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check that X is a Suslinian continuum, which is not rational. Let X be a non-degen-
erate subcontinuum of X. Then, by the construction of X, we infer that K contains
a homeomorphic copy of X. Thus, K is not rational.

Added in proof. Prof. L. G. Oversteegen has pointed out to the authors that Exaruple 5.1
of this paper has the same properties as the example oa pp. 50-53 of E. 8. Thomas, Jr.
Monotone decompositions of irreducible continua, Dissertationes Math. 50 (1966), pp. 1-13.
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On the 2-homogeneity of Cartesian products
by

K. Kuperberg, W. Kuperberg, and W. R. R. Transue (Auburn, Ala.)

Dedicated to the memory of Ralph Bennett

Abstract. The Cartesian product of the circle S* and the Menger universal curve M is not
2-homogeneous. This solves two problems: one of R. Bennett and one of G.S. Ungar. Some
generalizations of this result are given.

1. Introduction. A space X is n-homogeneous (see [8], [4], [7]) if for every
pair 4, B of n-element subsets of X there exists 2 homeomorphism of X onto X
which maps A onto B. A space is homogeneous if it is 1-homogeneous. A space Xis
countable dense homegeneous (Bennett, [3]) if for any pair 4, B of countable dense
subsets of X there exists a homeomorphism of X onto X which maps 4 onto B.
Connected manifolds without boundary are the simplest and the most natural
examples of spaces which satisfy all of these homogeneity conditions.

R. D. Anderson proved in [1] that the Menger universal curve M is n-homo-
geneous for every n. Using another result of R. D. Anderson [2] concerning the homo-
geneity of curves, R. Benneit [3] showed that M is countably dense homogeneous.
Looking for higher dimensional countable dense homogeneous continua which are
not manifolds, R. Bennett asked: “Is the property of being countable dense homo-
geneous preserved in Cartesian products?”

Investigating the n-homogencous spaces, G. S. Ungar [7] proved that every
2-homogeneous metric continuum is locally connected, which solved a problem of
C. E. Burgess [4]. Consequently, in a private conversation, Ungar asked if there
exists a homogeneous locally connected —metric contintum which is mnot
2-homogeneous.

In this paper we prove that the product of the circle § 1 and the universal curve M
is not countable dense homogeneous, or even 2-homogeneous. In fact, every homeo-
morphism  of S1x M onto S* x M preserves the circular fibers, i.e. for every point
a€ M there exists a point b e M such that h(S* x {a}) = §*x {b}. This solves both
Ungar’s and Bennett’s problems.

2. Terminology and notation. By a space we will understand a compact metric
space. A continuum is a connected space. A map is a continuous function. A map
is inessential, if it is homotopic to’a constant map, otherwise it is essential. Given
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two spaces X and ¥ with distance functions dy and d,, respectively, by their Cartesion
product (or simply product) we mean the set X'x ¥ of pairs (x, y) with xe X, ye ¥
furnished with _ 11£__distancc function d definad by d((xl, 1) (x,, yz))
= Ja&%(x,, x,)+d2(y1, 5). The Menger universal curve will be denoted by M.
The unit circle in the plane will be denoted by S. A simple closed curve is a set
homeomorphic to S. A loop in a space X is a map of S'into X. A space Xis weakly
Jocally simply connected if for every point x in X there exists an open set U contain-
ing x such that every loop in X whose image lies in U is incssential (in X).

3. Homeomorphisms of M x X.

Lemma 1 (M. L. Curtis and M. K. Fort, Jr. [5,p. 141)). If X is a 1-dimensional
space and if f+ S~ X is an inessential loop in X, then fis inessential in f(S).

Lemma 2. If X is o 1-dimensional contimuum and if fi and f, are two essential
loops in X such thut f1(S) 0 fo(S) = @, then f and f, are not homotopic.

Proof. Assume that f; and f, are homotopic. Then consider the quotient
space X/f»(S) and apply Lemma 1.

THEOREM 1. Let X be a pathwise connected and weakly locally simply connected
continuum. If h is @ homeomorphism of M x X onto M x X, then for every point ae M
there exists a point be M such that h({a} x X} = {b} x X.

Proof. Given a point a € M, pick some x, € X and let b be the first coordinate
of h(a, x1). First, we will prove that A({a} x X)< {6} x X. Suppose on the contrary,
that, for some x, € X, the first coordinate of h(a, x,) is ¢ % b. Let pyy: Mx X > M
and py: MxX— X be the projection maps. Since X is weakly locally simply
connected, there exists a positive number § such that every loop in X whose image
is of diameter smaller than 4, is inessential (in X). Let ¢ be a positive number such
that, for every set dcMx X, the inequality diam4<e implies

diamh(4)<min{1dist(d, ¢), §} .

Let L be a simple closed curve in M such that diam(L v {a})<¢. Since dimM = [,
L represents an essential loop f: S— M. Dcline loops ¢, and g, in Mx X by
gi&)= (f(s), x,) for se S, i=1,2. Since X is pathwise connected, g, and g, are
hontlotopic and so are the loops pyhg, and pyhy, in M. However, because of our
‘c‘howc of &, we get pyhg (8) ™ parhg(S) == &, and, by Lemma 2, py gy is incssen-
Flﬂ.l. The loop pyhg, is inessential too, since dinmpyhg, <8, Therefore kg, is an
inessential loop, which implies that the loop pyh™Uhy, = f is inessential, and we
have a contradiction. Thus A({a} x X) e {b} x X. Now applying this result to A%,
we get 7 ({b} x X)={a} x X, which concludes the proof. ‘

CoRrOLLARY 1. [f a non-degenerate space X is as in Theorem | (for instance,
If X = S), then Mx X is not 2-homogeneous.

Proof. Pick two distinet points.a, b in M, and two distinct points x,, x, in X.
By Theorem 1, there is no homeomorphism of Mx X onto Mx X that maps the
set {(a, x,), (a, x,)} onto the set {(a, x)), (b, x)}.
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COROLLARY 2. If a non-degenerate space X is as in Theorem 1 (for instance,
If X=S) then Mx X is not countable dense homogeneous.

Proof. Let 4, and 4, be countable dense subsets of M and of X, respectively.
The set A = A, x A, is a countable dense subset of M x X. Notice that for every
point ae M, the set ({a}x X) n 4 is either empty of infinite. Now, pick a point
ap € M~\A, and an arbifrary point xo € X, and let B = 4 U {(ap, x0)}. By Theorem 1,
there exists no homeomorphism of Mx X onto M x X which maps 4 onto B.

THEOREM 2. If It is a homeomorphism of M x M onto M x M, then one of the
Sollowing holds true:

(i) there are homeomorphisms hy and h, of M onto M such that for every point
(a,b) in MxM, hia,b) = (h(a), hy(®)) or

(i) there are homeomorphisms hy and hy of M onto M such that for every point
(a,b) in MxM, hd, b) = (ha(b), hi(a)).

Proof. Let us call a fiber overy subset of M x M of the form {a} x M or M x {b}
(a vertical fiber or a horizontal fiber, respectively). The idea of the proof'is as follows:
First we prove that i maps every vertical fiber into a fiber. By symmetry, it will
follow that i maps cvery fiber into a fiber, and so does h™1, Therefore h maps every
fiber onto a fiber. Then we notice that if some vertical fiber gets mapped by & onto
a vertical fiber, then /2 maps every vertical fiber onto a vertical fiber and every horizon-
tal fiber onto a horizontal fiber and thercfore (i) holds true. On the other hand, if
some vertical fiber gets mapped by h onto a horizontal fiber, then every vertical
fiber gets mapped by / onto a horizontal fiber and every horizontal fiber gets mapped
by h onto a vertical fiber, and then (ii) holds true.

Our problem is thus reduced fo proving that / maps every vertical fiber into
some fiber. The proof is very similar to the proof of Theorem L.

Suppose that some two points from one vertical fiber, say (a, b) and (a,¢)
in Mx M are carried by # onto two points that do not belong to the same fiber,
say, h(a, b) = (a*, b*) and h(a,c) = (a* ¢') where o' # a* and b* # c*. Let py
and p, be the projections of M x M onto the first. and the second coordinate spaces,
respectively. Let & be a positive number such that for every subset 4 of M x M,
the inequality diam 4 < & implies diam /2 (4) <4 min {dist(a", a?), dist (b, ¢} Let Lbe
a simple closed surve in M such that diam (L U {a})<z. Obviously, L defines an
essential loop f: §— M. Now, let g, and g. be loops in MxM defined by
gul(s) = (f(5), b) and g(s) = ([ (), ¢) for s & S. Notice that g, and g, are homotopic
1o cach other and essential. Because of the choice of ¢, we get p;gs(S) N pihgS) =9
for i = 1, 2 which implies (sec Lemma 2) that both p, hg,, and p,hg, are inessential.
Therefore hg, is inessential and so is g,, which is a contradiction.

COROLLARY 3. M x M is not 2-homogeneous.

COROLLARY 4. M x M is not countable dense homogeneous.

The two corollaries above are proved in exactly the same fashion as Corol-
jaries 1 and 2.
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Remark. The results of Theorem 1 and Theorem 2 can be applied to the notion
of representable spaces. A space X is said to be representable [6, p. 263] if for every
x € X and every open set U containing x there exists an open set V< U containing x
and such that, for every y e V there exists a homeomorphism of X onto X which
carries x onto y and which leaves fixed every point in the complement of U. Theorem 1
implies that M x X is not representable if X is a nondegenerate continuum as in
Theorem 1, and Theorem 2 implies that M x M is not representable.

4. Problems.

(1) Does there exist a number » (finite or countable) such that the Cartesian
product M" of n copies of the Menger universal curve is 2-homogencous?

(2) Does there exist a non-degenerate continuum X such that M x X is 2-ho-
mogeneous?

(3) Suppose that X;, X,, ..., X, are l-dimensional locally connected continua
such that the product X, x X, x...x X, is 2-homogeneous. Is it true that every X;
is a simple closed curve?
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Topological contraction principle
by
Pedro Morales (Sherbrooke, Québec)

Abstract. A quite general fixed point theorem for functions in a quasi-uniform space and its
converse, in the compact Hausdorff case, has been presented in this paper.

Let f be a function on a metric space X = (X, d) into itself. It is called a Banach
contraction if there exists Ae[0,1) such that d(f(x),f(»)<Ad(x,y) for all
(x, ) € Xx X. In this case, according to the Banach contraction principle [1, p. 160],
if X is complete, then f has a unique fixed point » and lim f"(x) = u for all x e X.

n

The primary purpose of this paper is to establish a generalization, in quasi-uniform
context, of the Banach contraction principle, and to show that it contains, among
others, the results of Davis [6], Edelstein [7], Janos [10], Keeler-Meier [12], Knill [14],
Naimpally [16], Reilly [20], Tan [22], Tarafdar [23] and Taylor [24]. The secondary
purpose is to establish, in the compact Hausdorff case, the converse theorem. We
note that in the non-compact case, because of the multiplicity of uniformities (or
quasi-uniformities) defining the same topology, the notion of a converse theorem has
no unique sense.

1. Contraction theorem. We begin with pertinent definitions specifying our
context. A guasi-uniformity ou a set X is a filter % on X x X satisfying the axioms
of a uniformity, with the possible exception of the symmetry axiom. As in the case
of a uniformity, it induces a topology T4 on X such that, for x.eX, the se?s
Ulx] = {ye X: (x,¥)e U}, Ue%, form a tq-neighbourhood basis of x. 'I:hlS
generalization of uniformity owes its importance to the fact that every topological
space is quasi-uniformizable ([4, p. 171], [5, pp. 886-887], [17, p. 316)). _

Henceforth in this section X = (X, %) is a quasi-uniform space. Accordmg. to
Davis [5, p. 892], a filter & on X is “Cauchy” if, for every Ug%, there exists
x = x(U) € X such that U[x]e #. We define a Cauchy sequence in X to be a se-
quence {x,}7 in X whose corresponding Fréchet filter is Cau'chy, that is, such that,
for, every Ue %, there exists x = x(U) e X and a positive integer n= n(U) such
that x,, € UJx] for all m>n. Every convergent sequence inX i.s Cauchy ;'1f, conversely,
every Cauchy sequence in X converges, we say that X is sequen-tzu'lly cm‘nplete.
(For a uniform space the above definition of “Cauchy sequence.” coincides with th.e
usual definition. If, however, the usual definition were carried over the quasi-
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