

Cauchy's functional equation on semigroups

hv

Luigi Paganoni and Stefania Paganoni Marzegalli (Milano)

Abstract. Consider two semigroups (G,\cdot) and (H,\cdot) , a subset $\Omega \subset G \times G$ and a function $f\colon G \to H$ such that $f(x\cdot y) = f(x)\cdot f(y)$ for all pairs $(x,y) \in \Omega$. In this paper we find some conditions on Ω under which f is a homomorphism.

1. Let G and H be semigroups and consider Cauchy's functional equation on a restricted domain

$$f(x \cdot y) = f(x) \cdot f(y)$$

where $(x, y) \in \Omega \subset G \times G$, $f : G \to H$ and \cdot denotes the composition law in G and H. Several previous papers (see, for instance, [1]-[4], [6], [8]-[11], [13]) give some conditions under which a solution of Cauchy's equation is a homomorphism; in this paper we study the same problem and find some new conditions.

Throughout this paper the following notations are used:

$$\begin{split} N &= (G \times G) \setminus \Omega, \quad \Omega_x = \big\{ t \in G \colon (x,t) \in \Omega \big\}, \quad \Omega^x = \big\{ t \in G \colon (t,x) \in \Omega \big\}, \\ T_x &= \big\{ t \in G \colon \text{there exists } y \in G \text{ such that } (t,y) \in \Omega \text{ and } t \cdot y = x \big\}, \\ T^x &= \big\{ t \in G \colon \text{there exists } y \in G \text{ such that } (y,t) \in \Omega \text{ and } y \cdot t = x \big\}. \end{split}$$

We always suppose $\Omega_x \cup \Omega^x \cup T_x \neq \emptyset$, for every $x \in G$, so that the functional equation (*) binds all the elements of G in some way.

Let $\tilde{\Omega} = \{(x, y): f(x \cdot y) = f(x) \cdot f(y)\}$. In this paper we look for some conditions under which $\tilde{\Omega} = G \times G$, that is f is a homomorphism of G into $H(^1)$.

We can prove the following theorem:

(1) When G and H are groups it is easy to see that $\Omega^{x_0} = G$ ($\Omega_{x_0} = G$) implies

$$\{(x,x_0^{-1}), x \in G\} \subset \tilde{\Omega} \ (\{(x_0^{-1},x), x \in G\} \subset \tilde{\Omega}).$$

Therefore, in these cases, we always suppose, whithout loss of generality, that Ω has the following properties:

if
$$\Omega^{x_0} = G$$
 then $\Omega^{x_0^{-1}} = G$, if $\Omega_{x_0} = G$ then $\Omega_{x_0^{-1}} = G$.

Furthermore, if $\Omega \supset \{(x,x^{-1}), x \in G\}$, we deduce:

$$(x,y) \in \tilde{\Omega} \text{ iff } (x \cdot y, y^{-1}) \in \tilde{\Omega} \text{ and } (x,y) \in \tilde{\Omega} \text{ iff } (x^{-1}, x \cdot y) \in \tilde{\Omega}$$

and so, in this case, we suppose, without loss of generality, that Ω is invariant under the maps:

$$\varphi_1: (x, y) \mapsto (x \cdot y, y^{-1}), \quad \varphi_2: (x, y) \to (x^{-1}, x \cdot y).$$

When G and H are abelian semigroups, we assume, without loss of generality, that Ω is symmetric with respect to the diagonal of $G \times G$.

65

THEOREM 1. Consider the functional equation (*) and suppose $(a, b) \in \mathbb{N}$. If at least one of the following conditions (i)—(iv) is satisfied:

- (i) H is a right regular semigroup (2) and $\{b \cdot (\Omega_b \cap \Omega_{a \cdot b})\} \cap \Omega_a \neq \emptyset$,
- (ii) H is a left regular semigroup and $\{(\Omega^a \cap \Omega^{a \cdot b}) \cdot a\} \cap \Omega^b \neq \emptyset$,
- (iii) G is a left regular semigroup and $\{a \cdot (\Omega_a \cap T_b)\} \cap T_{a \cdot b} \neq \emptyset$,
- (iv) G is a right regular semigroup and $\{(\Omega^b \cap T^a) \cdot b\} \cap T^{a \cdot b} \neq \emptyset$, then $(a, b) \in \tilde{\Omega}$.

Proof. If (i) is satisfied, there exist x_0 and y_0 such that: $(a, x_0) \in \Omega$ and $x_0 = b \cdot y_0$ with $(b, y_0) \in \Omega$ and $(a \cdot b, y_0) \in \Omega$. This implies $f(a \cdot b) \cdot f(y_0) = f(a \cdot b \cdot y_0) = f(a) \cdot f(b \cdot y_0) = f(a) \cdot f(b) \cdot f(y_0)$ and, as H is a right regular semigroup, $f(a \cdot b) = f(a) \cdot f(b)$.

If (iii) is satisfied, there exist x_0 and y_0 with the following properties: $x_0 \in T_{a.b}$ and $x_0 = a \cdot y_0$ with $y_0 \in T_b$ and $(a, y_0) \in \Omega$. As $x_0 \in T_{a.b}$, there exists y_1 such that $(x_0, y_1) \in \Omega$ and $x_0 \cdot y_1 = a \cdot b$; as $y_0 \in T_b$, there exists y_2 such that $(y_0, y_2) \in \Omega$ and $y_0 \cdot y_2 = b$. But now $x_0 \cdot y_2 = a \cdot y_0 \cdot y_2 = a \cdot b$ and therefore $x_0 \cdot y_2 = x_0 \cdot y_1$; as G is a left regular semigroup we have $y_2 = y_1$. It follows:

$$\begin{split} f(a \cdot b) &= f(x_0 \cdot y_1) = f(x_0) \cdot f(y_1) = f(a) \cdot f(y_0) \cdot f(y_1) = f(a) \cdot f(y_0 \cdot y_1) \\ &= f(a) \cdot f(b) \;. \end{split}$$

If (ii) or (iv) are satisfied, the proof is similar.

Counterexample. Let R be the real numbers' set and consider the multiplicative semigroup $G = R \setminus \{0\}$ and H = R. If $\Omega = \{(x, y): xy < 0\}$ and $f: G \to H$ is defined by

$$f(t) = \begin{cases} 0 & \text{if } t < 0, \\ c \neq 0, 1 & \text{if } t > 0, \end{cases}$$

then f is a solution of the functional equation (*) on Ω , but, for every $(a,b) \in N$, $f(a \cdot b) \neq f(a) \cdot f(b)$.

In this example the conditions on the sets which appear in (i) and (ii) are sometimes fulfilled (for instance when a, b > 0), but H is not a regular semigroup; on the other hand, even if G is a regular semigroup, the sets which appear in (iii) and (iv) are always empty.

Now we have to introduce some classes of subsets of G.

DEFINITION 1. Let i>0 be a fixed integer and $\mathfrak F$ a collection of subsets of G with the following properties:

- (i) if $T_1 \in \mathfrak{F}$ and $T_2 \supset T_1$, then $T_2 \in \mathfrak{F}$,
- (ii) if $T \in \mathfrak{F}$ and $x \in G$, then $x \cdot T \in \mathfrak{F}$ $(T \cdot x \in \mathfrak{F})$,
- (iii) if $T_1, T_2, ..., T_i \in \mathcal{F}$, then $T_1 \cap T_2 \cap ... \cap T_i \neq \emptyset$.

$$\alpha \cdot \varrho = \beta \cdot \varrho \implies \alpha = \beta \quad (\varrho \cdot \alpha = \varrho \cdot \beta \implies \alpha = \beta), \quad (\alpha, \beta, \varrho \in X).$$

A semigroup X is said to be regular if it is left and right regular.

Such a family \mathfrak{F} is said a left (right) σ_i -class. If \mathfrak{F} is a left (right) σ_i -class for every t>0 (3), \mathfrak{F} is said a left (right) σ -class.

Cauchy's functional equation on semigroups

DEFINITION 2. Let \mathfrak{F} be a left (right) σ_i -class. A set $U \subset G$ is said to be *consistent* with \mathfrak{F} if there exists a left (right) σ_i -class \mathfrak{F} with $\mathfrak{F}\supset \mathfrak{F}$ and $U\in \mathfrak{F}$.

Let \mathfrak{F} be a left (right) σ_i -class and consider the family Σ_i^1 (Σ_i^r) of all left (right) σ_i -classes $\mathfrak{G} \supset \mathfrak{F}$ partially ordered by inclusion. It is easy to see that every chain in Σ_i^1 (Σ_i^r) has an upper bound; therefore, by Zorn's lemma, there exists a maximal left (right) σ_i -class \mathfrak{G}_0 , with $\mathfrak{G}_0 \supset \mathfrak{F}$.

Here are some examples of σ_i -classes and σ -classes:

- 1) Let G be a group and \mathfrak{G} a proper linearly invariant ideal in G (see [3], [6]). Then $\mathfrak{F} = \{F: F^c \in \mathfrak{G}\}$ is a σ -class (4).
- 2) Let G be a direct group (see for instance [5] or [13]) and \mathfrak{G} the class of the upper (lower) bounded subsets of G. Then $\mathfrak{F} = \{F: F^c \in \mathfrak{G}\}$ is a σ -class.
- 3) Let G be a semigroup and μ a left (right) invariant probability measure. Then $\Re = \{F: \mu(F) > 1 1/i\}$ is a left (right) σ_i -class.
- 4) Let G be a semigroup and (G, \mathfrak{M}, μ) a σ -finite measure space such that for every $x \in G$ and $M \in \mathfrak{M}$, $\mu(x \cdot M) \leq \mu(M)$ ($\mu(M \cdot x) \leq \mu(M)$). Moreover, let $V_n \uparrow G$ be a sequence of sets with finite and positive measure such that:
 - (i) $\mu(V_{n+1}) \sim \mu(V_n)$,
- (ii) for every $a \in G$, there exist k, v>0 such that $V_n \subset a \cdot V_{n+k}$ $(V_n \subset V_{n+k} \cdot a)$, for every $n \geqslant v$.

Then, the upper density $\varrho_{\{V_n\}}$ relatively to $\{V_n\}$ (see [13]) is a subadditive function and, for every $x \in G$ and $A \subset G$, $\varrho_{\{V_n\}}(x \cdot A) \leq \varrho_{\{V_n\}}(A)$ ($\varrho_{\{V_n\}}(A \cdot x) \leq \varrho_{\{V_n\}}(A)$). Therefore $\mathfrak{F} = \{F \subset G: \varrho_{\{V_n\}}(F^c) < 1/i\}$ is a left (right) σ_I -class.

Now we can state the following corollaries of Theorem 1.

COROLLARY 1. If H is a right (left) regular semigroup and there exists a left (right) σ_3 -class \mathfrak{F} such that, for every $x \in G$, $\Omega_x \in \mathfrak{F}$ ($\Omega^x \in \mathfrak{F}$), then f is a homomorphism.

COROLLARY 2. Let $S \subset G$ be a set such that, for every $x \in G$,

$$S \cap x \cdot S \neq \emptyset$$
 $(S \cap S \cdot x \neq \emptyset)$

(this condition is satisfied if, for instance, S belongs to a left (right) σ_2 -class).

- a) If H is a right (left) regular semigroup and $\Omega \supset G \times S(\Omega \supset S \times G)$, then f is a homomorphism.
- b) If G is a group, H is a right (left) regular semigroup and $\Omega \supset \{(x, y): x \cdot y \in S\}$, then f is a homomorphism.

Proof. a) is obvious. We prove b) when H is a right regular semigroup and $S \cap x \cdot S \neq \emptyset$, for every $x \in G$. In this case, for every $(a, b) \in N$, $(b^{-1} \cdot S) \cap S$

^(*) A semigroup X is said to be right regular (left regular) if the right-hand (left-hand) cancellation law holds in it, that is:

⁽³⁾ It is obvious that a σ_i -class is also a σ_j -class for every j < i.

⁽⁴⁾ F^c denotes the complement of F.

^{5 —} Fundamenta Mathematicae CX/1

 \cap $(b^{-1} \cdot a^{-1} \cdot S) \neq \emptyset$; so there exists $y \in G$ such that $b \cdot y \in S$ and $a \cdot b \cdot y \in S$. This implies $(b, y), (a \cdot b, y), (a, b \cdot y) \in \Omega$ and so hypothesis (i) of Theorem 1 is satisfied.

COROLLARY 3. Let G be a left (right) regular semigroup and H a right (left) regular semigroup. Suppose $S \subset G$ be a set such that, for every $x, y \in G$, $S \cap x \cdot S \cap y \cdot S \neq \emptyset$ $(S \cap S \cdot x \cap S \cdot y \neq \emptyset)$ (this condition is satisfied if, for instance, S belongs to a left (right) σ_3 -class).

If $\Omega \supset \{(x, y): x \cdot y \in S\}$, then f is a homomorphism.

Proof. Suppose G and H be respectively a left and a right regular semigroup. Let $s \in S \cap (a \cdot S) \cap (a \cdot b \cdot S)$; then $s = a \cdot s_1 = a \cdot b \cdot s_2 \in S$ and $s_1 = b \cdot s_2 \in S$. This implies $(b, s_2), (a \cdot b, s_2), (a, b \cdot s_2) \in \Omega$ and so hypothesis (i) of Theorem 1 is satisfied.

2. Throughout this section, unless otherwise stated, we suppose G and H are abelian (5) semigroups; so we use + to denote the binary law for G and H and we assume Ω is symmetric with respect to the diagonal of $G \times G$.

We have to introduce the following notations:

for every $s, t \in G$ and $\Gamma \subset G$, $\Gamma \neq \emptyset$,

$$\varphi_{s,t} = \{ u \in G: u = x_1 + \dots + x_k, \text{ where } x_1 \in \Omega_s \cap \Omega_t, \dots \}$$

...
$$x_k \in \Omega_{s+x_1+...+x_{k-1}} \cap \Omega_{t+x_1+...+x_{k-1}}$$

$$\varphi^{(s,t)} = \bigcap_{a \in G} \varphi_{s+a,t+a}, \quad \varphi^{\Gamma} = \bigcap_{t \in \Gamma} \bigcap_{s \in G} \varphi_{s,s+t}.$$

Now it is useful to give some properties of the sets $\varphi_{s,t}$, because they will appear in the main theorems.

LEMMA 1. $\bigcup_{u \in \varphi_{s,t}} (u + \varphi_{s+u,t+u}) \subset \varphi_{s,t}$. Moreover if G is a monoid and $0 \in \varphi_{s,t}$, then $\varphi_{s,t} = \bigcup_{u \in \varphi_{s+u}} (u + \varphi_{s+u,t+u})$.

Proof. If $v \in \varphi_{s+u,t+u}$, we have $v = x_1 + ... + x_k$ with

$$x_1 \in \Omega_{s+u} \cap \Omega_{t+u}, \dots, x_k \in \Omega_{s+u+x_1,\dots+x_{k-1}} \cap \Omega_{t+u+x_1,\dots+x_{k-1}}$$

Now, if $u \in \varphi_{s,t}$, we can write $u = y_1 + ... + y_r$ with

$$y_1 \in \Omega_s \cap \Omega_t, \ldots, y_r \in \Omega_{s+y_1+\ldots+y_{r-1}} \cap \Omega_{t+y_1+\ldots+y_{r-1}}$$

Therefore, is we consider the sequence $\{y_1, ..., y_r, x_1, ..., x_k\}$, we obtain $u+v \in \varphi_{s,t}$. This implies $u+\varphi_{s+u,t+u} \subset \varphi_{s,t}$. The second statement is obvious.

Corollary 4. Let G be a topological group. If, for every $a \in G$, $0 \in \text{Int}(\varphi_{s+a,t+a})^{(6)}$, then $\varphi_{s,t}$ is open. If, for every $a \in G$, $\varphi_{s+a,t+a}$ is of the second category at 0 (7), then $\varphi_{s,t}$ is of the second category at each of its points.

Proof. It follows immediately from Lemma 1, as the map $x \to a + x$ is a homeomorphism.

EXAMPLE 1. Let G = (R, +) and suppose $\Omega \supset \{(x, y) : |y| \le |g(x)|\}$ where $g \colon R \to R$ is a nowhere vanishing continuous (or at least lower semicontinuous) function. Then, for every $s, t \in R$, $\varphi_{s,t} = R$. We know indeed, by Corollary 4, $\varphi_{s,t}$ is open for every s, t; therefore we have only to show the boundary of $\varphi_{s,t}$ is empty. On the contrary, if u_0 belongs to the boundary of $\varphi_{s,t}$, as $\varrho = \min(|g(s+u_0)|, |g(t+u_0)| > 0)$, there exists a neighbourhood U of u_0 such that, for every $u \in U$, $\min(|g(s+u)|, |g(t+u)|) > \varrho/2$. If we choose $u \in U \cap \varphi_{s,t}$ with $|u-u_0| < \varrho/2$, we obtain $u_0 \in (u+\varphi_{s+u,t+u}) \subset \varphi_{s,t}$, contrary to our assumption.

Remark 1. In Example 1 we supposed $g(x) \neq 0$ for every $x \in \mathbb{R}$. If otherwise $E = \{x: g(x) = 0\}$ is not empty, but is a discrete set and,

$$\inf_{x \in E} \left[\min \left(|D_{-}g(x)|, |D^{-}g(x)| \right) \right] > 1, \quad \inf_{x \in E} \left[\min \left(|D_{+}g(x)|, |D^{+}g(x)| \right) \right] > 1$$

(here $D_{-g}(x)$, $D_{-g}(x)$, $D_{+g}(x)$, $D_{+g}(x)$ are the Dini derivates of g at x), we have still $\varphi_{x,t} = R$, for every $s, t \notin E$.

If E is not a discrete set but, for every $s, t \notin E$ and $u \in (E-s) \cup (E-t)$ there exist $x_1, x_2 \in \varphi_{s,t}$ with $x_1 < u < x_2$ such that

$$u-x_1 < \min(|g(s+x_1)|, |g(t+x_1)|)$$
 and $x_2-u < \min(|g(s+x_2)|, |g(t+x_2)|)$

we have still $\varphi_{s,t} = R$ for every $s, t \notin E$.

EXAMPLE 2. Let G and g as in Example 1. If $\Omega \supset \{(x, y): 0 \le y \le |g(x)|\}$, then, for every $s, t \in G$, $\varphi_{t,s} = [0, +\infty)$.

LEMMA 2.
$$\varphi_{s,t} + \varphi^{(s,t)} \subset \varphi_{s,t}$$
 and $\varphi^{(s,t)} + \varphi^{(s,t)} \subset \varphi^{(s,t)}$.

Proof. If $\varphi^{(s,t)} = \emptyset$ the proof is trivial. Suppose $\varphi^{(s,t)} \neq \emptyset$ and let $u \in \varphi_{s,t}$, $v \in \varphi^{(s,t)}$; then we have $v \in \varphi_{s+u,t+u}$ and, from Lemma 1, $u+v \in \varphi_{s,t}$. Let now $u, v \in \varphi^{(s,t)}$. As, for every $a \in G$, $u \in \varphi_{s+a,t+a}$ and $v \in \varphi_{s+a+u,t+a+u}$, if follows $u+v \in \varphi_{s+a,t+a}$. Since a is arbitrary, we get $u+v \in \varphi^{(s,t)}$.

Remark 2. If $a \in \varphi^{(s,t)}$, then, for every $n \in N$, $na \in \varphi^{(s,t)}$ and $\varphi_{s,t} + na = \varphi_{s,t}$, moreover, if G is a monoid and $0 \in \varphi^{(s,t)}$, then $\varphi_{s,t} + \varphi^{(s,t)} = \varphi_{s,t}$ and $\varphi^{(s,t)} + \varphi^{(s,t)} = \varphi^{(s,t)} = \varphi^{(s,t)}$.

Remark 3. Let G be a monoid and H a regular monoid. If Ω contains (0, t) or (t, 0) for some $t \in G$, then f(0) = 0 and so $\tilde{\Omega} \supset \{(0, t), t \in G\} \cup \{(t, 0), t \in G\}$. In this case we can always assume, without loss of generality, that Ω itself contains the set $\{(0, t), t \in G\} \cup \{(t, 0), t \in G\}$. So we have $0 \in \varphi^{(s,t)}$.

COROLLARY 5. Let $\emptyset \neq J \subset G$ and denote by T the subsemigroup generated by J. Then, if $\varphi^{(s,t)} \supset J$, we have $\varphi^{(s,t)} \supset T$ and $\varphi_{s,t} \supset \varphi_{s,t} + T$.

Proof.
$$T = \bigcup_{n=1}^{\infty} (\sum_{i=1}^{n} J)$$
. As, for every $n \ge 1$, $\sum_{i=1}^{n} J = J + ... + J \subset \varphi^{(s,t)} + ... + \varphi^{(s,t)} \subset \varphi^{(s,t)}$, we have $T \subset \varphi^{(s,t)}$. Hence, by Lemma 2, $\varphi_{s,t} + T \subset \varphi_{s,t}$.

^(§) If G and H are not commutative, the notations here introduced are still meaningfull and Lemmas 1,2 and Corollaries 4,5 are still true.

⁽⁶⁾ Int(X) denotes the interior of the set X.

⁽⁷⁾ A subset X of a topological space is said to be of the second category at a point x_0 if, for every neighbourhood U of x_0 , $U \cap X$ is a set of the second category (see, for instance, [12]).

L. Paganoni and S. Paganoni Marzegalli

EXAMPLE 3. Let $R = (R, +, \cdot, Q)$ be the vector space of the real numbers the field Q of the rational numbers and S be a Hamel basis of R over Q where

EXAMPLE 3. Let $R = (R, +, \cdot, Q)$ be the vector space of the real numbers over the field Q of the rational numbers and S be a Hamel basis of R over Q whose elements are supposed positive. If G = R and $\Omega \supset G \times L$ where $L = \{s/n, n \in N, s \in S\}$, then, for every $s, t \in G$, $\varphi_{s,t}$ and $\varphi^{(s,t)}$ contain

$$S^+ = \{x: x = c_1 s_1 + ... + c_n s_n, 0 \le c_i \in \mathbb{Q}, s_i \in S, n = 1, 2, ...\}.$$

Now we state the main result.

THEOREM 2. Let G and H be abelian semigroups and H be also regular. Consider the functional equation (*) and let $(a, b) \in N$. If there exist elements $\alpha, \beta, \gamma, \delta$ belonging to G defined and connected by the following relations:

- (i) $\alpha \in \varphi_{a,a+\beta+\delta}$, $\beta \in \varphi_{a+b,a+\alpha}$, $\gamma \in \varphi_{b,a+b+\beta}$,
- (ii) $\delta \in \Omega_{a+\alpha+\beta} \cap [b+\gamma+(\Omega_{b+\gamma} \cap \Omega_{a+b+\beta+\gamma})]$,

then $(a,b) \in \tilde{\Omega}$. If for every $(a,b) \in N$ there exist α , β , γ , δ satisfying (i) and (ii), then f is a homomorphism.

Proof. As $\alpha \in \varphi_{a,a+\beta+\delta}$, $\beta \in \varphi_{a+b,a+\alpha}$ and $\gamma \in \varphi_{b,a+b+\beta}$, there exist $x_1, ..., x_n \in G$ with the following properties:

$$x_1 + \dots + x_s = \alpha$$
 with

$$x_1 \in \Omega_a \cap \Omega_{a+\beta+\delta}, \dots, x_s \in \Omega_{a+x_1+\dots+x_{s-1}} \cap \Omega_{a+\beta+\delta+x_1\dots+x_{s-1}}$$

$$x_{s+1} + ... + x_r = \beta$$
 with

$$x_{s+1} \in \Omega_{a+b} \cap \Omega_{a+\alpha}, \, \dots, \, x_r \in \Omega_{a+b+x_{s+1}+\dots+x_{r-1}} \cap \Omega_{a+\alpha+x_{s+1}+\dots+x_{r-1}} \,,$$

$$x_{r+1} + \dots + x_n = \gamma$$
 with

$$x_{r+1}\in\Omega_b\cap\Omega_{a+b+\beta},\,\ldots,\,x_n\in\Omega_{b+x_{r+1}+\ldots+x_{n-1}}\cap\Omega_{a+b+\beta+x_{r+1}+\ldots+x_{n-1}}.$$

By (ii), $\delta = b + \gamma + x_0$ with $x_0 \in \Omega_{b+\gamma} \cap \Omega_{a+b+\beta+\gamma}$ and $x_0 + b + \gamma \in \Omega_{a+\alpha+\beta}$. Because of the properties of $x_0, x_1, ..., x_n, \Omega$ contains therefore the following points:

$$(a, x_1), (a+x_1, x_2), \dots, (a+x_1+\dots+x_{r-1}, x_r),$$

$$(b, x_{r+1}), (b+x_{r+1}, x_{r+2}), \dots, (b+x_{r+1}+\dots+x_{n-1}, x_n), (b+x_{r+1}+\dots+x_n, x_0),$$

$$(a+b, x_{s+1}), (a+b+x_{s+1}, x_{s+2}), \dots, (a+b+x_{s+1}+\dots+x_{n-1}, x_n),$$

$$(a+b+x_{s+1}+\dots+x_n, x_0), (a+b+x_{s+1}+\dots+x_n+x_0, x_1), \dots$$

$$\dots, (a+b+x_{s+1}+\dots+x_n+x_0+\dots+x_{s+1}, x_s),$$

$$(a+x_1+\dots+x_r, b+x_{r+1}+\dots+x_n+x_0).$$

By the equation (*) we can easily deduce

$$f(a+b) + \sum_{i=0}^{n} f(x_i) = f(a+b+\sum_{i=0}^{n} x_i) = f(a) + f(b) + \sum_{i=0}^{n} f(x_i);$$

now the regularity of H implies f(a+b) = f(a) + f(b).

REMARK 4. We can always suppose, without loss of generality, that G and H are monoids and f maps the zero element of G in the zero element of H.

As a matter of fact we can consider the monoids $\hat{G} = G \cup \{O\}$ and $\hat{H} = H \cup \{O'\}$ obtained by adding elements O and O' which play the role of unit for G and H respectively. Now, if $\hat{f} \colon \hat{G} \to \hat{H}$ is the function defined by:

$$\hat{f}(x) = \begin{cases} O' & \text{if } x = O, \\ f(x) & \text{if } x \in G \end{cases}$$

it is easy to see that \hat{f} satisfies the functional equation (*) on

$$\hat{\Omega} = \Omega \cup (\{O\} \times \hat{G}) \cup (\hat{G} \times \{O\}) \quad \text{and} \quad \hat{N} = (\hat{G} \times \hat{G}) \setminus \hat{\Omega} = N.$$

Therefore f is a homomorphism iff \hat{f} is a homomorphism. It follows that we can always choose α , β and γ equal to O because, for every $s, t \in G$, $\phi_{s,t} = \varphi_{s,t} \cup \{O\}$.

Remark 5. The hypotheses (i) and (ii) of Theorem 2 show that α , β , γ , δ are mutually connected, but note that δ is defined in a different way than the others. The following simple counterexample shows that it is not possible to weaken the hypotheses of Theorem 2 by asking that there exist elements α , β , γ , $\delta \in G$ which satisfy the following conditions:

(i')
$$\alpha \in \varphi_{a,a+\beta+\delta}$$
, $\beta \in \varphi_{a+b,a+\alpha}$, $\gamma \in \varphi_{b,a+b+\beta}$,

(ii')
$$\Omega_{a+\alpha+\beta} \cap [b+\gamma+(\Omega_{b+\gamma}\cap\Omega_{a+b+\beta+\gamma})] \neq \emptyset$$
.

Let $G = \{0, 1, 2\}$ be the additive group of integers mod (3), H = (R, +) and $f: G \to R$ be defined by:

$$f(0) = 0$$
, $f(1) = 1$, $f(2) = -1$.

In this case f satisfies the functional equation (*) on $\Omega = G^2 \setminus N$ where $N = \{(1, 1), (2, 2)\}$; but clearly f is not a homomorphism because $-1 = f(1+1) \neq f(1) + f(1) = 2$ and $1 = f(2+2) \neq f(2) + f(2) = -2$. Nevertheless, if we choose $\alpha = 2$, $\beta = 0$, $\gamma = 0$, $\delta = 2$ when (a, b) = (1, 1) and $\alpha = 1$, $\beta = 0$, $\gamma = 0$, $\delta = 1$ when (a, b) = (2, 2), the above mentioned conditions (i') and (ii') are satisfied.

Remark 6. Here we give another simple counterexample which shows that, if the set

$$E = \Omega_{a+\alpha+\beta} \cap [b+\gamma + (\Omega_{b+\gamma} \cap \Omega_{a+b+\beta+\gamma})]$$

is empty for any choice of elements α , β , γ , then the statement of the Theorem 2 is not necessarily true.

Let
$$N = 1, 2, ..., n, ..., G = (N, \cdot), H = (N, +)$$
 and

$$\Omega = \{(m, n) \in N \times N: (m, n) = 1\} (8).$$

A function $f: N \to N$ which satisfies the functional equation $f(m \cdot n) = f(m) + f(n)$ on the restricted domain Ω or on $N \times N$ is called respectively additive or completely additive.

⁽⁸⁾ (m, n) = 1 means that 1 is the highest common divisor of m and n.

Here it is easy to see that $E=\emptyset$ for any choice of elements α , β , γ ; and it is indeed well known that an additive function is not necessarily a completely additive function.

Remark 7. A carefull reading of the proof of Theorem 2 shows that the hypotheses about commutativity of G and H are not necessary if (i) and (ii) can be satisfied choosing α and β equal to the unit element of G (see Remark 4); furthermore it is sufficient that H is right regular.

Therefore we can state the following proposition (using the multiplicative notation):

Let G and H be semigroups and H be also regular. Consider the functional equation (*); if for every $(a,b) \in N$ there exists $\gamma \in \varphi_{b,a \cdot b}(^9)$ such that

$$\Omega_a \cap [b \cdot \gamma \cdot (\Omega_{b \cdot \gamma} \cap \Omega_{a \cdot b \cdot \gamma})] \neq \emptyset$$
,

then f is a homomorphism (10).

This proposition generalizes some results of [3] (for instance Theorem 1) in the case of semigroups (indeed if G is a group, the subgroup generated by Y is equal to the subsemigroup generated by $Y \cup Y^{-1}$, and considering the footnote (1) and Corollary 5 we can show that $\varphi_{s,t} = G$ for every $s,t \in G$; so $\gamma = b^{-1}$ satisfies our hypothesis).

Example 4. Let G and Ω as in Example 3, H an abelian regular semigroup and $f\colon G\to H$ a solution of (*) on Ω . Then f is a homomorphism. In fact if we apply Theorem 2 and remember that for every $s,t\in G$ $\varphi_{s,t}\supset S^+$, we have

$$\tilde{\Omega} \supset (R \times (-S^+)) \cup (R \times L),$$

and so f is a solution of (*) on $\tilde{\Omega}$. Now we apply again Theorem 2 and we can see that (*) is satisfied for every $(a,b) \in \mathbb{R}^2$, that is f is a homomorphism.

COROLLARY 6. Let G be an abelian group and H an abelian regular monoid. If, for every $(a,b) \in \mathbb{N}$, $-a \in \varphi_{a,0} \cap \varphi_{a+b,0}$, then f is a homomorphism; this condition is satisfied if, for instance,

$$-p_1(N) \subset \bigcap_{\alpha \in p_1(N) \cup N^*} \varphi_{\alpha,0}$$

where $p_1(N) = \{t \in G: (t, z) \in N \text{ for some } z \in G\} \text{ and } N^* = \{t = a + b, (a, b) \in N\}.$

Proof. If $(a, b) \in N$, we have also $(b, a) \in N$ and therefore, from our hypothesis, $-b \in \varphi_{b,0} \subset \varphi_{b,b}$. Moreover, as $\varphi_{a,0} \neq \emptyset$, we have $\Omega_0 \neq \emptyset$. From the hypotheses on G and H we can deduce f(0) = 0 and so we may assume $\Omega_0 = \Omega^0 = G$ (see Remark 3). If we choose $\delta = 0$, $\alpha = \beta = -a$, $\gamma = -b$, it is easy to verify that (i) and (ii) of Theorem 2 are satisfied.

Proof. $\Omega_0 \neq \emptyset$; if, on the contrary, $\Omega_0 = \emptyset$ we should have $(0,0) \in N$ and so $0 \in \varphi_{0,0}$, contrary to our assumption. Now we have, from Remark 3, $\Omega_0 = \Omega^0 = G$. Therefore the hypotheses of Theorem 2 are satisfied if we assume $\alpha = 0$, $\beta = -a$, $\gamma = -b$, $\delta = 0$.

The following theorems give us some particular conditions under which f is a homomorphism.

Theorem 3. Let G and H be abelian regular semigroups and suppose there exist two σ_3 -classes \mathfrak{F} and \mathfrak{G} such that:

- (i) the set $S = \{x \in G : \Omega_x \in \mathfrak{F}\}$ belongs to \mathfrak{G} ,
- (ii) for every $s, t \in G$, $\varphi_{s,t}$ is consistent with \mathfrak{G} .

Then f is a homomorphism.

Proof. We suppose, without loss of generality, G and H are monoids (see Remark 3) and so we can choose $\alpha=0$ for every $(a,b)\in N$. Now, if $(a,b)\in N$, the set $(a+\phi_{a+b,a})\cap S$ is not empty and so there exists $\beta\in \phi_{a+b,a}$ such that $a+\beta\in S$. Analogously $(a+b+\beta+\phi_{b,a+b+\beta})\cap S\cap (a+\beta+S)\neq \varnothing$ and so there exists $\gamma\in \phi_{b,a+b+\beta}$ with $b+\gamma\in S$ and $a+b+\beta+\gamma\in S$. Hence

$$E = \Omega_{a+\beta} \cap [b+\gamma + (\Omega_{b+\gamma} \cap \Omega_{a+b+\beta+\gamma})] \neq \emptyset$$

and so we can choose an element $\delta \in E$. Therefore all the hypotheses of Theorem 2 are satisfied.

Remark 7. Theorem 3 is still true if, instead of (i) and (ii), we suppose that, for every $s, t, u, v \in G$,

$$(u+\varphi_{s,t})\cap S\cap (v+S)\neq\emptyset$$
.

Theorem 4. Let G be an abelian topological group and H an abelian regular monoid. If for every x belonging to a neighbourhood U of a point x_0 , $\operatorname{Int}(\Omega_x) \neq \emptyset$ and, for every $s, t \in G$, $\varphi_{s,t}$ is a dense subset of G, then f is a homomorphism.

Proof. As $\varphi_{0,0} \neq \emptyset$, we have $\Omega^0 = G$ (see Remark 3) and therefore, for every $s,t \in G$, $0 \in \varphi_{s,t}$. Let $(a,b) \in N$. In order to apply Theorem 2 we choose $\alpha = 0$ and we have only to show there exist $\beta, \gamma \in G$ such that $\beta \in \varphi_{a+b,a}, \gamma \in \varphi_{b,a+b+\beta}$ and

$$\Omega_{a+\beta} \cap [b+\gamma+(\Omega_{b+\gamma}\cap\Omega_{a+b+\beta+\gamma})] \neq \emptyset;$$

As $0 \in \Omega_{b+\gamma} \cap \Omega_{a+b+\beta+\gamma}$, the last condition is satisfied if $b+\gamma \in \Omega_{a+\beta}$. Let $\beta \in (-a+U) \cap \varphi_{a+b,a}$ (this set is not empty because $\varphi_{a+b,a}$ is dense in G and $\operatorname{Int}(-a+U) \neq \emptyset$). Now, by the hypotheses on Ω_x and $\varphi_{s,t}$,

$$W = [-b + \operatorname{Int}(\Omega_{a+\beta})] \cap \varphi_{b,a+b+\beta} \neq \emptyset ;$$

so, if we choose $y \in W$, all the above mentioned conditions are satisfied and then f is a homomorphism.

⁽⁹⁾ See footnote (5).

⁽¹⁰⁾ A similar theorem can be stated if H is a left regular semigroup.

73

Remark 8. H needs to be a monoid only to assure $\Omega^0 = G$. The same remark is true for Theorems 5 and 6.

Example 5. Let G = (R, +). If Ω has at least an interior point (for instance (0,0) and there exists a continuous function $g: \mathbb{R} \to (0,+\infty)$ such that $\Omega \supset \{(x,y): y \in Q, |y| \leq g(x)\}$ (Q is the rational field), then, for every $s, t \in G$ $\varphi_{s,t}$ is dense in **R** and we can apply Theorem 4. In this case indeed it is easy to see that $\varphi_{s,t} \supset Q$.

THEOREM 5. Let (G, \mathfrak{M}, μ) be an abelian group and a measure space with μ invariant under translation and H be an abelian regular monoid. If there exists a set $T \subset G$ with $\mu_*(T) > 0$ (11) such that, for every $x \in T$, $\mu_*(\Omega_x) > 0$ and moreover, for every $s, t \in G$, $\mu_*(\varphi_{s,t}^c) = 0$, then f is a homomorphism.

Proof. The first part of the proof is the same as in Theorem 4. Therefore it is sufficient to show that β and γ can be chosen so that

$$\beta \in \varphi_{a+b,a}, \quad \gamma \in \varphi_{b,a+b+\beta}, \quad b+\gamma \in \Omega_{a+\beta}.$$

This is possible if $X = (-a+T) \cap \varphi_{a+b,a} \neq \emptyset$ and there exists $\beta \in X$ such that $Y = (-b + \Omega_{a+\beta}) \cap \varphi_{b,a+b+\beta} \neq \emptyset.$

First we prove $X \neq \emptyset$. If, on the contrary, $X = \emptyset$, denoting -a+T = Aand $\varphi_{a+b,a} = B$, we should have

$$A = (A \cap B) \cup (A \cap B^c) = A \cap B^c \subset B^c$$

and so $\mu_*(A) \leq \mu_*(B^c) = 0$ contrary to our assumption $\mu_*(A) > 0$.

If now we choose $\beta \in X$, we have $a+\beta \in T$ and so $\mu_*(-b+\Omega_{a+\beta}) = \mu_*(\Omega_{a+\beta}) > 0$. Now the proof $Y \neq \emptyset$ is similar to the previous one about X.

Remark 9. Theorem 5 is not true if we suppose T satisfies the weaker hypothesis $\mu^*(T)>0$. We can indeed consider the following counter-example.

Let G = H = R, regarded as a vector space over the field Q of rational numbers, and m the Lebesgue measure on R. If S is a Hamel basis of R over Q and s_0 a fixed element of S, then S_0 will denote the linear subspace of R over Q spanned by $S \setminus \{s_0\}$ $(S_0$ is a saturated non-measurable set (see [11])). Consider the function $f: R \to R$ so defined:

$$f(x) = 0$$
 if $x \in S_0$, $f(x) = 1$ if $x \in S_0^c$.

Clearly f is not additive, but it satisfies the functional equation (*) on the restricted domain $\Omega = (S_0 \times R) \cup (S_0^c \times S_0)$.

For every $s, t \in \mathbb{R}$, $\varphi_{s,t} = S_0$ or $\varphi_{s,t_*} = \mathbb{R}$, and therefore $m_*(\varphi_{s,t}^c) = 0$. In this case, if we take $T = S_0$ we have $m^*(S_0) > 0$ and $m_*(\Omega_x) = m(R) > 0$ for every $x \in T$. The proof of the following theorem is analogous to the previous one.

THEOREM 6. Let G be a second category abelian topological group and H an abelian regular monoid. If there exists a second category set $T \subset G$ such that, for every $x \in T$, Ω_s is a second category set and moreover, for every $s, t \in G$, $\varphi_{s,t}^c$ is a first category set, then f is a homomorphism.

THEOREM 7. Let G be an abelian group, H an abelian regular monoid and $\Gamma \subset G$. If:

a)
$$\varphi^{\Gamma} = G$$
,

b) for every $(a, b) \in \mathbb{N}$, there exist $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$ such that

$$(a+\gamma_1-\gamma_3, b+\gamma_3-\gamma_2) \in \Omega$$
,

then f is a homomorphism.

Proof. a) implies $\Omega_0 \neq \emptyset$ and so we may assume $\Omega^0 = G$ (see Remark 3). Now we prove that there exist α , β , $\gamma \in \varphi^{\Gamma}$ which satisfy the following conditions:

$$b+\beta+\gamma\in\Gamma$$
, $b-\alpha\in\Gamma$, $a+\beta\in\Gamma$, $b+\gamma\in\Omega_{a+\alpha+\beta}$.

This follows from b) if we choose γ_1 , γ_2 , γ_3 such that $\alpha + \gamma_1 - \gamma_3 \in \Omega_{b+\gamma_5-\gamma_2}$ and we denote $\alpha = b - \gamma_2$, $\beta = \gamma_3 - a$ and $\gamma = a - b + \gamma_1 - \gamma_3$.

If we assume $\delta = b + \gamma$ it is easy to see the hypotheses of Theorem 2 are satisfied. Indeed:

$$\begin{split} &\alpha \in \varphi^{\Gamma} \subset \varphi_{a,a+\gamma_1} = \varphi_{a,a+b+\beta+\gamma} = \varphi_{a,a+\beta+\delta} \,, \\ &\beta \in \varphi^{\Gamma} \subset \varphi_{a+b-\gamma_2,(a+b-\gamma_2)+\gamma_2} = \varphi_{a+b,a+b-\gamma_2} = \varphi_{a+b,a+\alpha} \,, \\ &\gamma \in \varphi^{\Gamma} \subset \varphi_{b,b+\gamma_3} = \varphi_{b,a+b+\beta} \end{split}$$

and

$$\delta \in \Omega_{a+a+\beta} \cap [b+\gamma + (\Omega_{b+\gamma} \cap \Omega_{a+b+\beta+\gamma})]$$

(because $b+\gamma\in\Omega_{a+\alpha+\beta}$ and $0\in\Omega_{b+\gamma}\cap\Omega_{a+b+\beta+\gamma}$). The proof is so complete.

Remark 9. If G is also a topological group and Γ is open, the hypotheses a) and b) can be replaced by:

- a') for every $t \in \Gamma$, $\varphi^{(0,t)}$ is dense in G,
- b') for every $(a, b) \in \mathbb{N}$, there exist $\gamma_1, \gamma_2, \gamma_3 \in \Gamma$ such that

$$(a+\gamma_1-\gamma_3, b+\gamma_3-\gamma_2) \in \operatorname{Int}(\Omega)$$
.

Remark 10. As, in the case of groups, $\varphi^{\Gamma} = \varphi^{\Gamma \cup (-\Gamma)}$, we can suppose Γ symmetric. Furthermore, in order to satisfy condition b), Γ has to contain at least an element different from 0. Now, if $\Gamma_1 = \{\gamma_0\}$, $\Gamma_2 = \{0, \gamma_0\}$, $\Gamma_3 = \{0, \gamma_0, -\gamma_0\}$ we have $\varphi^{\Gamma_3} = \varphi^{\Gamma_2} = \varphi^{\Gamma_1} = \bigcap_{s \in G} \varphi_{s,s+\gamma_0}$ because, for every $s, t \in G$, $\varphi_{s,s} = \varphi_{s,t}$.

Example 6. Let G = (R, +) and

$$\Omega \supset \{(x, y): x + (8n-1) < y < x + (8n+1), n = 0, \pm 1, \pm 2, ...\}$$

If we assume $\Gamma = \{0, 1, -1\}$ the hypotheses of Theorem 7 are satisfied and so f is a homomorphism.

Nevertheless there are some pairs (s,t) for which $\varphi_{s,t}=\{0\}$ and so Theorems 3, 4, 5, 6 cannot be applied.

⁽¹¹⁾ If $A \subset G$, $\mu_*(A)$ and $\mu^*(A)$ are respectively the inner (or interior) and the outer (or exterior) measure induced by μ , that is (see [7]): $\mu_*(A) = \sup\{\mu(F): A \supset F \in \mathfrak{M}\}, \ \mu^*(A) = \inf\{\mu(F): A \supset F \in \mathfrak{M}$ $A \subset F \in \mathfrak{m}$

References

- J. Aczél, J. A. Baker, D. Z. Djoković, P. Kannappan and F. Radó, Extensions of certain homomorphisms of semigroups to homomorphisms of groups, Aequationes Math. 6 (1971), pp. 263-271.
- [2] N. G. de Bruijn, On almost additive functions, Collog. Math. 15 (1966), pp. 59-63.
- [3] J. G. Dhombres and R. Ger, Équations de Cauchy conditionnelles, C. R. Acad. Sc. Paris 280 (1975), pp. 513-515.
- [4] L. Dubikajtis, C. Ferens, R. Ger and M. Kuczma, On Mikusiński's functional equation, Ann. Polon. Math. 28 (1973), pp. 39-47.
- [5] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 1963.
- [6] R. Ger, On some functional equations with a restricted domain, Fund. Math. 89 (1975), pp. 131-149.
- [7] P. R. Halmos, Measure Theory, Van Nostrand Co., 1968.
- [8] S. Hartman, A remark about Cauchy's equation, Collog. Math. 8 (1961), pp. 77-79.
- [9] W. B. Jurkat, On Cauchy's functional equation, Proc. Amer. Math. Soc. 16 (1965), pp. 686-693.
- [10] M. Kuczma, Cauchy's functional equation on a restricted domain, Colloq. Math. 28 (1973), pp. 313-315.
- [11] and J. Smital, On measures connected with the Cauchy equation, Aequationes Math. 14 (1976), pp. 421-428.
- [12] K. Kuratowski, Topology, vol. I, Academic Press, 1966.
- [13] S. Paganoni Marzegalli, Cauchy's equation on a restricted domain, Bollettino U. M. I. 14-A (5) (1977), pp. 398-408.

INSTITUTO DI MATEMATICA UNIVERSITÀ DI MILANO Milano

Accepté par la Rédaction le 26, 6, 1978