icm

Cauchy’s functional equation on semigroups
by

Luigi Paganoni and Stefania Paganoni Marzegalli (Milano)

Abstract. Consider two semigroups (G, ) and (H,*), a subset 2c Gx G and a function
f: G- H such that f(x-y) = f(x)-f(») for all pairs (x,») €. In this paper we find some con-
ditions on £ under which f is a homomorphism.

1. Let G and H be semigroups and consider Cauchy’s functional equation
on a restricted domain
() fey) = fx)f(»)
where (x, ) e QG X G, f: G— H and - denotes the composition law in G and H.
Several previous papers (see, for instance, [1]-[4], [6], [8]-[11], [13]) give some
conditions under which a solution of Cauchy’s equation is a homomorphism; in
this paper we study the same problem and find some new conditions.
Throughout this paper the following notations are used:

N=(GxO\R, Q,={teG: (x,0)eQ}, Q@ ={teG: (t,x)eq},
T, = {te G: there exists y € G such that (t,y) eQ and -y = x},
T* = {te G: there exists y & G such that (y,#)€Q and y-t = x} .

We always suppose @, U Q° U T, # @, for every x & G, so that the functional
equation (x) binds all the elements of G in some way.

Let 2 = {(x, »): I (%) = f(x):f(3)}. In this paper we look for some con-
ditions under which 2 = Gx G, that is f is a homomorphism of G into H ®.

We can prove the following theorem:

(*) When G and JH are groups it is easy to see that 2% = G (24, = G) implies
{(x, %7 "), xeGle 2 (' %), xeGle .
Therefore, in these cases, we always suppose, whithout loss of generality, that £2 has the following.
properties:
if 0% = G then @' =G, if Ox =G then 2,-1=G.

Furthermore, if 2 {(x,x™ "), xe G}, we deduce:
(e, ) el il (eoy,y Hed and  (x,) el iff 7 x y)el
and 50, in this case, we suppose, without loss of generality, that Q is invariant under the maps:
P (6,9 = @y, e P> L),
When G and H are abelian semigroups, we assume, without loss of generality, that Q is
symumetric with respect to the diagonal of Gx G.
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TugoreM 1. Consider the functional equation (x) and suppose {a, b)e N. If at
least one of the following conditions ()-(v) is satisfied:

@) H is a right regular semigroup (*) and {b-(2 0 Q) N2, # D,

(i) H is a left regular semigroup and {(@*n Q™ -a} N Qb % @,

(iii) G is a left regular semigroup and {a (@, 0T} N Tpy # Dy

(v) G is a right regular semigroup and {@ T8} T # @,
then (a,b) e a.

Proof, If (i) is satisfied, there exist x, and y, such that: (@, xp) €Q and
xo = byo with (b, yo) € 2 and (a°D, y,) € 2. This implics f(a+b)f (yo) = f(a-b-ys)
= f(@) f(b-yo) = f@-f(B)f(pp) and, as H is a right regular semigroup,
flaby=f@f0)

If (iii) is satisfied, there exist xo and y, with the following properties: xo € Ty,
and xo = a-y, with yo € T} and (@, y;) € 2. As X € Ty, there exists p; such that
(v, ¥) €@ and x,0y, = a-b; as yo e Ty, there exists y, such that (yg,y.) €@
and 3oy, = b. But now xg'y, = @-yo Y, = a'b and thercfore xo ¥, = X¢- )y}
as G is a left regular semigroup we have y, = y;. It follows:

flaby = f(xopy) = f o) S (o) = f(@ S (o) f () =S @) (o 1)

=f@f(®-

If (ii) or (iv) are satisfied, the proof is similar.

COUNTEREXAMPLE, Let R be the real numbers’ set and consider the multipli-
cative semigroup G = R\{0O} and H = R. If @ = {(x,y): xp<0} and j: G— H
is defined by .

0 if t<0,
Fn= {c £01 if £>0,
then f is a solution of the functional equation (¥) on £, but, for every (a,d) e N,
Sflab) # f(a)f ()

In this example the conditions on the sets which appear in (i) and (i) are some-
times fulfilled (for instance when a, b>0), but H is not a regular semigroup; on the
other hand, even if G is a regular semigroup, the sets which appear in (iii) and (iv)
are always empty.

Now we have to introduce some classes of subsets of G.

DernITION 1. Let >0 be a fixed integer and § a collection of subsets of ¢
with the following properties:

() if Tye® and T,=Ty, then Tr e §,

(i) if Te§ and xeG, then x-Te F (T'xe F),

@) if Ty, Tpy oo, Th€F, then Ty AT, Ao 0 Ty % B,

(%) A semigroup X is said to be right regular (left regular) if the right-hand (left-hand) cancel
fation law holds in it, that is:

ag=fog=a=f (ua=¢f=0a=4f),
A semigroup X is said to be regular if it is left and right regular.

(@, poeX).
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Such a family & is said a left (right) oclass. If § is a left (right) o;-class for

every i>0 (%), & is said a left (right) o-class.

DerNITION 2. Let § be a left (right) o-class. A set U= Gis said to be consistent
with § if there cxists a left (right) o,-class & with §>F and Ue &

Let § be a left (right) o-class and consider the family I7 (Z}) of all left (right)
o-classes G2 partially ordered by inclusion. It is casy lo sce that every chain
in 2! (Z7) has an upper bound; therefore, by Zorn’s lemma, there exists a maximal
feft (right) orclass G, with LIE=%'

Here are some examples of o-classes and o-classes:

1) Let G be a group and G a proper linearly invariant ideal in G (see [3], [6]).
Then § = {F: F°e G} is a o-class (*).

2) Let G be a direct group (sec for instance [5] or [13]) and @ the class of the
upper (lower) bounded subsets of G. Then § = {F: FFe B} is a o-class.

3) Let G be a semigroup and g a left (right) invariant probability measure.
Then § = {F: u(F)>1~1/i} is a left (right) oy-class.

4) Let G be a semigroup and (G, M, ) a o-finite measure space such that for
every xe G and Me M, plx M)<p(M) (M )< u(M)). Moreover, let V,4G
be a sequence of sets with finite and positive measure such that:

@ pVye )~ u o),

(ii) for every a & G, there exist &, v>0 such that V,ca Vyrr VuSVisr @),
for every nzv.

Then, the upper density oy, relatively to {¥,} (see [13]) is a subadditive function
and, forevery xe G and A< G, g (%" A< e (4) (o4 “x) < o,y(4)). Therefore
F = (FaG: qu (F)<1/i} is a left (right) o-class.

Now we can state the following corollaries of Theorem 1.

CoroLLARY 1. If H is a right (left) regular semigroup and there exists a left
(right) o4-class § such that, for every x & G,Q.eF (Q°e ), then fis a homomorphism.

COROLLARY 2. Let S=G be a set such that, for every x € G,

SnxS#3 SnSx#9

(this condition is satisfied if; for instance, S belongs to a left (right) o,-class).

a) If H is a right (left) regular semigroup and Q2GxS(QDSxG), then f is
@ homomorphism.

b) If G is a group, H is a right (left) regular semigroup and Qo{(x,»): xyes},
then f is a homomorphism.

Proof. a) is obvious, We prove b) when H is a right regular scmigrczup and
SaxS#@, for every xeG. In this case, for every (a,b)e N, (b LN

(®) It is obvious that a oi-class is also a oj-class for every j<i.
(%) F° denotes the complement of F.
5 — Fundamenta Mathematicae CX/1
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NG ta"t-S) # B; so there exists y e G such that b-ye S and a-b-ye S. This
implies (b, ), (a*b, ¥), (a, b-y) € @ and so hypothesis (i) of Theorem 1 is satisfied.

COROLLARY 3. Let G be a left (right) regular semigroup and H a right (left) regular
semigroup. Suppose S< G be a set such that, for every x,ye G, S N x-Sy %« @
S nSxn Sy @) (this condition is satisfied if, for instance, S belongs to a left
(right) o3-class).

If Qo{(x,y): x-ye S}, then f is a homomorphism.

Proof. Suppose G and H be respectively a left and a right regular semigroup,
Let seSn(aS)n(ab-S); then s=aws =abs,el and 5 =bg,es.
This implies (b, 5,), (a*b, 5,), (@, b-s,) €2 and so hypothesis (i) of Theorem 1
is satisfied.

2. Throughout this section, unless otherwise stated, we suppose G and H are
abelian (*) semigroups; so we use + to denote the binary law for G and H and we
assume € is symmetric with respect to the diagonal of G'x G.

We have to introduce the following notations:

for every s,te G and I'cG, I' # O,

@s,c = {ue G u = x+...+x, where x;€Q,n Q,, ...

o X € Qs-l-xl-k.,.'hxk-.t a} Qt+x1+...+3¢;¢~1}
of =N N G5t -

tel seG

[CH .
¢ - ﬂ (ps+a,t+m
aeG

Now it is useful to give some properties of the sets ¢s,1, because they will appear
in the main theorems.

Lemma 1. U @4 @spneed Qs Moreover if G is a monoid and 0€ @y
UEPst '
then Pspy = U (u+(Ps+u,t+u)'
UE Psst

Proof. If v € @ypy 144> We have v = x; +...4+x, with

X € Qs+u 8} Qt+u’ ey X € ‘Q.s‘l—u+x1...+xk-1 a} Qt+u+x1+.‘.-l-xn-t *

Now, if u€ ¢, ,, we can write u = y, +...+y, with

V€N Qe 1€ Quy ity O D sytestoypmy

Therefore, is we consider the sequence {y, ..., 3, X5 wees X}, We Obtain u+ve g,
- . . ; sies
This implies U+ @gpy 144 =@y, The second statement is obvious.

COROLLARY 4. Let G be a topological group. If, for every ae G, 0 &€ Int (4 100) (s
then @y, is open. If, for every a € G, (g, 144 is of the second category at 0 ("), then Ps,t
is of the second category at each of its points. b

() If G and H are not commutative, the notations here introduced are still meaningfull and:
Lemmas 1,2 and Corollaries 4,5 are still true.

(®) Int(X) denotes the interior of the set X.

() A subset X of a topological space is said to be of the second category at a point x, if, for
every neighbourhood U of x¢, Un X is a set of the second category (see, for instance, [1?'.]]).,
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Proof. It follows immediately from Lemma 1, as the map x — a+x is 2 homeo~
morphism.

ExampLe 1. Let G = (R, +) and suppose Qo{(x,»): |y|<lg(x)|} where
g: R— R is a nowhere vanishing continuous (or at least lower semicontinuous)
function. Then, for every s, ¢ € R, ¢, , = R. We know indeed, by Corollary 4, g, is
open for every s, t; therefore we have only to show the boundary of ¢,,, is empty.
On the contrary, if u, belongs to the boundary of ¢, as ¢ = min(lg(s+u)|,
lg(t-+up)|>0), there exists a neighbourhood U of u, such that, for every ue U,
min(lg (s+2)!, lg(t+w)>p/2. If we choose ueUn g, with |u—uy|<ef2, we
obtain g € (U+ Qgiy, 1+ © Py,e» CONErary to our assumption.

Remark 1. In Example 1 we supposed g (x) 5 O for every x e R. If otherwise
E = {x: g(x) = 0} is not empty, but is a discrete set and,

inf [min(1D-g()], 1D7gCN]>1,  inf [min(1D,g (3, 1D*g())]>1
xeE xel

(here D_g(x), D™g(x), D4g(x), D*g(x) are the Dini derivates of g at x), we have
still ¢,, = R, for every s,7¢ E.

If E is not a discrete set but, for every s, ¢ ¢ E and ue (E—s) U (E—t) there
exist xy, x, € ¢, With x; <u<x, such that

u—xy<min(lg(s-+x)l, lg(+x))  and  xy—w<min(gls+xo)l, lg(t+x5)])

we have still ¢, = R for every s, ¢ E.

ExampLE 2. Let G and ¢ as in Example 1. If Q5{(x,): 0<y<|g(x)]}, then,
for every s,t€ G, ¢, = [0, +00).

LEMMA 2. @, +0® <oy, and p® 0+ g

Proof. If ¢ = @ the proof is trivial. Suppose o0 = & and let ue @,
vep®?; then we have v € @gy 4, and, from Lemma 1, u+v € @,. Let now
u,ve Y. As, for every a € G, € Psiq tra 0d UE Quiptuttatw if follows u+v
€ Qetarra- Since a is arbitrary, we get u+ve @&,

Remark 2. If @ ®?, then, for every ne N, nae @™ and ¢, +nac s,
moreover, if G is a monoid and 0e ¢®", then @+ 0D =g, , and ¢+
+(p(3,1) = (P(s,t).

Remark 3. Let G be a monoid and H a regular monoid. If @ contains (0, 1)
or (¢, 0) for some te G, then f(0) = 0 and so 0-{0,1),teGu{(r,0), 1€ G}
In this case we can always assume, without loss of generality, that £ itself contains
the set {(0, £), e G} U {(t,0), 7€ G}. So we have O € ",

COROLLARY 5. Let @ # J<G and denote by T the subsemigroup generated by J.
Then, if @77, we have ¢®">T and g™ @i+ T.

(s, 1) (s, f)_

w n " S, (s,1)
Proof. T= U (X J)- As, for every n>1, $J = It It
=1 1

n= 1
<®?, we have T=®™". Hence, by Lemma 2, @5, +T<0s,:
5
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ExampLE 3. Let R = (R, +, -, @) be the vector space of the rcal numbers
over the field @ of the rational numbers and § be a Hamel basis of B over Q whose
elements are supposed positive. If G = Rand @>Gx Lwhere L = {s/n,ne N, se S}
then. for every s,te G, ¢, and (p("") contain ’

+ . 9
ST = {x: x =¢84+ H65,0<0eQ, 5€8,n=1,2,..}.
Now we statc the main result.

THEOREM 2. Let G and H be abelian semigroups and H be also regular. Consider
the fumetional equation () and let (a, b) € N. If there exist elements ., f, y, 8 belonging
to G defined and connected by the following relations:

() 2 & P arprs: BE Purvaras Y E Po,atips

(1) 0 € Qupgipn [DHy+H{Rhay N Larvrpan]s

then (a,b) e Q. If for every (a,b)e N there exist o, By v, 8 satisfying (1) and (ii)
then f is a homomorphism. ’

P.roof. AS U € Py atprsr BEPoap e 1d yE Phavnrp> there exist xy,
€ G with the following properties:

Xy +...+x, = o« with

vy Xy

Xy € Qn n Qn+p+&: ceey Xy eQa'Px""..,‘l‘xg—l n Q:l-l-/!~l‘d'l'x1...'}'.\cs-1 ?

Xsp1F ot X = B with

Xst1 € Qasp O Qoo s Xp € gz:+b+xa+1+,..+xr..1 a} Q:H-ot—l-x.‘,'(v1—l‘.,.+x»-1 s
Xppq+.bx, =9 with
Xppq €8,
41 5 O Qotkpaps oy X, € Qb+x,«.yv;-l-..,+x,._¢ O Qb ey 1oy
By (ii = 4 i :
y (i), 6 =b+y }_x". with xg € Qy1y N Quipupie, and xo+b-+yeQ

Because of the properties of x,, x;,

points:

) atatfe
wes Xy, © contains thercfore the following
(@, 1), da+xg, x5)0 0er,y (@, FodF Xy, ),

> Xre1)s Gt Xy Xpia), o Ot Xt b o b Xy s %)y (Db X b vy Xg)
(tZ—{—b, x”l)’ (a+b+x-""'“1’ x-‘"l'Z)’ Mt (a'l'b"f'xs-l-l Fort Xy, .\‘,,),
(@b Xog g Xy X0), (@ Doty vk Xy b X Xy, o

v (@D X b Xy b Xy P A X X
’ R ot et X, )
(@+xy+ ...+ x,, Dty i ot Xy, 4xg) . ‘ *

By the equation (x) we can easily deduce

@b S76) = Fletbt T3 = F@+/ G+ 3 S (o)
= i=0

now the regularity of H implies f(a-+b) = F(@+f ).
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REMARK 4. We can always suppose, without loss of generality, that G and H are
monoids and f maps the zero element of G in the zero element of H.

As a matter of fact we can consider the monoids G =G u {0} ‘and
1 = H U {0’} obtained by adding elements O and O’ which play the role of unit
for G and H respectively. Now, if f: G — H is the function defined by:

Ol
76={
)
it is casy to sce thai f satisfies the functional cquation (x) on

O=0ud0IxG)u@Gx{0) and N =(GxGN2=N.

ifx=0,
ifxeG

Therefore f is a homomorphism iff f is a homomorphism. It follows that we can
always choosc a, 8 and y equal to O because, for every s, 1€ G, Py,0 = @ U {o}.

Remark 5. The hypotheses (i) and (ii) of Theorem 2 show that o, B, , d are
mutually connected, but note that J is defined in a different way than the others.
The following simple counterexample shows that it is not possible to weaken the
hypotheses of Theorent 2 by asking that there exist elements ¢, B, v, 6 € G which
satisfy the following conditions:

(1/) ae (/)u.n'{-ﬂ»b&a ﬁ € (pa+h,n+uv YE (/)b,n'}-b-i-ﬂ’

(1) Qysarp N DY+ (Qpay O Qavpirgsr)] # O

Let G = {0, 1,2} be the additive group of integers mod(3), H=(R, +)
and f: G— R be defined by:

f@®=0, fO=1 f@=-1.

In this case f satisfies the functional equation (*) on R =GN where
N={{,1,(2,2)}; but clearly fis not a homomorphism because —1 = f(1+1)
# F(D+f(1) =2and | = f2+2) #f+/(Q) = -2 Nevertheless, if we choose
a=2 f=079=0, §=2when{a,p)=(,Danda=1=07y=0 o=1
when (a, b) = (2, 2), the above mentioned conditions (i) and (i) are satisfied.

Remark 6. Here we give another simple counterexample which shows that,
if the set

E = Quigip 0 [BH7+ ey 0 Qorprprn)]

is empty for any choice of elements a, B, v, then the statement of the Theorem 2 is
not necessarily true.

Let N=1,2, 1,0, G= (N, ), H= (N, +) and

Q= {(m,n)e NxN: (m,n) = 13 &).

A function f: N— N which satisfies ’the functional equation f(m-n)
= f(m)-+f(n) on the restricted domain Q or on Nx N is called respectively additive
or completely additive.

(®) (m,n) = 1 means that 1 is the highest common divisor of m and n.
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Here it is easy to see that E = @ for any choice of elements «, £, y; and it is
indeed well known that an additive function is not necessarily a completely additive
function.

Remark 7. A carefull reading of the proof of Theorem 2 shows that the hy-
potheses about commutativity of G and H are not necessary if (i) and (if) can be satisfied
choosing « and f equal to the unit element of G (sce Remark 4); furthermore it is
sufficient that H is right regular.

Therefore we can state the following proposition (using the multiplicative
notation):

Let G and H be semigroups and H be also regular. Consider the Junctional equa-
tion (x); if for every (a,b) € N there exists y & ¢y 4., (°) such that

Qn fb'V'(Qm 8l Qa-b'v)] #d,

then f is a homomorphism (*°).

This proposition generalizes some results of [3] (for instance Theorem 1) in
the case of semigroups (indeed if G is a group, the subgroup generated by ¥ is equal
to the subsemigroup generated by Y u ¥, and considering the footnote (1)
and Corollary 5 we can show that ¢, , = G for every s, t & G ;80 p = b~ satisfies
our hypothesis).

ExaMPLE 4. Let G and @ as in Example 3, H an abelian regular semigroup
and fi G— H a solution of (+) on Q. Then fis a homomorphism. In fact if we apply
Theorem 2 and remember that for every s, te G @, ,>5", we have

Q:(Rx(—S*)) U(RxL),

and so f .is a s?lution of () on §. Now we apply again Theorem 2 and we can see
that (%) is satisfied for every (a, b)e R?, that is fis a homomorphism.

COROLLARY 6. Let G be an abelian group and H an abelian regular monoid,

1_' 'f, fm: every. (a, bYeN, ~aep,0n 0, +b,0> then f is a homomorphism; this condition
is satisfied if, for instance,

-riW)e Pa,0
aep(NYUN*
where py(N) = {te G: (1, 2) e N for some z e G} and N* = {t = a+b, (a, b) eN}.
, Proof. If (a, b) € N, we have also (b, 4) € N and therefore, from our hypothesis,
—0 € @y, 0< @y, Moreover, as ¢, o # @, we have Qy 5 @. From the hypotheses
;n G and H we can deduce £(0) = 0 and so we may assume Qy = Q% = G (see
ema‘r.k 3). If we choose § = 0, ¢ = f = ~a, y = ~b, it is easy to verify that (i)
and (i) of Theorem 2 are satisfied.

() See footnote (%).
() A similar theorem can be stated if H is a left regular semigroup.
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COROLLARY 7. Let G be an abelian group and H an abelian regular monoid.
i, for every (a,b) e N, ~a € Qupp4 and —be @y, then f is a homomorphism. In
sarticular f is a homomorphism if ¢, = G for every s, teG.

Proof. Q, # &; if, on the contrary, Q, = & we should have (0, 0)e N and
so 0&@g, contrary to our assumption. Now we have, from Remark 3,
Q, = Q° = G. Therefore the hypotheses of Theorem 2 are satisfied if we assume
o=0,p=—a,y=—b 6=0.

The following theorems give us some particular conditions under which f is
a homomorphism.

THEOREM 3. Let G and H be abelian regular semigroups and suppose there exist
two oy-classes § and & such that:

Q) the set S = {xeG: Q,e§} belongs to G,

(ii) for every s,te G, ¢y, is consistent with .

Then f is a homomorphism.

Proof. We suppose, without loss of generality, G and H are monoids (see
Remark 3) and so we can choose « = 0 for every (a, b) e N. Now, if (2, b)e N,
the set (@+ @g45,,) N S is not empty and so there exists f € @,1p,,5uch thata+f e S.
Analogously (a-+b+B+¢p,arp+p) NSO (a+B+S) # @ and so there exists
Y € Qp,arp+p With b+ye S and a+b+f+yeS. Hence

E=Qupn[b+y+(Rpry 0 Qorsipr)] # B

and so we can choose an element § € E. Therefore all the hypotheses of Theorem 2
are satisfied.

Remark 7. Theorem 3 is still true if, instead of (i) and (i), we suppose that, for
every s, t,u,v€ G,

Wt+esdn Sn@+S) # 9.

THEOREM 4. Let G be an abelian topological group and H an abelian regular monoid.
If for every x belonging to a neighbourhood U of a point x,, Int(Q,) # @ and, for
every s,te G, @q, is a dense subset of G, then fis a homomorphism.

Proof. As ¢o # @, wehave Q° = G (see Remark 3) and therefore, for every
s,te G, 0e g, Let (a,b) e N. In order to apply Theorem 2 we choose ¢ = 0 and
we have only to show there exist 8,y € G such that B € Pyip,a5 ¥ € Po,atp+8 and

o mTERs

Rup O A9+ @iy O Qaprpr)] # @2"
Aé 0€Qyiy N Quppipry, the last condition is satisfied if b+yeQuep. Let
B €(—a+U) N @uyp,, (this set is not empty because Q4,4 is dense in G and
Int(—a+ U) # &). Now, by the hypotheses on @, and ¢,

W = [—b+Int(Qas )] O Qo045 # D 5
s0, if we choose y e I, all the above mentioned conditions are satisfied and then f'is
a homomorphism.
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Remark 8. H needs to be o monoid only to assure Q° = G. The same remark
is true for Theorems 5 and 6.

ExampLe 5. Let G = (R, +). If @ has at least an inlerior point (for
instance (0, 0)) and there exists a continuous function g: £ - (0, --w) such that
Qo{(x,y): ye O, [yI<g(x)} (@ is the rational ficld), then, for cvery s,reG,
@5, is dense in R and we can apply Theorem 4. In this case indeed it is casy to see
that ¢,,> Q.

THEOREM 5. Let (G, M, ) be an abelian group and a measure space with g in-
variant under translation and H be an abelian regular monoid, If there exists a set
TG with plT)>0 (") such that, for every xeT, uy(Q,)>0 and moreover, for
every s,t€ G, uylps) =0, then f is a homomorphism.

Proof. The first part of the proof is the same as in Theorem 4. Therefore it
is sufficient to show that § and y can be chosen so that

i BE@orer  VEPoarorps DY EQesy.
This is possible if X = (~a+T) N @eupq # & and there exists fe X such that
Y = (=b+Qu1p) O Poatpip # D

First we prove X # @. If, on the contrary, X = @, denoting —a+7T = A
and @,y = B, we should have

A=(AnB)u(4dnB)=A4nBch*
and 50 pu(A)<pB%) = 0 contrary to our assumption py(4)>0.

If now we choose fi € X, we have a+f & T and 50 gty ~b-+Q,.. 2 = fig( Qo) >0.
Now the proof Y # @ is similar to the previous one about X.

Remark 9. Theorem 5 is not true if we suppose 7' satisfies the weaker hy-
pothesis p*(T)>0. We can indeed consider the following counter-example.

Let G = H = R, regarded as a vector space over the ficld @ of rational numbers,
and m the Lebesgue measure on R. If §'is a Hamel basis of R over Q and 8o a fixed
element of S, then S, will denote the linear subspace of R over @ spanned by SN\{so}
(S, is a saturated non-measurable set (see [11])). Consider the function f: B — R so
defined:

@) =0il xe 8, f(x)=1if xes§.
Clearly f'is not additive, but it satisfies the functional cquation (%) on the restricted
domain Q = (Sy x R) U (5§ % Sp).

P:or every s,te R, ¢, , = S; or ¢, = R, and therefore my(eps, ) = 0. In this
case, if we take T = S, we have m*(Sp)>0 and my(2,) = m(R)>0 for every xe T,
The proof of the following theorem is analogous to the previous one.

THEOREM 6. Let G be a second category abelian topological group and H an abelian
regular monoid. If there exists a second category set TG such that, for every x e T,

() If A< G, uy(4) and w*(A) are respectively the inner (orinterior) and the outer (or exterior)

measure induced by u, that is (see [7]): pu(d) = sup{u(F): Ao Fem}, pwh(d) = inf{u(F):
Ac Fem},
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Q, is a second category set and moreover, Jor every s,teG, @5, is ¢ first category
set, then f is a homomorphism.
TugortM 7. Let G be an abelion group, H an abelian regular monoid and

I'eG. If:
a) (/)r =G,
b) for every (a,b) & N, there exist vy, V2, V3 € I' such that

(@+py—73, b+y3—y2) € R,
then f is a homomorphism.

Proof. a) implies £, # @ and so we may assume Q0 = ¢ (see Remark 3).
Now we prove that there exist o, f, y e ol which satisfy the following conditions:

b+p+yel, b—oel, a+Pel, b+yeQuipip-

This follows from b) if we choose yy, y2, 73 such that a+y, —73 € Qyrysmy, and we
denote & = b—y,, f = y3—a and y = a~b+7y;—7s. o
If we assume 6 = b-+y it is easy to see the hypotheses of Theorem 2 are satisfied.

Tndeed:
we (PFC(Pa.wm = Qua4btpty = Payatptado
BE (prc‘Pn-l-b—-yz.(n-bbmyz)-l-yz = Qatb,atb-ys = Patbatar
b & (prC(Pb,b-Fyg = ([)b,u"l-b-l-/l
and
8€Qupaip O B+Y+(Qpiy N Lavprpsp]
(because b+7 € Qurasp a0d 06 Qpyy N Quppr p+y)+ The proof is so complete.
Remark 9. If G is also a topological group and I' is open, the hypotheses a)

and b) can be replaced by:
a) for every eI, o is dense in G, ‘
b") for every (a,b) e N, there exist y;, ¥z, ys €T such that

(a+71—vs, b+r3~72) € Int(Q) .

Remark 10. As, in the case of groups, ¢* = ™", we can suppose I sym-
metric. Furthermore, in order to satisfy condition b), I' has to contain at least an
element different from 0. Now, if I'y = {yo}, Iz = {0, v} I's = {0, %, —90} Wwe
have @ = @™ = @™ = (| Pyzuy because, for every 5,16 G, @s,y S Pye-

seG

EXAMPLE 6. Let G = (R, +) and
Q{(x, )t x+@r—D<y<x+@rtl),n= 0, +1, £2,..}.

If we assume I' = {0, 1, —1} the hypotheses of Theorem 7 are satisfied and so f'is

a homomorphism. )
Nevertheless there are some pairs (s, ) for which ¢, = {0} and so
Theorems 3, 4, 5, 6 cannot be applied.
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