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On spaces admitting openly dyadic compactifications
by

D. Helmer (Konstanz)

Abstract. According to B. A. Efimov [Soviet Math. Dokl. 10 (1969), pp. 776-779], a space
is called openly dyadic if it is the continuous open image of some product of compact metrizable
spaces. From known permanence properties of (openly) dyadic spaces it already results that, for
fairly general spaces X, the existence of an (openly) dyadic compactification of X does have desir-
able consequences for the topological structure of many subspaces of X. The main purpose of this
note is to give some sufficient and some necessary conditions for the Alexandroff one-point com-
pactifications al, of certain locally openly dyadic spaces L to be openly dyadic; in particular, this
is done in the case where L is a Jocally compact group and, in a sense more generally, in the case
where L is of the form X'x Y with aX and Y openly dyadic.

Although dyadic spaces in general, special types of dyadic spaces, and certain
of their subspaces have been investigated thoroughly since at least thirty years, it
seems to be, except for a few isolated results, rather unknown to date which con-
ditions on a space (!) are necessary andfor sufficient in order that it admit a dyadic
compactification or a dyadic compactification of a special kind. Among these re-
sults are the following: If the Stone-Cech compactification pX of a space X is dyadic,
then X is pseudocompact (Engelking-Pelozynski [10; p. 58]). A metrizable space
does not admit any non-metrizable, dyadic compactification (Efimov [6]). X is an
irreducible dyadic space for any irreducible, subdyadic, pseudocompact space X
(Efimov-Engelking [8; p. 191]). An F’-space does not admit a dyadic compacti-
fication unless it is a discrete space with countably many points only (Gait [12]).
A non-metrizable space, all of whose non-empty, open subsets have uncountably
many points, which is the closed, continuous image of a separable metrizable space,
does not admit a dyadic compactification (Arbangel’skil [1]).

From classical permanence properties of dyadic spaces it already results that,
for fairly general spaces X, the existence of a dyadic compactification of X does
have desirable consequences for the topological structure of many subspaces of X.
Our interest in the dyadic compactification problem arose, among other things,
from theorems of the following type:

THEOREM 1. In the space X, let S be a substantial subset, ie. S a union
of arbitrarily many Gy subsets of X (that is a Gyy-set in Engelking’s terminology

() The word space will mean completely regular Hausdorff topological space-
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[9; p. 288]); equivalently (cf. [3; 9.11), S' a union of arbitrarily many Baire sets of
X (that is, members of the c-algebra generated by the zero-sets of X). Suppose X is
of pointwise countable type (i.e. can be covered by compact subsets with countable
neighborhood bases) and admits an openly dyadic compactification. Then S is a
zero-set in X admitting an openly dyadic compactification, and a union of countably
many openly dyadic zero-sets of X is dense in S.

Proof. Use [9; Thm. 6] and an appropriate refinement of the argument of
the proof of [9; Thm. 5}.

THEOREM 2 [14]. Suppose X is an absolute Baire space (i.c. a Baire set in one
of its compactifications [3; 9.12]) or X is Cech-complete (i.e. homeomorphic with some
Gy-set in a locally compact space), and suppose X admits a dyadic compactification.
Let the space Y be of the same sort, and let f: X x Y — Z be a separately continuous,
sequentially continuous map. Then f is continuous.

The purpose of this note is to add a few items to the above list by giving some
sufficient and some necessary conditions for the Alexandroff one-point compacti-
fications oL of certain locally openly dyadic spaces L to be openly dyadic; in particu-
lar, this will be done in the case where L is a locally compact group and, in a sense
more generally, in the case where L is of the form Xx ¥ with aX and ¥ openly
dyadic.

LemMa 3. Let (gz: X)— Y3),ea be an infinite family of contimious surjections
where the Y, are non-empty, compact, and pairwise disjoint. Let ad = A u {0}
and o(J[¥,) = []¥; v {0} be the one-point compactifications of the discrete space A
and of the topological sum []Y; of the Y, respectively. Then, by g(A, (X)ue 4) = g:x))

and g(00, (X eq) = ', a continuous surjection g: oadx IEX,,—-» a(]_[AY,‘) is
re ne

defined. If all g, are open, so is g.

The proof is straightforward; so is the proof of the following
( ProrostTiON 4. Let Z, be a countable family of spaces each member Z, of
which admits an (openly) dyadic compactification Y,. Then the sum |[Z, admits
an (openly) dyadic compactification, e.g. a([[¥).

ProrosSITION 5. Let X be a non-compact, paracompact, locally dyadic space.
Then X has a dyadic compactification if and only if X is o-compact, In this cose,
the following hold:

(1) aX is dyadic, whereas BX is not.

(2) If «X is openly dyadic, so is oY for every apen, perfect image Y of X.

(3) aX is openly dyadic provided X can be covered by countably many open
and openly dyadic subsets.

(4) Suppose X is locally openly dyadic and totally disconnected. Then oX s
openly dyadic. Moreover, if m denotes the weight of X, then X is a perfect, open image
of the sum of countably many copies of D™,
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Proof. Suppose X admits a dyadic compactification K. Then X satisfie th
Suslin condition since K docs. So, being the sum of 0-Ccompact subspaces [5; ;41 '
X is necessarily o-compact. Conversely, suppose Xis o-compact, Then som,epl.ocalll’
finite sequence D, of dyadic subsets covers X, The canonical map 1D, — xis y
fect, hence has a continuous extension a([[D,) ~ aX. As «([[D,) 'l.’s dyadicp?-
Proposition 4, so is aX. If BX were dyadic, X would be pseudogompact . thz
Engelking-Petczynski Theorem quoted above and, therefore [13; p. 79] con)j, act
as it is realcompact [13; p. 115], & contradiction. As for 2, observe’ that fo’r an Per-
fect, open. map X' — ¥, the extension aX — oY is still open. Supposlt now ysfme
sequence X, of open, openly dyadic subsets covers X. Then

[T n

H=Xiv ”91(( 1L=)1 X’)\(iyl X'))

s a representation of X as a sum of countably many pairwise disjoint, open, openly
dyadic subspaces, whence o.X is openly dyadic by Proposition 4. Finally, supl;ose Xis
locally openly dyadic and totally disconnected. Then X is zero-dimensional [15;p.12]
and one is, therefore, in the situation of (3). So, let X = [1¥, for some sequeilce Y,
of non-empty, open, openly dyadic subspaces of X, By a theorem of Efimov [7]"
for every n, there is a continuous, open surjection D™ — Y,. The rest is cleart

Remarks 6. (a) For a locally compact, non-paracompact space X, fX may be
openly dyadic: Let m>n, and X the Cantor space D™ minus one point; then
D" = X [8; Lemma 4, Theorem 5], ’

(b) If Y is locally openly dyadic and zero-dimensional, but not ¢-compact,
aY may be dyadic without being openly dyadic, as simple examples show.
. A well-known theorem of Kuzminov asserts that every compact group is dyadic;
in fact, any such group is homeomorphic with a quotient group of some product
of compact, metrizable groups [20; p. 39] and, consequently, is openly dyadic. We
will show now, using the available structure theory, that locally compact, o'~ compact
groups and many of their coset spaces admit openly dyadic compactifications.

TuroreM 7. Let G be a locally compact group. Then G admits an openly dyadic
compactification if and only if G is o-compact.

Proof. Since locally compact groups are paracompact, necessity of the a-com-
pactness of G is clear in view of Proposition 5. Suppose now, conversely, that G is
o-compact. Let Gy denote the connccted component of the identity. As G[G, is
zero-dimensional, the quotient map G - G/G, admits a cross section according
tq a theorem of Mostert [18; Theorem 8], for which reason G is homeomorphic
W{th G/Gy x G,. By a theorem of Iwasawa. [17; p. 549, Gy, in turn, is homeomorphic
with some product R"x C' of a Euclidean space and any maximal compact sub-
group C of Gy. Since G/G, has an open, compact subgroup [15; p. 61], it follows
from Proposition § (4 that «(G/G,) is openly dyadic. R, obviously, admits an openly
dyadic compactification as well, and so the proof is complete,
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THEOREM 8. Let G be a locally compact group and H some closed (not necessarily
invariant) subgroup such that the left coset space G:H = {gH| g € G} is o-compact.
Then, the following hold:

(1) G:H admits a dyadic compactification.

() If H contains the connected component Gy of the identity, then o(G:H)
is openly dyadic.

(3) a(G:H) is openly dyadic provided Gy and H are compact.

Proof. (1) Since G is locally dyadic by Theorem 7, so is G:H. Thus, quote
Proposition 5.

(2) Suppose Go=H. Then gG, »gH: G/Gy— G:H is an open, continuous
surjection, Therefore, G:H is zero-dimensional and locally openly dyadic as G/G, is.
Thus, Proposition 5 (4) does the rest.

(3) Let G, and H be compact. Since the canonical quoticnt map G — G:H is
an open, perfect map, then, in view of Proposition 5 (2), it suffices to show that G is
openly dyadic. This, however, is an immediate consequence of Proposition 5 (3)
as G is homeomorphic with G x G/G, and, thus, is the sum of countably many open
and openly dyadic subspaces.

COROLLARY 9. Let X be a locally compact, o-compact, totally disconnected space
admitting a group of homeomorphisms which has a dense orbit and is uniformally equi-
continuous with respect to some compatible uniformity of X. Then, for every substantial
subset S of X, S is a zero-set in X and admits an openly dyadic compactification.

Proof. By a theorem of Itzkowitz [16; p. 134], there exists a locally compact
group G and a closed subgroup H of G such that G:H is homeomorphic with X.
As X is totally disconnected, necessarily H=G,. So, quote Theorem 8 (2) and
Theorem 1.

That every locally compact, o-compact group G admits some openly dyadic
compactification has been a rather direct consequence of the product decompo-
sition GR R" x Cx G/G, with Ca compact group. The question of whether or not aG is
openly dyadic seems to be more delicate. Before we return to this question, we will
consider the general problem of deciding open dyadicity of a(X'x Y) where o X
and Y are openly dyadic.

Lemma 10. Let X be a non-compact, locally compact space, and let Y, Z be compact
spaces. Suppose there exists a continuous map ¢: Xx Y — Z with the following
properties:

() For every xe X, the map y v o(x,¥): Y— Z Is injective.

(b) The filter base consisting of the sets p((X\C)x Y), as C runs through the
collection of all compact subsets of X, converges in Z.

Then @: (x,) b (x, p(x,y)) embedds Xx Y into aXxZ in such a way that
the closure of P(XxY) in aXxZ is the one-point compactification of ®(Xx ¥).

Proof. Due to (a) and the compactness of ¥, & is an embedding map. As X is
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not compact, @(Xx ) is not compact. So, the closure of P(XxY) in aXxZ
contains at least one more point, which we claim is necessarily the point (oo, z,)

where {00} = aX\X and where z, is the limit of {p((X\C)x Y)| C<X com ’acot:;
in Z: Let the point (¢, z) & a X x Z be different from (0, z,) and the I;nit of apcon-
vergent net ®0x,, ¥;). Assume a = co, Then z 3 Zo and there exists a closed neigh-
borhood ¥ of zy in Z not containing z. Pick a compact subset C in X wgith
P((XNC)x Y} V. Since &, — oo, then ¢(x1,¥,) € V eventually. On the other hand

as p(x;, va) — z in Z, then o(xy, y) e Z\F eventuaily, a contradiction. Thus, g e X’
Let 3, -+ ¥ be a convergent subnet of y, in ¥, Then @ (x;,, ¥3,) converges to ’t:b(a y)'
and to (a, 2) in aX'xZ, whence (a,7) & B(Xx Y). o ’

Lemma 11, Let X be a non-compact, locally compact space for which o X is openly
dyadic, let 'Y, Z be openly dyadic spaces, and suppose ¢: X x Y~ Z is a separately
continuous, sequentially continuous map satisfying (a) and (b) in Lemma 10 and such
that @({xo} x ¥) is substantial in Z, for every Xo € X. Then o(X x Y) is openly dyadic
and homeomorphic with some zero-set in oX XZ, provided one of the following two
conditions is satisfied:

(1) For every xq € X, S(xo) = {xe X| for every y € Y, there is some y' e Y with
o(x, ¥ = @(xg, W} is sthbstantial in X,

(2) There exists a spuce N in which every closed subset is substantial (e.g. N per-
JSectly normal) and some quotient map q: X — N such that, whenever q(x) = q(x')
for some x,x' € X, then ¢(x,3) = ¢(x',y) for all ye Y.

Proof, By Theorem 2, ¢ is continuous. In view of Lemma 10 and Theorem 1,
it suffices to show that {(x, ¢ (x, ))| xe X, ye Y} is a substantial subset of X'x ¥.
In case (1), this is clear because the latter set is the umion of the sets
S(x0) % p({xo} % ¥) as x, runs through X, Suppose now (2) holds, Since ¥ is (locally)
compact, the product map gxid: Xx ¥ Nx Y of g with the identity map on ¥
is a quotient map according to a theorem of J. H. C. Whitchead [24]. Consequently,
there exists a continuous map ¢: Nx ¥ — Z with ¢ = (g xid). For every x, € X,
then T'(xo) = {te& N| for every yeY, there exists some y' e Y with y(t,))
= ¢(xy, ¥)} is closed in N by compactness of ¥, hence is a substantial subset of N
by hypothesis on N, whence S(xp) = g~ (T(x,)) is substantial in X.

Let us call a space Z substantially contractible if there exists a continuous map
Fi[0,1[xZ->2Z such that the filter base {F(l1~1/n,1[XZ) n=1,2,.}
converges in Z and such that, for every 0gs<1, the map z - F(1, z) embedds Z
onto a substantial subsct of Z.

Clearly, for any compact space Y, the cone over Y, i.e. the quotient space
cone( ¥) obtained from [0, 1Tx ¥ by identifying the points of {1} x ¥, is substantially
contractible; it is, likewisc, clear that cone(¥) is nothing but the one-point com-
pactification of [0, 1[x ¥,

TuEOREM 12. Let X be a non-compact, locally compact space for which aX is
openly dyadic, and let ¥ be a compact space that is homeomorphic with some sub-
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stantial subset of a substantially contractible, openly dyadic space. Then o(X x Y)
is openly dyadic.

Proof. By hypothesis, we may assume that ¥ is a substantial subspace of an
openly dyadic space Z for which there is a continuous map F as above. Since X is
o-compact, there exists a continuous map p: aX - [0, 1] with p~*(1) = aX\X.
Then g: x + p(x) is a quotient map from X onto the subspace N = p(X) of [0, 1]
and ¢: (x, ) = F(q(x),y): Xx Y—Z is a continuous map satisfying (a) and (b)
in Lemma 10. Y is openly dyadic by Theorem 1. Now, Lemma 11 does the rest.

COROLLARY 13. Let X be as in Theorem 12, and let Y be openly dyadic. If cone(Y)
is openly dyadic, then so is w(X x ¥). The converse holds if X admits a perfect, open
map onto [0, 1[ or if there exists a continuous injection f: [0, l[— X with
lim f(J1—1/n, 1)) = o in aX and (0, 1[) a substantial subset of X.
n=cw

COROLLARY 14. Let X be as in Theorem 12. Then a(X x Y) is openly dyadic for
every compact, metrizable space Y.

In view of Theorem 12, the question arises for non-metrizable, openly dyadic,
substantially contractible spaces. That non-metrizable, substantially contractible
spaces are not so rare is suggested by the following

Lemma 15. (1) Let Z be a bounded subset of a Hausdorff locally convex topological
vector space for which there exists a point z, such that {tzo+(1—1t)z| z € Z} is a sub-
stantial subset of Z, for every 0<it<1. Then Z is substantially contractible.

(2) Let Z be a compact, convex set that is stable, i.e. [2] whose midpoint map
e, ) = 3(x+y): ZXZ —Z is open. Then Z is substantially contractible provided
it has at least one Gy point.

(3) Let Y be a compact space and then P(Y) the space of all Radon probability
measures on Y with the vague topology. Then P(Y) is substantially contractible if ¥
has at least one Gy point.

Proof. Verification of (1) is straightforward. Under the hypotheses of (2),
there is a point z, in Z with a countable open neighborhood base {Uln=1,2,.}
such that U, ,, = U, forall n. Fix0<#<1. Then [2], : (x, ») > tx+(1—1)p: Zx Z—Z
is an open map, whence () ©(U,x Z) is a Gy-set in Z. By compactness of Z, however,
the latter set is nothing but {tzy+(1~#)z| z € Z}. As for (3), it is known that P(¥)
is stable, being a Bauer simplex [19]. Moreover, if a is a G,-point in ¥, then
&: f = f(a) is a Gepoint in P(Y); in fact, if g: ¥ — [0, 1] is a continuous map
with g(»)<1 = g(a) for all y % a, then

I:iuwe[gdu: P(Y)—R

is a continuous map with I'(x)<I'(s,) for all peP(Y) with p # e,.
Non-metrizable, openly dyadic, convex sets — besides those that arc already

in product form, such as cubes — scem to be completely unknown, In fact, the only

corresponding dyadic examples known to us are the spaces P(S) with S a Dugundji
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space [20; p. 34] of weight &, (e.g. S = D%y which, by a theorem of Ditor and
Haydon [4], are absolute retracts, hence are dyadic. The space P(D™) might be a good
test case to consider and if it turned out to be openly dyadic, then, for any totally
disconnected, openly dyadic space ¥ of wei ght 8;, cone P( Y) would be openly dyadic:
namely, the sum S u ¥, where § is singleton, is a continuous openimage of D™ [71,
whence P(S'U Y) is a continuous, open image of P(D™1) [22), and PSUY)is
easily seen to be homeomorphic with cone P(Y).

By Corollaries 13 and 14, the problem of proving open dyadicity of G, for G

a non-compact, locally compact, g-compact group, can be reduced in various ways;
a few examples:

COROLLARY 16. aG is openly dyadic if GG, is compact and if cone(Y) is openly
dyadic in cach of the following cases:

@) Y is a product of simple and simply connected. compact Lie groups.

(b) Y is « product of copies of the dual group of the discrete rationgls.

(©) Y is a Cantor space D™,

Proof. By what has been said in the proof of Theorem 7, G is homeomorphic
with R'x Cx G/G,, where C is any maximal compact subgroup of G,. Thus, in
order that aG be openly dyadic, it is good enough, by Corollary 13, that
cone(Cx G/Gy) be openly dyadic. Now, GG, being openly dyadic and zero-dimen-
sional, is the continuous, open image of a Cantor space. C'is known to be the quotient
group of a product A x Z*, where 4 is a compact connected Abelian group and
where Z* is a product of simple and simply connected compact Lie groups [23; p. 91].
The dual group 4 of 4 is torsion-free [15; p. 385], hence [11; p. 108, Ex. 1] embed-
dable into some torsion-free divisible group and, consequently [11; p. 104],
embeddable into a direct sum of copies of the discrete rationals @; by duality, 4 is
the continuous, homomorphic image of & product of copies of Q. Thus, Cx G/G,
is the open, continuous image of a product of three spaces each of which is either
of type (a), or (b), or (c). It therefore suffices to apply the following lemma with
X =10,1[: Let X beca non-compact, locally compact, o-compact, metrizable space,
and let Y, be a countable family of compact spaces; then «(X'x []Y;) is homeo-
morphic with some Gy-subspace of [e(xx 7).

COROLLARY 17. oG is openly dyadic if one of the following two conditions is
satisfied:

(1) There is a closed subgroup H and a compact, metrizable subgroup K of G
with G = HK and aH openly dyadic.

(2) G is connected, and there exists a compact, invariant subgroup K whose con~
nected component of the identity K, is metrizable and such that oH, is openly dyadic,
where H is the centralizer of K in G.

Proof. (1) Using arguments similar to those of the standard proof of the
Open Mapping Theorem for locally compact, o-compact groups [15; p. 42], one
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shows that u: (k, k) » hk: Hx K— G is an open map. g is perfect as K is compact.
So, one may quote Corollary 14 and Proposition 5 (2).
(2) By a theorem essentially due to Iwasawa [21; 1.4], G = HK,.
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Universal mappings and weakly confluent mappings
by

Sam B. Nadler, Jr. (Morgantown, WV)

Abstract. All spaces are compact HausdorfF, Let f: XY becontinuous

trag X ; £is universal provided f
has a coincidence with every map from X into Y, and f is weakly confluent provided every

subcontinuum of ¥ is the image under £ of a subcontinuum of X, This paper discusses relationships
between these types of maps., Some results are: (1) Universal maps onto locally connected metric
continua are weakly confluent; (2) If HY(X) = 0, then weakly confluent maps from X onto the 2-di-
mensional disk B* are umiversal (hence, have fixed points if X< B); (3) CE-maps between compact
metric absolute retracts are universal. Result (1) generalizes theorems of Grispolakis and Tym-
chatyn and of Mazurkiewicz. In relation to (1), it is shown that universal maps between metric
continua need not be weakly confluent (which answers a question of Grispolakis and Tymchatyn).
Result (2) strengthens theorems of Hamilton and of the author. Examples show that (2) would
be false if H(X) % Oand that the analogue of (2) for B is false. Result (3) is shown to be false
for monotone maps. Various applications to fixed point theorems are given,

1. Introduction. For each n = I, 2, ..., let B" denote the closed unit ball in
Euclidean n-space R, B" = {ve R": [jo]|<1}, and let $*~1 = {veB™ v = 1}.
A mapping (= continuous function) f from a topological space Z into B" is
AH-essential (this terminology comes from [14, p. 156]) provided that

flf—'l(Sn—l): f—-l(Su—‘I)___) Sn—l

can not be extended to a mapping defined on all of Z into $"~!. AH-essential
mappings are usually simply called cssential mappings, and their existence is equiv-
alent to Z having covering dimension >n [25, 5.1, p. 44]. In this paper, essential
mapping means a mapping which is not homotopic to any constant mapping; an
inessential mapping is a mapping which is not essential. A mapping f from a topo-
logical space Z; to a topological space Z, is universal [12] provided that for any
mapping g: Z; — Z, there exists a point p € Z; such that g(p) = f(p). A continuum
is a compact connected Hausdorff space. Let X and ¥ be compact Hausdorff spaces.
A mapping f: X— Y is weakly confluent [16] provided that for each continuum
BcY there is a continuum 4c X such that f[4] = B. A mapping f: X— Y is
monotone [33, p. 127] provided that £ ~*(y) is connected for each y e ¥. Note that,
by [33, 2.2, p. 138], monotone mappings between compact Hausdorff spaces are
weakly confluent.
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