%
= gldim%°P-Mod and there exists an equivalence #°°-Mod = I®@).

(d) If €°°-Mod is pure semi-simple and hereditary, then €-Mod is semihereditary
and hence € has pseudocokernels.

Proof. (a) Supposc that o is pure semi-simple. We know from Theorem 6.3
in [12] that « is locally noetherian, every indecomposable injective object in & is
noetherian and the Jacobson vadical of i(«?) is right T-nilpotent. Then by Propo-
sition 2.3 there exist equivalences (i)-(iii) and by Theorem 5.4 in [12] the category /()
is perfect. Then the assumptions in Corollary 2.2 are satisfied for & and # = I(«),
and we conclude that I(.<?) is pure semi-simple. Moreover, in view of equivalence (i)
we have equivalences

—
i(f) = Lexfpyo = Lexfp(o)® = o .

Finally, since we know that categories &/ and I(s#) are locally noectherian and
i(sf)-Mod is locally coherent, we get

gl.dime/ = gl.dimfp (o) = gl.dimfp, o, = w.gl.dimi(=/)-Mod
= w.gl.dimi(&£)°*-Mod = gl.dimI(<).

(b) Suppose that 7 is hereditary and pure semi-simple. The first three equalities
above yield w.gl.dimi(s)-Mod<1. We know from (a) that I(«/) is pure semi-
simple and therefore by Theorem 5.6 in [12] the category i(=/)-Mod is semi-perfect.
Hence any finitely generated submodule N of a projective % -module is flat and has
a projective cover. Then, applying the arguments of Mares (see [12], p. 109), we
prove that N is projective and therefore i(«/)-Mod is semi-hereditary.

(c) Suppose that °°*-Mod is pure semi-simple. It follows that ¥-Mod is semi-
perfect and therefore any finitely presented #-module is a finite direct sum of inde-
composable modules. Applying Corollary 2.2 and equivalences (i')-(iii"), we conclude
that the category % is pure semi-simple. Now it follows that i(%) = inj% and in
view of (i") and the obvious equivalence pry = prye, we get the following equiv-
alences:

I(@) = i(@)°*-Mod = prg&,-Mod = %°°-Mod .
Now applying arguments from the proof of statement (a), we get gl.dim?é
= gl.dim®°?-Mod.

Since statement (d) can be proved similarly to (b), the proof of the theorem is
complete.

We point out that we have in fact proved the following fact:
COROLLARY 2.5. Let € be a skeletally small additive category with pseudocolkernels,
Then %°°-Mod is pure semi-simple if and only if @ is such.

Further-consequences of Theorem 2.4 are included in the following two cor-
ollaries:

icm®
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COROLLARY 2.6. Let & be o locally noetherian Grothendieck category and suppose
that every indecomposable injective object in of is noetheriun. Then the following con-
ditions are equivalent: ‘

(a) o is pure semi-simple.

(b) I() is pure semi-simple.

(c) fp(=£)°*-Mod is locally noetherian.

Proof. By our assuption there exists a duality (i) in Proposition 2.3. Then
(2)«(b) is an immediate consequence of Theorem 2.4 and its proof. Furthermore,
by Proposition 1.6 in [7] there exist equivalences

D(I(s)) = fpyeey-Mod = fp(£)®-Mod .

Then (b)«+(c) is a consequence of Theorem 1.9 in [13] and the corollary is proved.

COROLLARY 2.7. (2) Let € be a skeletally small additive category. If ¥-Mod is
pure semi-simple, then for each finitely generated projective €-module P the ring
EndP is right pure semi-simple. If, in addition, €-Mod is hereditary, then EndP is
right hereditary.

(b) If of is a pure semi-simple Grothendieck category and Q is a noetherian injec-
tive object in of, then the ring End Q is left coherent and right pure semi-simple. If,
in addition, o is hereditary then End Q is also hereditary.

Proof. The first part of statement (a) follows from Lemma 4.2 in [15] (see also
the proof of Lemma 4.4 in [15]). In order to prove the second part of (2) we apply
arguments from the proof of Proposition 1.4 in [5].

Now we prove (b). Suppose that Q is a noetherian injective object in &, i.e. Q is
in i(s#). Since & is pure semi-simple, by Theorem 2.4 the category I{s/) is pure
semi-simple. Moreover kg = (—, Q) is a finitely generated projective object in 7(.sf).
Then by part (a) of the corollary the xing End 0 = End Ay is right pure semi-simple.

In order to prove that § = End Q is left coherent denote by o the full sub-
category of & consisting of objects'A such that there exists an exact sequence in &

0— A— Qo— 04

where Q, and Q, are finite direct sums of the object Q. Applying arguments from
the proof of Proposition 2.3 one can prove that there exists an equivalence

oAy = PP

Since @ is noetherian, every object in &7y is noetherian and therefore every object
in &fp is artinian. In particular S is left coherent as required.

Finally, if & is hereditary and pure semi-simple, then by Theorem 2.4 I(sf) is
hereditary and pure semi-simple. Now by (a) the ring End Q = Endh,, is hereditary
and the proof is complete.

As a consequence of Corollary 2.6 we get the following result, communicated
to the author by Professor H. Lenzing.
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COROLLARY 2.8. Let € be a skeletally small abelian category. If 4°°-Mod is
perfect, then it is locally noetherian.

Proof. We know from [10] that the category o/ = Lex%® is locally coherent
and fp(of) = €. If ¥°°-Mod is perfect, then by Theorem 6.3 in [12] & is pure semi-
simple. Now by Corollary 2.6 the category ¥°P-Mod is locally noetherian.

An immediate consequence of Theorem 2.4 is the following:

COROLLARY 2.9. The map & v I(of) establishes a one-one correspondence
between equivalence classes of pure semi simple Grothendieck categories and equiv-
alence classes of pure semi simple functor categories €-Mod where € has pseudo-
cokernels. This map establishes also a one-one correspondence between equivalence
classes of pure semi-simple hereditary Grothendieck categories and equivalence classes
of pure semi-simple hereditary functor categories.

In [12] we have proved that a Grothendieck category o is pure semi-simple
if and only if fp(a)-Mod is locally artinian, We prove this fact by showing that
fp(«7)-Mod is locally artinian if it is co-perfect (see [12], p. 111, (7)—(8)). Unfor-
tunately this proof is not correct and therefore we do not know if Corollary 2.2
in [13] holds.

Now we give an example which illustrates the action of the map & > I(af).

Example 2.10. Let us consider the subcategory % of ., in Example 1.4. We
know from [8] that the category i(#7) consists of all finite co-products of objects
Ko, , = K[XI/(X") where degX = 2 and r = 1,2, 3, ... It is not difficult to observe
that I(#9) is the category %, of all linear K-representations of the infinite
quiver - —-—-+—-.. Moreover, we observe that there is a matural equivalence
Ro = &,. Further, the category i(.#,) consists of all finite co-products of objects X, ,,
1<r< oo, where Kg, , = K[X], degX = 2. Then it is not difffcult to check that I(%#,)
is the category £ of all linear K-representations of the infinite quiver satisfying the

y,

@ R @ ———>- @

J

designed commutativity conditions. Then we know from Theorem 2.4 that the
category # is pure semi-simple and hereditary.

Remark 1. Suppose & = R-Mod is the category of all left R modules over
a ting R of finite representation type. By Proposition 2.3 we have a duality
?zfp = ,zfp°® where ;R is the endomorphism ting of the minjimal injective cogenerator
in R-Mod. The ring ;R is of finite representation type and we have I(R-Mod)
= Mod-;R. Continuing this procedure, we get a sequence of rings of finite rep-
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resentation type (R, 4R, aR, ... such that J(Mod-,R) = Mod-,.;R. We also point out
that B = Mod-R,; where R, is the endomorphism ring of the minimal injective
cogenerator in Mod -R. Continuing this procedure, we get a second sequence
of rings of finite representation type.

It would be interesting to know how many of the rings R; and ;R are not pairwise
Morita equivalent. If R is an Artin algebra, then all those rings are Morita equiv-
alent.

Remark 2. It would be interesting to know if the pure semi-simplicity of the
category ¥°P-Mod implies that 4-Mod is locally coherent.

Remark 3. Applying Corollaries 2.6 and 2.7, one can prove that given a finitely
presented indecomposable nonprojective object 4 in an arbitrary pure semi-simple
Grothendieck category s, there exists a unique right almost split epimorphism
B— A in fp(sf) (see [6]).

Remark 4. Suppose that & is a pure semi-simple Grothendieck category and
has the property that the endomorphism ring of any injective noetherian object
in & is an Artin algebra i.c., is a finitely generated algebra over a commutative
artinian ring. Observe that for any objects My, ..., M, in fp(&/) there exists an Artin
algebra S of finite representation type and a pair of additive functors

¥ F
o = fp () — 5P

such that FT' = id and TF(M;) = M, for i = 1,2, ..., n. To prove this fix an exact
sequence
0— M;— Q;— o

with Q; and Q) injective and noetherian for every i= 1,2,..,n If we put
0= 0,8..0 0,0 0,®...0 0, then by Corollary 2.7(b) and Theorem A in [3] the
Artin Algebra S = End Q is of finite representation type. Given an object N in fp (&)
we set F(N) = (N, Q). The functor T is defined as the composition of the natural
equivalence §fp®® = &g and the natural inclusion o (C>fp(of) (see proof of
Corollary 2.7). ]

The property of &/ we remarked above can be considered as a local approxi-
mation of the category fp(4) by module categories sfp™ = fps with S of finjte
representation type.
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Trreducible continua with degenerate
end-tranches and arcwise accessibility in
hyperspaces

by
J. Grispolakis and E. D. Tymchatyn * (Saskatoon, Sas.)

Abstract. In a 1960 paper G. W. Henderson proved that every hereditarily decomposable
chainable continuum has a subcontinnum with a degenerate tranche. In this paper some other
classes of hereditarily decomposable continua which also have this property are investigated. In
particular it is proved that in a rational continuum of finite rim-type every point is a degenerate
tranche of some continuum. An example of a hereditarily decomposable chainable continuum
such that no subcontinuum has a cut-point is presented. Hence the degenerate tranches guaranteed
by Henderson's construction are end-tranches. These results are used to answer several questions
of Nadler concarning arcwise accessibility in hyperspaces.

1. Introduction. In 1960, G. W. Henderson [2] proved that every hereditarily
decomposable chainable continuum contains an irreducible subcontinuum with
a degeunerate end-tranche. In 1967, W. Mahavier asked whether Henderson’s theorem
is true for any hereditarily decomposable continuum. In Theorem 3.2, we give
another class of continua with the property that they contain irreducible subcontinua
with a degenerate end-tranche. In particular, we prove that hereditarily decomposable
continua which. contain subcontinua of finite rim-type at some point have this prop-
erty. In 5.1 we give an example of a hereditarily decomposable chainable continuum
with the property that no subcontinuum has a cut-point, and hence, no subcontinuum
has a degenerate tranche other than an end-tranche.

In Section 4, we prove that the existence of irreducible continua with degenerate
end-tranches implies the arcwise accessibility of points in hyperspaces (see
Theorem 4.1), and we resolve several problems raised by Nadler in [5] and [6].

2. Preliminaries. Throughout this paper by a continuum we mean a connected,
compact, metric space and by a mapping we mean a continuous function. A con-
tinuum X is said to be chainable (or arc-like or snake-like) provided for each e>0
there exists a finite open cover {Us, ..., Up} consisting of open sets with diameter
less than ¢ and such that U; n U; # @ if and only if [i—jl<1. A mapping f: X— Y
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