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shows that u: (k, k) » hk: Hx K— G is an open map. g is perfect as K is compact.
So, one may quote Corollary 14 and Proposition 5 (2).
(2) By a theorem essentially due to Iwasawa [21; 1.4], G = HK,.
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Universal mappings and weakly confluent mappings
by

Sam B. Nadler, Jr. (Morgantown, WV)

Abstract. All spaces are compact HausdorfF, Let f: XY becontinuous

trag X ; £is universal provided f
has a coincidence with every map from X into Y, and f is weakly confluent provided every

subcontinuum of ¥ is the image under £ of a subcontinuum of X, This paper discusses relationships
between these types of maps., Some results are: (1) Universal maps onto locally connected metric
continua are weakly confluent; (2) If HY(X) = 0, then weakly confluent maps from X onto the 2-di-
mensional disk B* are umiversal (hence, have fixed points if X< B); (3) CE-maps between compact
metric absolute retracts are universal. Result (1) generalizes theorems of Grispolakis and Tym-
chatyn and of Mazurkiewicz. In relation to (1), it is shown that universal maps between metric
continua need not be weakly confluent (which answers a question of Grispolakis and Tymchatyn).
Result (2) strengthens theorems of Hamilton and of the author. Examples show that (2) would
be false if H(X) % Oand that the analogue of (2) for B is false. Result (3) is shown to be false
for monotone maps. Various applications to fixed point theorems are given,

1. Introduction. For each n = I, 2, ..., let B" denote the closed unit ball in
Euclidean n-space R, B" = {ve R": [jo]|<1}, and let $*~1 = {veB™ v = 1}.
A mapping (= continuous function) f from a topological space Z into B" is
AH-essential (this terminology comes from [14, p. 156]) provided that

flf—'l(Sn—l): f—-l(Su—‘I)___) Sn—l

can not be extended to a mapping defined on all of Z into $"~!. AH-essential
mappings are usually simply called cssential mappings, and their existence is equiv-
alent to Z having covering dimension >n [25, 5.1, p. 44]. In this paper, essential
mapping means a mapping which is not homotopic to any constant mapping; an
inessential mapping is a mapping which is not essential. A mapping f from a topo-
logical space Z; to a topological space Z, is universal [12] provided that for any
mapping g: Z; — Z, there exists a point p € Z; such that g(p) = f(p). A continuum
is a compact connected Hausdorff space. Let X and ¥ be compact Hausdorff spaces.
A mapping f: X— Y is weakly confluent [16] provided that for each continuum
BcY there is a continuum 4c X such that f[4] = B. A mapping f: X— Y is
monotone [33, p. 127] provided that £ ~*(y) is connected for each y e ¥. Note that,
by [33, 2.2, p. 138], monotone mappings between compact Hausdorff spaces are
weakly confluent.
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The following result was proved in [23, Thm. I] for X compact metric and B2,
in [10, 3.5] for X compact Hausdorff and B?, and in [9, 4.3] for X compact Hausdorff
and B" (more generally, any connected n-manifold with an appropriate generalization
of the definition above of AH-essential):

(1.1) Any AH-ecssentiol mapping from a compact Hausdor(f space X onto B" is
weakly confluent.

There have been several applications of (1.1). For example: By using (1.1)
for the case of B? and by using [25, 5.1, p. 44], stated above, it follows ecasily that
(sec [10, 3.6] and, for X compact metric, see [23, Thm. II}):

(1.2) Any compact Hausdorff space X of covering dimension =2 contains a non-
degenerate indecomposable continuum.

It is known that any AH-essential mapping from a topological space Z onto B"is
universal [19]. The converse is also true since if /2 Z — B" is not AH-essential, so
that therc is an extension Fy: Z— S""* of £|f~3(S""Y), then g = —F, does not
agree with f at any point of Z. Thus (as has also been observed in [9, 5.4]):

(1.3) A mapping from a topological space Z onto B" is AH -essential if and only
if it is universal.
For future reference let us combine (1.1) and (1.3) to obtain:

(1.4) Any universal mapping from a compact Hausdorff space X onto B" is wealkly
confluent. .

In (2.3) we generalize (1.4) by proving a theorem which implies, for example,
that any universal mapping from a compact Hausdorff space onto any locally con-
nected metric continuum is weakly confluent (see (2.6)). In (2.14) and (2.16) we
give examples which show, among other things, that universal mappings between
metric continua need not, in general, be weakly confluent. Thus, these examples
answer a question in [9, Section 5] where it was asked if universal mappings between
compact Hausdorfl' spaces must be weakly confluent. Other properties of these
examples are discussed in connection with an application, (2.8), of (2.6) to universal
images of special types of continua. We mention that in (2.11) we usce universal
mappings to strengthen results of Segal and Read (sce (2.12) and (2.13)).

Having studied the question of when universal mappings arc weakly confluent
in Section 2, we investigate the question of when weakly confluent mappings are
universal in Section 3. In (3.2) we show that if X is a compact HausdorT space which
is cohomologically acydlic in dimension ome, then any weakly conflucnt mapping
from X onto B? is universal. Thus, the converse of (1.4) is true for B2 when I X)) =0,
In (3.3) we give an example of 2 monotone mapping from B? onto B? which is not
universal. Hence, the analogue of (3.2) for B3 is false. In (3.4) we usc (3.2) to prove
a fixed point theorem which strengthens results in [11, Thm. 1] and [28] — see [3.5].
Some other applications of (3.2) are given in (3.5) and, in (3.6)~(3.7), we gencr-
alize (3.2). In (3.8)~(3.12) we give results about when near-homeomorphisms and
CE-maps (all of which are weakly confluent) are universal. Among other results,
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we show in (3.10) that any CE-map from one compact metric absolute retract onto
another is universal. By the example in (3.3) mentioned above, this is not true for
monotone mappings (comp., (3.11)),

For future use, note the following definitions. Let ¥ be a metric continuum.
An g-map f,1 Y— Z is a mapping such that S M(z) has diameter less than ¢ for
each ze Z. The continuum Y is are-like provided that for each £>0 there is an
g-map from Y onto the unit interval [0, 11. This is equivalent to the definition of
snake-like in [15, p. 224]. The continuum ¥ is circle-like provided that for each
&>0 there is an ¢~-map from ¥ onto S1.

A space is said to be nondegencrate provided that it contains more than one
point.

For any compact Hausdorff space ¥, the symbol C(Y) will denote the space
of all nonempty subcontinua of ¥ with the Vietoris topology — see [24] and [29].
For future use let us note that if X and ¥ are compact Hausdorff spaces, then
amapping f: X — Yis weakly confluent if and only if the mapping f: C(X) — C(¥),
defined by

T = {f@: ac 4}

is surjective (i.e.,, fC(X)] = C(¥)).
Other definitions and notation will be given as they are needed or may be found
in appropriate references at the end of the paper.

for each A e C(X)

2. When universal mappings are weakly confluent. The first main results in this
section are (2.3) and its consequences in (2.5), (2.6), and (2.8). We will use the
following notation:

(2.1) Noration, Let X and Y be spaces. We write BeE(X, Y) to mean
that Bis a closed connected subset of ¥ such that any mapping from a closed subset
of X into B can be extended to a mapping of all of X into B. Such is the case, for
example, when B is an absolute refract,

(2.2) Lemma. Let X and Y be compact Hausdorff spaces and let Be E(X, Y).
Iff+ X— Y is a universal mapping, then there exists a component K of f~*(B) such
that f1K: K-+ B is universal; hence f[K] = B.

Proof. Let 4 = f~1(B) and let f, = f|4: 4~ B. We first prove that fy 18
universal. To do this, let g: A B be a mapping. Since Be E(X, Y), g can be
extended to a mapping 7: X — B. Since /i X — ¥ is universal, there exists a point
P& X such that g(p) = f(p). Since (p) e B and f(p) = g(p), f(p) e B and, thus,
ped. Hence, §(p) = g(p) and f(p) = fu(p). Thus, g(p) = fu(p). Therefore, we
have proved that £, is universal. To complete the proof of (2.2), let # = {4,: 1€ 4}
denote the family of all the components of 4 and, for each A & 4, let fi =fld;: 4,—B.
Suppose that f; is not universal for any A € 4. Then, for each 4 € 4, there is a mapping
hyt A, — B such that f(x) # hy(x) for each x e 4;. Since Be E(X, Y), k, can be
extended to a mapping fi;: X — B for each A e 4. For each A e 4, since F,(x) # f(x)
for each x e 4 4> We sce that there is a closed open subset U, of 4 such that U, >4,
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and f,(x) # f(x) for each xe U, (see [15, Thm. 2, p. 169]). Since 4 is compact,
there are finitely many such sets U,, denoted by Ujy, Usgzys +ors Usgys Such that

n
A=) Uy Let
i=1 .
ky = hyn)|Uyy

and, for each j = 2,3, .,n, let

J-1
k= hi(Uan= U Vi)
Define k: 4 — B by

ky(x), if xeUpyyy,

k) = k), if xe(Uyy— U Uy for some j>1.
i=1

Clearly, k is continuous and k(x) s f(x) for all xe 4. This contradicts the fact
that f|4 = f, is universal. Thus, f;,: 4, — B is universal for some A’ € A. Since
universal mappings are surjective [12, Prop. 1, p. 433], f4,] = B. We have
proved (2.2).

Aside from its use in proving the following theorem, (2.2) can be used to see
very quickly that certain mappings are not universal — see (2.15).

(2.3) THEOREM. Let X and Y be compact Hausdorff spaces such that E(X, Y)
is a dense subset of C(Y). If f1 X— Y is a universal mapping, then f is weakly
confluent.

Proof. By (2.2), ecach Be E(X, ¥) must be the image of a subcontinuum K
of X, ie, E(X, Y)=f[C(X)] where f: C(X)— C(Y) is as defined at the end of
Section 1. Since X is compact Hausdorfl, we have by [15, Thm. 1, p. 45] and
[15, Thm. 14, p. 139] that C(X) is compact. Hence, since f is continuous, f[C(X)]
is compact. Thus, since E(X, ¥)<f[C(X)] and E(X, Y) is dense in C(Y), we
have that C(Y)= Ff[C(X)]. Therefore, f is weakly conflucnt and we have
proved (2.3).

In (2.5) and (2.6) we give two consequences of (2.3). The proof of (2.5) uses
the following well-known fact:

(24) Lemma. Let Z be an arcwise connected metric continuum. For each 8>0
there exists an absolute retract Z,=Z such that cach point of Z is within ¢ of some
point of Z,.

Proof. Let F be an ¢-dense finite subset of Z. Let 4, <Z be an arc from one
point of F to another point of F. If F¢: 4, then let 4,=Z be an arc irreducible from
some point of F—4, to 4. If F:(4, U 4,), then let As<Z be an arc irreducible
from some point of F—(4; U 4,) to 4, U 4,. Continue this process finitely many

n n
times until Fo AU1A,-. Then Z, = {J 4, has the desired propertics.
= i=1

i
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(2.5) Tueorss. Let Y be a metric contimuum such that the family
@B =1{ZeC(Y): Z is arcwise connected }

is a dense subset of C(Y). If X is any compact Hausdorff space and f: X — Y is
a universal mapping, then f iy weakly confluent.

Proof. Let & = {4 e C(Y): A is an absolute retract}. Since, by hypothesis,
4 is a dense subsct of C(Y), it follows from (2.4) that o is a dense subset of C(Y).
Hence, since of < (X, ¥), we have that E(X, ¥)is a densc subset of C(Y). There-
fore, by (2.3), f is weakly confluent.

The following result is of prime interest—it is discussed in Section 1 and in (2.7).

(2.6) CoroLLARY. Let Y be a locally connected metric continuum. If X is any
compact Hausdorff' space and f: X Y is a universal mapping, then f is weakly
confluent.

Proof. The corollary is a special case of (2.5) since, as follows easily from
[15, Thm. 1, p. 260], the family & of all locally connected subcontinua of ¥is a dense
subsct of C'(Y) and since cach member of & is arcwise connected (by [15, Thm. 2,
p. 253] and [15, Thm. 1, p. 254]).

(2.7) Remarks. By (1.3) we see that (2.6) contains (1.1) as a special case.
OQur proofs are different than the proofs in the papers cited above (1.1)—these
papers usc some homotopy theory and facts about covering spaces. This, our
proof of (2.6) yiclds a different proof of (1.2) than those in [10] and [23]. We hasten
to point out that the full generality of [9, 4.3] for connected n-manifolds is not
implicd by (2.6) since A} -cssential mappings and universal mappings are not
(in general) related when their range space is not B".

By using (2.6) we can determine the universal images of certain continua (in
the following result, h.l.c. means hereditarily locally connected [15, p. 268] and
a dendrite is a locally conneeted metric continuum which contains no simple closed
curve [15, p. 300]):

(2.8) Turorem. If f is a universal mapping from X onto a nondegenerate con-
tinuum Y where X is (1) an arc or a circle, (2) a graph, (3) an h.l.c. metric continuum,
then Y is (1') an are, (2') an acyclic graph, (3') a dendrite, respectively.

Proof. Since X satisfics (1), (2), or (3) and since fis continuous, Y is a locally
connected metric continuum [15, Thm. 2, p. 256]. Hence, by (2.6), fis weakly con-
fluent. Thus, by [6; 1.1, IL3, and IL6], we sce that if X satisfies (1), (2), or (3),
then Y satisfies (1), (2), or (3) respectively. Since the range of any universal mapping
has the fixed point property [12, Prop. 2, p. 433],

(*) Y has the fixed point property.

Now, assume that X satisfics (1). Then, since ¥ satisfies (1) and (¥), Y satisfies (1').
Next, assume that X satisfies (2). Then, since ¥ satisfies (2) and (), ¥ satisfies (2').
Finally, assume that X satisfics (3). Then, since ¥ satisfies (3), ¥ is one-dimensional
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by (1.2). Suppose that ¥ contains a simple closed curve S. Then, since Y is one-
dimensional, it follows from [15, Thm. 2, p. 354] that S is a retract of ¥, Thus,
Y does not have the fixed point property. This contradicts (x). Hence, ¥ does not
contain a simple closed curve. Therefore, since Y is a locally connected metric con-
tinuum, ¥ satisfies (3'). This completes the proof of (2.8).

(2.9) Remark. As regards parts (2) and (3) of (2.8), more information about
the behavior of f on the branchpoints of X can be obtained from the weak con-
fluence of £ by using [6, IL.1 and I1.2]. For example, if X is a graph then cach branch-
point of the graph Y is the image under f of a branchpoint of X. However, the order
of a branchpoint in ¥ = f(X) may be larger than the order of any branchpoint
in X—this is seen by letting f be the “natural” monotone mapping from X onto ¥
where X and Y are drawn in Figure 1 below (f is the mapping which sends the

AN
43 V2 w
X Y
Fig. 1

arc v,v, to the point w; it follows casily that fis universal—sce [12, Props. 7 and 8]).

We note the following corollary to (2.8):

(2.10). CoroOLLARY. If Y is a locally connected metric continuum such that every
mapping from any contimum onto Y is universal, then Y is an arc (or a point).

Proof. Since Y is a continuous image of [0, 1] by [15, Thm. 2, p. 256], (2.10)
follows from part (1) of (2.8).

Recall the definition of arc-like near the end of Section 1. In [12, Thm. 37 it
was shown that every mapping from a connected space onto an arc-like continuum
is universal. We have the following related result which simultaneously strengthens
theorems in [31] and [30]—see (2.12) and (2.13) below.

(2.11) TrrOREM. Let ¥ be an arc-like continuum, T) hen, for any continuum X
and any mapping f from X onto Y, Fr ey — C(Y) is universal,

Proof. Let £>0, Since ¥ is arc-like, there is an ¢ map f, from ¥ onto [0, 1].
Let g = f, ¢ f. In the proof of [14, 4.1] it was shown that for any mapping k from
a continunm onto [0, 1], k is AH-cssential. Thus, by (1.3), 4: C(X)— C([0, 1
is universal. Since g = f,of, clearly § = 7, o 7. By [14, 2.5], f, is an e-map. Hence,
we have shown that, for each ¢>0, there exists an g-map f, from C(Y) into C([o, 1]
such that f,» 7 is universal. Therefore, by [12, Lemma 1, p. 4361, f is universal.

(2.12) CororLLARY (Segal [31, Thm. 3D. If Y is an arc-like continuum, then C(Y)
has the fixed point property,
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Proof. Let f be the identity map from ¥ onto Y. By (2.11), i: C(7)— C(Y)
is universal. Therefore, since { is the identity map for C(¥), C(Y) has the fixed
point property by [12, Prop. 3, p. 433],

(2.13) CoroLrLARY (Read [30, Thm. 4]). If ¥ is an are-like continuum, then
every mapping from any contimmm onto Y is weakly confluent.

Proof. Let f be a mapping from a continuum X onto Y. By (2.11),
F: C(X)— C(Y) is universal. Clearly, then, f[C(X)] = C(Y) [12, Prop. 1, p. 433].
Therefore, f is weakly confluent.

In (2.14) and (2.16) we give two examples refated to (2.3)-(2.8). Recall that
a metric continuum X is Susliniun [17] provided that X does not contain uncountably
many mutually disjoint nondegenerate subcontinua.

In (2.8) we showed that the universal image of an arc is an arc (or a point).
The following cxample shows that a universal image of the “simplest” non-~locally
connected arc-like continuum need not be arc-like and, in fact, need not even be
acyclic. The example also shows that universal mappings between Suslinian atriodic
continua in the plane need not be weakly confluenl—thus, the example answers the
question in [9, Section 5] mentioned here in Section 1.

(2.14) Examery. Let X and Y'be the continua in the plane R* drawn in Figure 2
below. The continuum X =7Yu Wu C and the continoum Y =1I'U W' UP
where

I={0,0eR" —I<y<+1},
W= {(x, sin[1/x]) e R?*: O<x<<+1},
C={(+1,)eR?: —Igys<sin[l]},
I' =],
W' = W,
P={0,ne R -3<y<—1}u{(x, -3 e R 0<x<+1} v
U{(+1, e R ~3<y<sin[l]}.

W'

w

«
(+1,-1)

Fig. 2
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Let & be 2 homeomorphism from C onto I’ U P such that A(+1, —~1) = (0, +1).
Define f from X onto Y by

S 167%))
f, )= {(x’y)’

if (x,yeC,
if (x,eluW

and note that f is a mapping since s(+1, sin[1]) = (+1, sin[1]). To sce that f is
universal, let g: X — Y be a mapping. For the purposc of proof, assume that
g(x,y) # f(x,) for each (x,»)eCu W. Then, by going along Cu W from
(+1, —1) towards I, we see that g (x, y) is “ahead” of f(x, y) foreach (x, ) e Cu W,
i.e., £ (x, y) isin the unique arc in ¥ from (0, +1) to g(x, ») for cach (x, y) e C L W.
Thus, by an easy sequence argument, it follows that g[7]<I'. Hence, since I = I,
g (xo» Yo) = (%o, yo) for some (xo, yo) € I Therefore, g(xo, ¥o) = f (X9, ¥o). This
completes the proof that f is universal. We see that f is not weakly confluent since,
for the continuum

M =W ul' u{{0,)eR* -3<y<—~1},

there is no subcontinvum of X which maps by f onto M’. The other properties
attributed to the example in the paragraph above are obvious.

(2.15) Remark. Let X and Y be as in (2.14). The “most natural” mapping
from X onto Y is the quotient map which identifies the two points (41, ~1) and
(0, —1) in X. However, as follows casily from the second part of the conclusion
to (2.2), this map is not universal.

The next example shows that a universal image of an arc-like continuum need
not be arc-like even though the image is acyclic and one-dimensional. As in the case
of the previous example, it shows that universal mappings need not be weakly
confluent.

(2.16) ExAMPLE. Let X and ¥ be the continua in the plane R* drawn in Figure 3
below. The continuum X = Wy U 4 U W, and the continuum ¥ = W;u 4’ U W,
where

Wy = {(x, sin[l/x]+3) e R*: O<x< +1},
A={0,y)e R*: —4<y<+4},

W, = {(x,sin[1/x]-3) e R*: —1<x<0},

W{ = W1:

4 = {0, y)e R*: 0<y< +4},

W, = {(x, —sin[l/x]+3) e R?: ~1<x<0}.

Define a mapping f from X onto Y by

Z &)
f(x’y) B {(x’ "'y):

if (x,y)e X and y=0,
if (x,y)e X and y<0.
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1t is clear that f is not weakly confluent since for the continnum
M ={(x,y)e ¥: y>+2},
Y MY =W, uW,u{0,yeX: 2<|yl<4}
and, thus, there is no subcontinwum of X which maps by f onto M’. Now we show
that f is universal. We will use the following fact: (4#) Any mapping Jrom an arc

onto an arc is universal (comp., [12, Prop. 8, p. 434]). Now, to see that f1s universal,
letg: X— Y be a mapping. Note that f[4] = 4’, and hence, by (), fld: A4’

(©, 4‘)} W,
(0, 4)
W W
©,2)
A - o ad
©.0 ©2)
Al
©, -2)
. 0,
#e ©,0
!
\ {0, ~4)
X Y

Fig. 3

is universal. Thus: If g[d]=d’, then there exists a point ae A4 such that
g(a) = f(a). Assume that g[4]dA4". Then, since g[A4] is arcwise connected, we
see that g [A]c Wy for some i = 1 or 2. Hence, it follows easily that g[X]=W; .
Let B’ = g[X]. Note that B’ is an arc (or a point) in W;. Hence, letting B = f~*(B),
it follows from the definition of f that B is an arc (or a point) in W; and that
fI[B] = B'. Thus, by (4), f|B: B— B’ is universal. Hence, since g[B]=B’, there
is a point b & B such that g(b) = f(b). This completes the proof that f is universal,

(2.17) Remark. A mapping is said to be pseudo-confluent [18] provided that
each irreducible subcontinuum of its range is the image of a subcontinuum of its
domain. Clearly, weakly confluent mappings are pseudo-confluent. The mappings f
in (2.14) and (2.16) are not pseudo-confluent since the continva M’ in these examples
are irreducible. Thus, universal mappings between metric continua need not even
be pseudo-confluent,

3. When weakly confluent mappings are universal and some fixed point theorems.
Let X be a compact Hausdorff space. Then, H*(X) denotes the one-dimensional
cohomology group of X based on open covers and with integer coefficients. Thus,
HY(X)~0 if and only if every mapping from X into S* is inessential [4, 8.1, p. 226].
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If fis a universal mapping from a compact Hausdorff space X onto B2, then fis
weakly confluent by (1.4). The result in (3.2) shows that the converse is true provided
that H'(X)~0. The converse is not true in genecral, as is noted in [9, Section 5],
since the mapping f from the annulus 4 = {v e R*: 27'<|v||<1} onto B? given
by f(v) = 2||v|]|—1)v, for each ve 4, is monotone, thus weakly confluent, but is
not universal. The following lemma will be used in the proof of (3.2).

(3.1) LemMA. Let X be a compact Hausdorff space. If f is a weakly confluent
mapping from X onto B*, then

SIS s = St
is essential.
Proof. Let p: B*~{(0,0)} — S* denote radial projection, i.e., p(v) = v/|Js||
for each v e (B>—{(0, 0)}). For each n = 1, 2, ..., let 4, denotc the annulus in B2
given by

L= {ve B 1-27"<|p|[<1}

and let X, = f7%(4,). Let L denote the limit of a convergent subnet of {X,}%.,
[15, Thm. 1, p. 45]. Then, since {4,},=, converges to S* and since f[X,] = 4,
foreachn= 1,2, ..., wehave that f[L]= S*. Suppose that £ |L: L— §* is inessential.
Then, since p o f|L = f|L, pof|L: L— S'is inessential. Hence, by [10, 2.1, p. 345],
there exists an open subset U of X such that UsL, Unf~%0,0) = &, and
poflU: U— S* is inessential. Since L is the limit of a subnet of {X.}0 4, there
exists an index j such that X;cU. Thus, since pof|U: U— S! is incssential,
PoflX;: X;— S* is inessential. Since f'is weakly confluent and since X; = f44),
F1X;: X;— A; is weakly confluent. A general result in [8, 3.5] implies that a weakly
confluent mapping from a compact Hausdorff space (e.g., X)) onto an annulus
(e-g., 4;) induces a monomorphism from H 1(4;) into H '(X;). Hence, since
f1X;: X;j— A; is weakly confluent and since poflX;: X;— S* is inessential,
pld;: A;— S* is inessential (sec [33, 8.3, Dp. 231]). However, clearly pld;: 4;— S!
is essential. Thus, we have a contradiction. Hence, f|L: L — S* is essential, Therefore
(since Lef~*(S")), we have proved (3.1).

(3.2) TrEOREM. Let X be a compact Hausdorff space such that H YX)=0. If f is
a weakly confluent mapping from X onto B*, then f is universal.

Proof, Let fi = f1f7*(S"): f~1(S%) — S*. We will show that fis AH-cssen-
tial. Suppose that f is not AH-essential. Then (by definition), £, can be cxtended
to a mapping Fy: X~ S*. Since H*(X)~0, F, is inessential [4, 8.1, p. 226]. Hence,
since Fy is an extension of f;, we have that Ji is inessential. However, since f is
weakly confluent, this contradicts (3.1). Thus, fis AH -essential. Therefore, by (1.3),
f is universal.

Applications and generalizations of (3.2) are in (3.4)-(3.7).

In the paragraph above (3.1) we observed that (3.2) would be false if the con-
dition that H'(X)~0 were dropped. The following example shows that the analogue
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of (3.2) for mappings onto B? is false. In fact, we give an example of a monotone
mapping from B onto B* which is not universal (comp., [3.10)~(3.11)).

(3.:3) ExampLe. Let g be a monotone mapping from B2 onto S? (for example,
the quotient map of B? which shrinks S* to a point). Let X denote the cone over B2
with vertex v and Iet ¥ denote the cone over S with vertex w. Note that X and Yare
homeomorphic to B3. Let f: X— ¥ be the cone map of g, i.e., f(v) = w and
Fz, 1) = (g(2), 1) il (z, 1) e (X—{v}). Since g is a monotone mapping from B2
onto S2, it follows casily that f is a monotone mapping from X onto Y. Since
f7HSH = g7 = B,

SIS S — 52

is inessential. Thercfore, by [12, Prop. 10, p. 434], f is not universal. This com-
pletes (3.3).

In [27] it was shown that if X is any compact uncountable proper subset of B2,
then there is a fixed point free mapping from X onto B2 However, as a conse-
quence of (3.2), we have the following fixed point theorem:

(3.4) TueOREM. Let X be a compact subset of B such that H NX)y=0. If f is
a weakly confluent mapping from X onto B, then f has a fixed point.

Proof. By (3.2), f is universal. Let g: ¥ — B® be the inclusion map
@.e., g(x) = x for each x & X). Then, since fis universal, there exists a point pe X
such that g(p) = f'(p). Therefore, p is a fixed point for f.

(3.5) Remarks. Let us note that the condition in (3.4) that H'(X)~0 is equiv-
alent to the condition that X does not separate the plane R? [5, 2.1, p. 357]; if X is
locally connected, then these conditions are equivalent to X being unicoherent
[5, p. 364]. In {11, Thm. 1], (3.4) was proved for the case when X'is a locally connected
unicoherent subcontinuum of B* and £ is an open mapping. In [28], (3.2) and (3.4)
were proved for confluent mappings. Thus, since open mappings are confluent
[3, VI, p. 214] and confluent mappings are weakly confluent, (3.2) and (3.4) are
stronger results than those in [28] and [11, Thm. 1]. In this connection, recall that the
converse of (3.2) is also true [by (1.4)]. Next, let us note that some other fixed point
theorems can be deduced using (3.2). For example (given an open cover % of
a space X, a mapping fy: X— Y is a %-map provided that {f7*(3): ye Y}
refines the cover % : (1) If X is a compact Hausdorff space such that there is a weakly
confluent U -map fy from X onto B* for each open cover U of X, then X has the fixed
point property. The proof of (1) goes as follows. Since there is a #-map from X
onto B? for each open cover % of X, H(X)~0 (as follows from [22] and [7, p. 261]).
Hence, by (3.2), fy is universal for each %. Therefore, by letting fin [12, Lemma 1,
p. 436] be the identity mapping from X onto X, we see that (1) now follows from
[12, Lemma 1, p. 436]. Let us also note the following result: (2) If X is an inverse
limit, over a directed set A, of {X,, fy,.» A} where each X, = B* and each f,,: X, — X,
is weakly confluent, then X has the fixed point property. Since each f, is weakly
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confluent, it follows easily that each projection 7,: X — X, = B?is weakly confluent.
Also: For any given open cover % of X, x, is a %-map for some A€ A. Therefore,
(2) follows from (1).

Let us note the following gencralization of (3.2):

(3.6) Turorem. Let Y be a compact Hausdorf[f space such that HY(Y)~0.
If X satisfies the hypothesis of (1) or (2) in (3.5), then every weakly conflucnt mapping
Jrom Y onto X is universal.

Proof. Using the fact that the composition of weakly confluent mappings is
weakly confluent, (3.6) follows easily from (3.2) and [12, Lemma 1, p. 436].

(3.7 Remark. We note some special cases of (3.6). Let Z be an arclike or a circle-
like continuum. Then, X = C(Z) satisfies the hypothesis of (1) in (3.5) as can be
seen by using the proofs in [14, 4.1 and 4.2] and then using (1.1). Thus, for ¥ as
in (3.6), every weakly confluent mapping from ¥ onto X = C(Z) is universal. The
same is true when X is the cone over Z as can be scen by applying [12, Prop. 10],
and then (1.4), to the cone map , of any e-map £, from Z onto [0, 1] or, if Z is not
arclike, onto S* (in which case, f,: Z— S* is chosen {o be essential by [14, 3.2]).
The reader might wish to use [14, 1.3] to see easily that f, satisfies [12, Prop. 10]
when Z is arc-like,

In (3.8)~(3.11) we will give some more results about when weakly confluent
mappings are universal. However, unlike previous results, we will be considering
some special types of weakly confluent mappings. A mapping f from a compact
metric space X onto a compact metric space ¥ is a CE-map provided that for each
y€ Y, f71() has the shape of a point (see [2] or [32]). Note that CE-maps are
weakly confluent since they are monotone. A mapping f from the compact metric
space X onto Y is a near-homeomorphism provided that f is a uniform limit of
homeomorphisms from X cnto Y. Since a uniform limit of weakly confiuent mappings
is weakly confluent ([21] or [26, 2.5]), clearly near-homeomorphisms are weakly
confluent. The following easy-to-prove but useful result shows when near-homeo-
morphisms are universal.

(3.8) LemMA. Let X be a metric continuum. Then, (1) every near-homeomorphism
Srom X onto X is universal if and only if (2) X has the fixed point property.

Proof. Let id denote the identity mapping from X onto X. If (1) holds, then id is
universal and, hence [12, Prop. 3], (2) holds. Conversely, assume that (2) holds,
Then [12, Prop. 3], id is universal. Let # be a homeomorphism from X onto X.
Since hoA™! = id and since id is universal, A is universal by [12, Prop. 4]. Thus,
we have proved that every homeomorphism from X onto X is universal. Therefore,
since the uniform limit of universal mappings is universal [12, Prop. 6], (1) holds.

Now we use (3.8) to prove the following theorem Gf f;: X, — Y, is a map for
i=1 and 2, then fixfy: XyxX,— ¥;x ¥, is defined by (fy XSf2) (%1, x3)
= (fi(%1), falxz)) for each (x;, x,) € X, x X):
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(3.9) ThroruM. Let X and Y be any compact metric absolute neighborhood re-
tracts such that Xx Q or Yx Q. where Q is the Hilbert cube, has the fixed point
property. If fis a CE-map from X onto Y, then f is universal.

Proof. Let id denote the identity map from Q onto Q. Since fis a CE-map
from X onto Y, clearly /xid is a CE-map from Xx Q onto ¥x Q. Thus, since
Xx @ and Yx @ arec Q-manifolds [2, 44.1, p. 106] and since CE-maps between
Q-manifolds are near-homeomorphisms [2, 43.2, p. 105), fxid is a near-homeo-
morphism. We now know that X'x @ and ¥x Q are homeomorphic metric continua
with the fixed point property. Hence, since fxid is a near-homeomorphism from
XxQ onto ¥x @, it follows casily from (3.8) that fxid is universal, Now, to see
that f'is universal, let g be 2 mapping from X into Y. Since £xid is universal, there
exists a point (¥, ¢)e X'x Q such that

(gxid)(x, @) = (Fxid(x, @) .

Therefore, g(x) = f(x) and we have proved (3.9).

(3.10) COROLLARY. Let X and Y be any compact metric absolute retracts. If f is
a CE-map from X onto Y, then f is universal.

(3.11) Remarks. In (3.3) we gave an example of a monotone mapping
from B® onto B® which is not universal. Thus, the condition in (3.10) that f be
a CE-map can not be weakened to merely requiring that f be monotone. Let us
note, however, that every monotone mapping from B* onto B is universal by (3.2).
Moreover: If M? is any compact 2-manifold (with or without boundary) which has
the fixed point property, then every monotone mapping from M? onto M? is universal.
This fact follows from using (3.8) since cvery monotone mapping from M2 onto M2
is a near-homcomorphism [34]. We note that there are compact 2-manifolds with
the fixed point property which are not homeomorphic to B —such is the case for
real projective 2-space [1, p. 31]. We remark that by letting X and Y be real projec-
tive n-space, n cven, we see (by using [1, p. 31]) that X and ¥ satisfy the hypoth-
eses in (3.9); however, X and ¥ do not satisfy the hypotheses in (3.10). In connection
with the discussion above, lot us note that there are universal mappings from B”
onto B" (for any n = 1,2, ..) and from the Hilbert cube @ onto Q which are not
monotone. This can be seen by letting f be any non-monotone mapping from [0, 11
onto [0, 1], taking the cartesian product of f with itself » times for each
n=1,2,.., 0, and using [13, 2.5 and 3.1]. Finally, I thank Steve Kaplan for
a helpful conversation concerning the proof of (3.9).

In relation to (3.9), it follows immediately from [20, Thm. 4] that there are
compact metric absolute neighborhood retracts with the fixed point propert'y whos_e
cartesian product with Q does not have the fixed point property. However, since this
can not happen for O-manifolds, we have the following corollary to (3.9):

(3.12) COROLLARY. Let M be a compact Q-manifold with the fixed point property.
If f is a CE-map from M onto M, then f is universal.
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Proof. Since any Q-manifold is homeomorphic to its cartesian product with @

[2, 15.1, p. 22], we see that M x Q has the fixed point property. Therefore, (3.12)
follows from (3.9).
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