Weakly monadic Boclean extension fimctors *
by
J. Dukarm (Burnaby, B. C)

Abstract. Let 4 be a set of power |4] <A, where 4 is a regular cardinal. Having first defined
what we mean by a varietal theory K and a varietal category K* of A-complete Boolean algebras,
we define a Boolean extension functor A[—]: K¥ > Set and study its structure theory 7. We
show that 4 [—] is represented by the power set algebra 24 and that thé canonical comparison
functor E: K* - T#, where T* is the category of all T-algebras with homomorphisms, is a cat-
egory equivalence. It follows that all coalgebra-representable Boolean extension functors (which
we define) are weakly monadic. Our analysis of Boolean extensions as representable functors en-~
ables us to cope easily with infinitary operations and provides an alternative to the topological
or sheaf-theoretic analysis of Boolean extensions.

0. Introduction. The notion of the Boolean extension of a finitary universal
algebra o by a Boolean algebra was introduced by A. L. Foster [2, 3] as a device
for investigating structural similarities between the variety of Boolean algebras
and other varieties such as the p-rings. One of Foster’s principal results was that,
when & is primal (i.e., finite and nontrivial, with every finitary function 4™—A4
being a composite of the fundamental operations in /), the variety generated by o/
is the class of all isomorphic copies of Boolean extensions of /.

In the present paper, we use the category-theoretic apparatus of algebraic
theories (see [5, 8]) to investigate Boolean extensions as functors. Having first defined
what we mean by a varietal theory K and a varietal category K¥ of A-complete Boolean
algebras, we define a Boolean extension functor 4[—]: K ¥—Set, where 4 is a set with
1<)d|<4, and study the structure theory T of A[—].

We prove that the canonical functor E: K¥—T*, given by the structure-seman-
tics adjointness for algebraic theories, is an equivalence of categories. Foster’s
theorem about primally-generated varieties, cited above, corresponds to the case in
which K is the theory BA of Boolean algebras. The universal nature of the functor
E provides a means of defining Boolean extension functors from K ¥ to certain varietal
categories ¥ * which may involve infinitary operations. The fact that E is an eqguival-
ence of categories implies that such Boolean extension functors are weakly monadic. -

It is assumed that the reader is familiar with basic category theory on the level
of Mac Lane [6] and with the rudiments of category-theoretic universal algebra
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as expounded in Linton [5] or Wraith [8]. A very incomplete and condensed exposition
of basic notions related to algebraic theories is included here to establish notation.

All functors explicitly dealt with in this paper are defined so that they are co-
variant. The composite of ¢: X—Y with : Y—Z is written as ¢, and M(X, Y)
denotes the family of all arrows with domain X and codomain Y in the category M.
It should be noted that our category Set of sets is assumed to be one in which the
axiom of choice holds.

1. Varietal theories of Boolean algebras. An algebraic theory is a coproduct-
preserving functor of the form ¢: Set — T, where for every object Z of T there is
a set X such that Z = #(X). If all hom-sets in T are actually sets, i.e., objects in Set,
then ¢ is called a varietal theory. Since the functor ¢ only serves as a labeling device,
with T carrying most of the information that interests us, we informally refer to T as
a theory and speak of T-algebras, and so on.

The structure of T is such that every object #(X) is an Xth copower of #(1)
(where 1 = {0} is the ordinal “one), while each arrow g: ¢(¥) —#(X) in T is
induced by a Y-sequence {g,: y€ ¥) of arrows g,: #(1) —(X). A T-arrow
of the form f: ¢(1)— #(X) is called an X-ary T-operation. If f factors as t(h)g,
where g: t(1) — £(Y) is Y-ary and |¥|<|X|, while o: ¥ — X is a function, or if
f = t(h) for some function A: 1 — X, then fis a trivial X-ary operation. If T has
nontrivial X-ary operations for arbitrarily large sets X, then the rank of T'is defined
to be co; otherwise, the rank of 7 is the least cardinal A such that, for all sets X
with [X|> 4, all X-ary T-operations are trivial. For any vardinal 4, the A-truncation
of T is the theory obtained from T by eliminating all nontrivial X-ary operations,
for sets X with |X|>A.

A T-algebra is B: TP — Set such that the

a functor composite

op
Set°p1—> ree -i Set preserves products. We write B for the underlying set Z(z(1))
of 8, and BY for %(t(X)). For T-operations f, we write f5 or sometimes just f for
#(f). Note that 4 is determined by its underlying set B together with the func-
tions fg. If ¥ < B, then the smallest 7-subalgebra £’ of # with Y< B’ is called the
subalgebra T-generated by Y. If #' = 43, then & is said to be T-generated by Y.

The varietal category T* is the full subcategory of all T-algebras in Set™™".
Note that each arrow ¢@: B, — £, in T* (called a T-homomorphism) is determined
by its underlying function @,,: By — B;. We shall occasionally refer to operation-
preserving functions as homomorphisms. The underlying set functor on I'* is
Uyt T# — Set; its left adjoint, the free T-algebra functor Fy: Set — T'*, is defined
as Fp = Jpt, where Jp: T— T* is the Yoneda embedding. The category I'* is
complete and cocomplete; in particular, for each set X and T-algebra 4, there is
an Xth copower X-# in T*.

A mapping of theories from z, to #, is a functor m: T, — T such that mt, = ¢,.
The induced functor m*: TF — T¥ is called an algebraic functor, or reduct functor.

Our definition of the notion of a varietal theory of Boolean algebras relies upon

icm

Weakly monadic Boolean extension functors 77

some well-known examples of such theories which we shall now describe
briefly.

The theory CABA of complete atomic Boolean algebras (equivalently, completely
distributive complete Boolean algebras — see Sikorski [7], p. 105) has rank co.
Its X-ary operations, for all sets X, correspond to the functions 2% 2. The category
CABA* is equivalent to the category of all complete atomic Boolean algebras, with
complete (i.e., sup- and inf-preserving) Boolean homomorphisms. A typical
CABA-algcbra is a power 2’ of a two-element CABA-algebra 2, and will be iden-
tified with the complete Boolean algebra of all subsets of 7 (the power set algebra
of I).

The %,-truncation of CABA is the theory BA of Boolean algebras, with BA#
being equivalent to the category of all Boolean algebras with Boolean homomor-
phisms.

The varjetal theory BA; of A-complete Boolean algebras is not quite so con-
cretely describable. Let A be an infinite regular cardinal. We say that a Boolean
algebra 4 is A-complete if every family of fewer than 1 elements of & has a sup
and an inf in & relative to the customary partial order (x<y ifand onlyif x Ay = X)

in 4. A A-complete Boolean homomorphism is a Boolean homomorphism which

preserves the sups and infs of families of fewer than A elements. We deviate from
Sikorski’s usage in [7] in order to avoid having to refer continually to algebras which
are “x~-complete for all k< A”. It follows from the material in Sikorski [7], p. 131 ff.,
that the category of all 2-complete Boolean algebras with A-complcte Boolean homo-
morphisms has a free algebra functor which — with appropriately restricted codo-
main — may be construed as the theory ba;: Set — BA; of A-complete Boolean
algebras, whose %-truncation is BA. It is a theorem that BAJ is equivalent to the
category of A-complete Boolean algebras. One should note that all the nontrivial
BA,-operations are built up by composition from the complement operation -1,
the infinitary joins \/ (where |X|<1), and the trivial operations. Also note that

xeX
there are obvious mappings of theories m: BA— BA; and n: BA, — CABA such
that nm: BA — CABA is the customary mapping, which says that joins are unions,
and so on.

1.1. DEFINITION. A varietal theory of A-complete Boolean algebras is a varietal
theory k: Set— K with a mapping of theories m: BA, — K which is full on the
A-truncation of BA,; and a mapping of theories »n: K— CABA such that
nm: BA, — CABA is the customary mapping.

The definition above is intended to encompass varietal theories which describe
A-complete Boolean algebras enjoying some extra completeness or distributivity
conditions. Intuitively, a K-algebra will be a l-complete Boolean algebra whose
extra operations, if any, are X-ary for |X|>1 and sufficiently “Boolean” that every
power set algebra is a K-algebra.

Throughout the remainder of this paper, k: Set— K is a varietal theory of

A-complete Boolean algebras, with mappings m, n as specified in (1.1). The constant
1
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elements of any K-algebra are 0 and 1, and 2 is a two-element K-algebra. The
free K-algebra Fg(1) is written as 2% and has elements 0, 1, x, 7] x, with x being
our favourite free generator. The free K-algebra Fg(X) is written as X-22, with
coproduct injections c,: 22— X+22, xe X. (It will be clear from the context
whether x is an element of 2% or of X). Given a set 4, the K-algebra 2 is referred to
as a power set algebra, and its elements are identified with the corresponding sub-
sets'of 4. We write 1 for the subset A and O for the empty subset. Note that, for
|4] <1, 2% is K-generated by its atoms.

A regular epimorphism in a category M is an epimorphism ¢ which is a co-
equalizer of some pair of arrows in M. The regular epimorphisms in a varietal cat-
egory T# are precisely the surjective T-homomorphisms (i.e., the 7-homomorphisms
whose underlying functions are surjective). An object X of M is regular-projective
in M if and only if, for every arrow y: X— ¥ and regular epimorphism ¢: Z— Y in
M, there is an arrow y': X—2Z such that y = ¢y". The free algebras in any
varietal category are regular-projective in that category.

1.2. PROPOSITION. Let B be a K-algebra which is K-generated by a set GSB
with |G| <1; let B, be any K-algebra, and let y: m™( %) — m*(B,) be a BA,-homo-
morphism. Then vy is the BAjy-reduct m*(y') of a T-homomorphism y': B — B

Proof. Let y5: G-2> — % be the K-homomorphism which picks out the
G-sequence g of generators of &, i.c., the unique K-homomorphism i such that
YTyt 2?2 — g8 sends x to g, all g € G. Since G K-generates 4, W is surjective. Let
7 BY, and let ;: X-22— 2 be the K-homomorphism which picks out Z. Because
X+2% is regular-projective in K*, there is a K-homomorphism y: X-22 — G-22
such that Y51 = ;. Furthermore, there is some h: k(X) — k(G) in K, which may
be throught of as an X-sequence of G-ary operations, such that Jg(h) = . Now
let fbe an X-ary K-operation; we must show that y preserves f. Since |G| <4, the
G-ary operations hg: B — B and fahg: B® — B are BA,-operations on m*(4)
and so are preserved by y. Suppressing subscripts on y, we have

Y (f ea(f)) =7 (f aa(hga(g ))) = fao h.%(')’ @) = f4 wu(V (hgo(g))) =f %(v (Z)) s

so 7 preserves the K-operation f. H

1.3. COROLLARY. Let %, Bo, G be as in (1.2). Then any function h: B— B,

which preserves 7\ and the G-ary join \/ on & is the underlying function of a K-homo-
geG

morphism. B

1.4. DerNTION, Let 4 be a set with 1<|4|<4, and Ict & be any K-algebra.
An A4-indexed partition of unity in £ is a function p: 4 — B such that
p(@)ap®) = 0 for all distinct a,be 4, while \/ p(a) = 1.

aeA

L.5. ProrosITION. Let 1<|d|<l, and let j: A— 2% be the function which
sends each a € A to {a} € 2*. Then for each A-indexed partition of unity pin B there
is a unigue K-homomorphism ¢@: 2% — B such that Ux(@)j = p.
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Proof. For each Ze 24, define ¢(Z) = \/ p(a). Obviously, g is a function’
aeZ

from 2% to B, and gj = p. Since 2% is generated by its atoms, of which there are fewer
than A, by (1.3) one need only verify that g preserves the A-ary join \/ and the
aed

complement operation 71 in order to show that g is Ug(p), for some K-homomor-
phism ¢: 2% — 4. The verification is easy, so we omit it. Since the atoms of 24
K-generate 2 in this case, any K-homomorphism y: 2% @ is completely deter-
mined by its values on the atoms of 24, so there can be at most one ¢: 24 — & such
that Ug(e)j = p. B

A generator in a category M is an object X such that, for any parallel pair
o, f: Y — Z of distinct arrows in M, there is ¢: X — Y such that ap # Bo. Free
T-algebras Fy(X) for |X|>1 are generators in any varictal category T¥.

1.6. PROPOSITION. If 1<|A|<2, then 2* and all its copowers X-24 (X non-
empty) in K* are regular-projective generators in K*.

Proot. Since any coproduct of a nonempty family of regular-projective objects
(or generators) is regular-projective (resp. a generator), it is sufficient 10 show that 24
is a regular-projective generator in K*. Let ¢: # — %, be a surjective K-homo-
morphism, and let y: 24 — %, be any K-homomorphism. To show that 2% is
regular-projective, we must find a K-homomorphism y': 2% — 2 such that gy’ = y.
By (1.5) it is enough to find a partition p: 4 — & such that ¢(p(a)) = y({a}) for
each ae 4. Let |4| = x, and let {a;: i<x) be a well-ordering of 4. Take p(a,)
to be any clement b, of # such that (b)) = y({a}). If O<i<z, and p(a)) is
defined for each j, 0<j<i, such that ¢(p(ay)) = y{{a;}), let p(a) = b;~ \/ p(ay,

o< j<i

where b; is an element of & chosen so that ¢ (b)) = y({e;}). This suffices to define
pla;) for all nonzero i<x. Let p(ag) = 71\ pla).
0<i<x

To show that 24 is a generator in K*, let «, f: & — B, be distinct parallel
K-hcmomorphisms, and let  be an element of & such that a(d) % f(b). Choose
distinct ay, a; € 4 and define @({uo}) = b, o ({e;}) = ~1b, and ¢({a}) = O for all
ae A—{ay, a,}. By (1.5) this suffices to define a K-homomorphism ¢: 24— 2;
obviously, o s fo. B

When | X|</Aand 1<|4]|<1, we can say a few useful things about the K-algebra
X-2* For each e 4%, let s; be the element A o{a}) of X-2%, where

xeX

o, 2% — X-2% is the xth coproduct injection.

1.7. PROPOSITION. Let | X| <A and 1<|A|<A. Then an element of the K-algebra
X-2% is an atom if and only if it is s; for some de A%,

Proof. For each ae A%, every X-homomorphism 9 with domain X-2* such
that y(s;) = 1 factors through the unique K-homomorphism ¢z: X <242 such
that gz0,({a,) = 1, all x e X. Furthermore, any K-homomorphism ¢: X-2* —2
is ¢z for some @e A%; indeed, go,: 2* — 2 determines some unique o, € 4 such
that go({a)) =1, so ¢ = ¢, where @ = {a,} xe X ). If K= BA;, the above’
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is sufficient to characterize the atoms of X-24 as the elements s, € A%. Otherwise,
we note that X-24 is K-generated by the set {0,({a}): @€ 4, xe X}, which has
fewer than A elements. Appealing to (1.2), we sec that the observations above con-
cerning ¢; are sufficient to show that the elements s;, & € A, are the atoms of the
BA,-algebra m*(X-2%) and therefore also of the K-algebra X-24. B

Let X, A be any sets, and for each x e X let g,: A¥ — A4 be the x-projection,
i.c., the function which sends each @ e 4* to its x-coordinate a,. Then a K-homo-
morphism (in fact, a CABA-homomorphism) o¥: 24524 is defined by
0¥(Z) = {ae 4" a,eZ} for cach Ze 2% Now let gy: X-2% — 24" be the unique
K-homomorphism ¢ such that ¢o, = o}, all xe X.

1.8. PROPOSITION. When |A¥|<), gx: X-2%— 24 is a retraction. If X is
finite, oy is an isomorphism.

Proof. Each atom s; of X-2* is sent by gy to its counterpart {@} in 24%; thus,
the image of ¢y contains all the atoms of 2’”_‘, which K-generate 24% since there are
less than A of them, so gy is surjective. Using the fact that 2™ is regular-projective
when [4%| <A, we see that there is a K-homomorphism ey: 24* — X-24 such that
x&y is the identity homomorphism on 24%, so gy is a retraction.

Now we prove by induction on the cardinality of X that X-2*is atomic when X is
finite. We need only show that \/ s; = 1, which certainly holds for |X|<1. Now

aeAX
suppose that Y-2* is atomic, and X = {x} U ¥, where x ¢ Y. The atoms in ¥ 4
add up to 1, so we have \/ A o,({5,}) = 1 in X-2* = 2*4(¥-2%). But then for

bedY YeY
any ce A we have

o{c}h) = \/ (O-x({c}) A /\ ay({by})) =n\=/c Sa 5

bedY yeY

So 1= \/Acrx({c}) = \/ s;. Assigning 5; to each e A¥ defines an A*-indexed
ce cedX
partition of unity in X-24 which, by (1.5), determines a K-homomorphism
y: 2% X-2% such that y is a two-sided inverse for gy. H
It is worth noting that, if X is infinite, gy is not generally an isomorphism,
since by (31.3) of Sikorski [7] it follows that, for A>2¥° and X infinite, the free
BA,-algebra X-22 is not isomorphic to 22,

2. Set-valued Boolean extension functors. Throughout the remainder of this
paper, 4 is a set with 1<|4|</.

2.1. DermviTiON. The Boolean extension functor A[—]: K* — Set is defined
as follows.

(i) For each K-algebra 8, 4[4] is the set of all A-indexed partitions of unity
in 4.

(i) For each K-homomorphism ¢: B — B, Alp]: A[#]— A[B,] is the
function which sends each pe A[#] to Uglp)p e 4[%,].
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2.2. PROPOSITION. 4[] is faithful, has a left adjoint, and is naturally isomorphic
to K#(2%, —).

Proof. It is immediate from (1.5) that the function 1—+A[2"] which picks
out the partition j defined in (1.5) is a universal arrow from 1 to 4[—]in the sense
of MacLane [6]; from this it follows that 4 [~ ] is naturally isomorphic to K#(24, —).
Faithfulness of A[—] then follows from the fact that 2% is a generator in K*
(see (1.6)). It is easily verified that the obvious functor L: Set— K* which takes X
to X-2* is left adjoint to A[—] H

For any Set-valued functor U and any set X, U¥ is the functor obtained by taking
the Xth Cartesian power of the values of U.

2.3, COROLLARY. For any set X, A[-1X is naturally isomorphic to
K* (X-24 -).

From here on we identify 4[—] with K*(24, —) and A4[—)* with K*(X-24, —).

2.4. PROPOSITION. The functor A[—] preserves and reflects surjections, i.e., for
any K-homomorphism ¢: B — By, Al@] is a surjective function if any only if Ug(ep) is.

Proof. It follows from the fact that 2* is regular-projective in K* (see (1.6))
that A[—] preserves sutjections. If ¢ is not surjective, let b be an element of 2,
which is not in the image of ¢. Let ag, @, be distinct elements of 4, and let y: 24— 4,
be the unique K-homomorphism (by 1.5) which sends {4y} to b and {a;} to b
Then y is not A[p)(y") for any K-homomorphism y': 2*—2. B

3. The structure theory of the functor 4[—]. Any covariant functor of the form
U: M—Set, where M is an arbitrary category, determines an algebraic theory (called
the structure theory of U) whose X-ary operations correspond to the natural trans-
formations UX — U. For the remainder of this paper, ¢: Set— Tis the structure
theory of A[—]: K* — Set. The set A itself is associated with a varietal theory
ty: Set— T,, where T, is the opposite of the full subcategory of the Cartesian
powers of A in Set. In this section we investigate some of the ways in which the
T-operations are related to corresponding T,-operations. .

3.1. ProprosITION. T is a varietal theory and is equivalent to the full subcategory '
of copowers of 2* in K*.

Proof. The Yoneda lemma and (2.3) give us a natural bijective correspondence
between T(2(X), t(Y)) and K*(X-2%, ¥-2%) for all sets X and Y, so T is varietal.
By setting G(1(X)) = X2 and defining G(f) to be the K-homomorphism
o X -2%— ¥-2* (given by the Yoneda lemma) corresponding to f: #(X)~ t(Y)
in 7, we obtain a full embedding G: T K* which establishes the equivalence
claimed in (3.1). B

The functor 4[—] is called a Boolean extension functor because each Boolean
extension A4 [48] contains a copy of the set 4, namely 4[2]. Applying 4[] to the
embedding 2— %, we have an embedding A4[2] — 4[#]. An element ac 4 is
represented in 4 [#] by the unique K-homomorphism ¢,: 24— 2 which sends {a}
to 1. Evidently, each natural transformation f: A [—1¥— 4[—] induces a function
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fur A*¥ — A corresponding to the 2-component f,: A[2)F — A[2] of . We shall
characterize those functions i: 4% — A4 such that & = £, for some T-operation fand
derive a formula which expresses certain T-operations f (such as finitary ones)
in terms of f.

First we show how f, works. Let an X-ary T-operation f be given, and let
@y 2% X-2* be the K-homomorphism which represents f. For any e 4%,
@z: X-2*— 2 is the unique X-homomorphism which sends s; to 1. Since |4|<A,
every K-homomorphism ¢: 2% — 2 sends exactly one atom to 1, so £,(@) is the
unique b e A such that ¢;¢, sends {b} to 1.

3.2. PROPOSITION. Let R: T— T, be the covariant functor which takes t(X)
to A% and f to f,. Then R is a mapping of theories.

Given any X and any X-ary function g: A¥X— A4, a K -homomorphism
g*: 24— 2% is defined by g*(Z) = {ae A: g(@eZ} (4* is the K-reduct of
a CABA-homomorphism). Given any K-homomorphism ¢: 24— 24%, there is
a function g: 4% — 4 such that ¢ = g*; in fact, for each @ e 4%, g(@) is the unique
b e 4 such that ;¢ sends {b} to 1, where y;: 2™ — 2 is the a- projection. It follows
that the correspondence between K-homomorphisms 2# — 24% and functions 4% — 4
is bijective.

3.3. PrROPOSITION. For any X-ary T-operation f, fi= oy, where
[oFs 2% — X-2% represents f in K*, and gy: X-2%— 2" isas defined immediately
before (1.8).

Proof. It is sufficient to prove that, for each @e 4%, Y3 /¥ = yz0x ¢, where
Wz: 24— 2 is the d-projection, which is characterized by the fact that it sends {a}
to 1. It is easy to check that ;o sends the atom s; of X-24 to 1, 50 Yz0x = 05.
Then Yz0x ¢, = @;¢;, so to prove (3.3) we must show that ¥; £ sends {fu@}to 1.
But

Vafa({f4@)) = Val{(B e 4™: f4(B) = fu@N)=yi({a}) = 1. &

3.4. COROLLARY. The 8,-truncations of T and T4 are isomorphic.

Proof. Apply (1.8) and the remarks immediately preceeding (3.3). Hi

3.5. PROPOSITION. A function g: AX — A is f, for some X-ary T-operation
[ if and only If, for cach ae A, g*({a}) belongs to the subalgebra of 2** which
is K-generated by the family of all subsets of A* of the form {de 4% a, = b},
where x€ X and b € A.

Proof. The subalgebra of 24* specified in (3.5) is the image of oy, so
necessity of the condition is clear by (3.3). Suppose g: AX— 4 satisfics
the condition, i.e., g*: 2* — 2*% factors through the image of gy. Applying (1.6),
we lift g* through the surjective component of gy to obtain ¢: 24— X-24 such
that g* = gy ¢. Then the T-operation f which is represented in K* by ¢ is such that
g=r, &

3.6. PROPOSITION. Let f be an X-ary T-operation, where |X|<A If & is
a K-algebra whose BA,~reduct has a x-complete embedding into a power set algebra,
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Sor some % such that | X|<x<), then the & -component fg: A[BT* — A[B] of f is
given by

[f!ﬁ(ﬁ)] ({C}) Sup ( /\ px({ax}))

fa(@=c ¥eX
for all fe A[B)F and ce A, where p, = po,.

Proof. Without loss of generality, we assume that the BA -reduct of # is
a BA,-subalgebra of 27 for some set Z, so we identify elements of & with subsets
of I. For each x€ X and ie I, there is exactly one a, ;€ 4 such that i e p,({a,})-
Writing @; for <a,;: xe X), we have

ie ﬂ px({ax,l})

pax(fax D= P(sz), aliel.

1t follows that sup (p(sp) = 1 in . Now we have

aedX

[fo@1{e}) = Bo () = sup (p(e{ch) Asz) -
agAX

Recall that ¢ ({c}) sz 5 0 if and only if ¢ ({c})>sz. But the latter is equivalent
to [pzo ]({c}) = 1, i.e., (@) = c. Hence, we have

[faP1{eh) = sup (B(s) = sup ( /\px({ax ). B
Sald)=c Fal@=c *&X
3.7. COROLLARY. Every finitary T-operation f is determined by the corresponding
function f, according to the formula in (3.6). B

3.8. COROLLARY. If every K-algebra admits a x-complete embedding into a power
set algebra, then the x-truncations of T and T, are isomorphic. B

The formula given in (3.6) is the one A. L. Foster used in [2] to extend the
finitary operations on a universal algebra & to its Boolean extensions .o/ [#]. Foster’s
formula (for finitary operations) is the subject of Theorem 2, p. 148 of Griitzer [4];
Section 3 of the present paper may be understood as an enlargement of that theorem.

4. Equivalence of K* and T*. The structure-semantics adjointness for varietal
theories, as discussed in Linton [5] or Wraith [8], provides a canonical functor
E: K" — T'* such that UpE = 4[—]. In this section we prove that E is an equiv-
alence functor, generalizing Foster’s result [3] that every algebra in the variety
generated by a primal algebra o is isomorphic to a Boolean extension of 7.

For any K-algebra &, E(#) is the T-algebra @ such that #{z(X)) = A[#)*
for all sets X, while € (f) = fa for all T-operaticns f. For any K-homomorphism ¢,
E(p) is the T-homomorphism whose underlying function is AJgp].

Recall that L: Set— K* is the left adjoint of A[—].

4.1. PROPOSITION. E is faithful and preserves all copowers of the K-algebra 2%.
Furthermore, EL is naturally isomorphic to Fy.
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Proof. Faithfulness of E is an immediate consequence of the faithfulness
of A[— . That EL 2 Fy follows from Lemma 2 of Linton [5], and may be proved
directly by verifying that EL is left adjoint to Uj.

Now let X be a set, and let X+2% be an Xth copower of 22 in K*, with coproduct
injections t,: 22— X-2%, xe X. We wish to show that E(X-22), with the maps
E(t,), xe X, is an Xth copower in T# of E(2%). Recall that “taking the Xth copower”
may be construed as a functor X-(—): K* — K*, with the coproduct injections
being induced by natural transformations Idg4— X-(—). Also note that EL x F,
implies that E preserves all copowers of the K-algebra 2% The coproduct injections
for X-24 are o, 2% — X-2% xe X.

Let ay, a, be distinct elements of 4, and let f: 2* — 22 be the K-homomorphism
which sends {a,}to x and {a,} to 7x. Define «: 22 — 2% to be the unique X-homo-
morphism which sends x to {a,}. Then fo is the identity homomorphism on 22,
so f is a retraction and « is a coretraction.

Now let % be any T-algebra and (¢, : x € X') a sequence of T-homomorphisms
of the form ¢, EQ*)—4%. We claim that a unique Z-homomorphism
@ E(X-2%)— # such that ¢E(z,) = ¢, all xe X, is given by ¢ = YE(X-0),
where y: E(X-2*) — 4 is induced by the T-homomorphisms ¢, E(f): EQ") — 3,
xe X.

To prove the claim, compute

WE(X-0)]E(c,) = WE([X-o]7,) = YE(o,0) = [WE(s)]E(e)
= [pEB)] E(@) = o,

as required. Now suppose ¢’: E(X-2%) — & is some T-homomorphism such that
¢'E(t,) = ¢, all xe X. Then

[0’ ECXBIE@) = ¢'E(X-Flo) = ¢'E,f) = [P EEIIEPD) = 0. EP),

all xeX, so by the uniqueness of W we have @'E(X-f)= . Then ¢
= @'E(X-B)E(X-0) = YE(X-c). B

Let v: Set— ¥ and w: Set— W be varietal theories. A V-coalgebra in W*
(or a (V,W)-bimodel, in Wraith [8]) is a functor H: V— W* such that
Hy: Set— W* preserves coproducts. The W-algebra H (v(1)) is called the underlying
W-algebra of H, and the W-homomorphism of the form H(f): H(v(1)) — H(v(X)),
where fis an X-ary V-operation, are called X-ary co-operations of H. Associated
Wlth the coalgebra H is a so-called coalgebra-representable functor H*: W# — p#
(written as Homy,(H, —) in Wraith’s notation) defined in the following way. For
each W-algebra %, H*(#) is the composite of H: P W#P and
W#(—, B): W*P — Set; for each W-homomorphism ¢, H*(¢) is ¢H, where ¢ is
the natural transformation W#(—, ¢). In practical terms, H*(&) is the V-algebra
who_se underlying set is W#*(H(v(1)). %), with each X-ary V-operation f operating
onp e.H*(.%)X = WH*H(v(X)), B) by £ (F) = PH(f). If ¢p: B — B, is a W-homo-
morphism, then [H*(p)l(p) = ¢p for each element p: H(v(l))—».% of H*(%).
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As Wraith indicates in [8], a ¥-coalgebra H in W* may be regarded as a gen-
eralized mapping of theories, with H* corresponding to the associated algebraic
functor.

For any varietal theory ¥, the Yoneda embedding J,: ¥ — V*is a ¥-coalgebra
in V¥, with J i being naturally isomorphic to the identity functor Id,+. The natural
isomorphism matches each element p of a V-algebra & with the ¥-homomorphism
0,: Fy(1) — # which sends the frec generator of Fy(1) = Jy(v(1)) to p. The X-ary
co-operation of J, corresponding to an X-ary V- operation fis the ¥-homomorphism
) = Yyt Fy(1) — Fy(X) which represents fin V*. If ¢: # — %, is a F-homo-
morphism, then [J#(0)](0,) = @8, = O, for each element p of .

Noting that the functor G: T — K¥ defined in the proof of (3.1) is a T-coal-
gebra in K*, we allow the reader to verify the following.

4.2. PrOPOSITION. E = G*. H

From (4.1) it follows that EJg is a K-coalgebra in T*#. Define

C = (BI)*: T*—K*.

We shall now apply our knowledge of T to obtain a useful characterization of C.

By well-ordering the set 4 appropriately, we can find lattice operations A
and v on 4 relative to which A4 is a complete linearly-ordered lattice with a least
element a, and a greatest element a,. This lattice admits a pseudocomplement opera-

tion ~1, where
_ap if
e= {al if

a s ag,
a=a,

for all ae 4. A binary operation d: 4*— 4 is defined by
a=b,
a#b

a, if
d(a,b) = {ﬂo i
for all a, be A.

The operations defined above correspond, by (3.7), to uniquely determined
T-operations which we shall respectively call A, v, 71, and d. Each element ae 4
determines a constant (0-ary) T-operation e,; in particular, write e,, as € and e,,
as e,. By (3.4) each T-algebra is, relative to the operations just given, a pseudo-
complemented distributive lartice with least element e and greatest element ey,
in which there is a complete linearly-ordered sublattice of constants and an extra
binary operation d.

4.3. PROPOSITION. The A-ary join \/ in the complete linearly-ordered lattice A

acd
described above is induced by an A-ary T-operation ZA,
ae

Proof. The join \/ in 4 meets the criterion given in (3.5) for a function on 4

aed

to be induced by a T-operation. To see this, note that, for any c€ 4,

{aed*: \Ja>c=U U {ae A" a,=c}

bed c'>c
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belongs to the image of g,, and we can write
{aed*: \Va=c}=(N{a: \a>b)—{a: \Va>c}. B
b<c

4.4. PROPOSITION. The T-operations defined above have the following properties.
() For any T-algebra B, the set R(B) of all regular elements of B G.e., ele-
ments p such that 7\ T1p = p) is a Boolean algebra in which the T-operations n and =
respectively induce the Boolean meet and complement, and where e, and e, are,
respectively, the Boolean zero and unit. Furthermore, the restriction of any T-homo-
morphism @: % — By to R(B) is a Boolean homomorphism R(p): R(%B) — R{%,).
(i) For any T-algebra % and any element p of B, we have d(e,, p) A d(e;, P =e

Jor all distinct a,be A, while p =Y (e,ndl(e,, p)).

asd

(i) For any regular element p of a T-algebra 9,

P if a=da,
dle,, p) = e, if ap<a < ay,
Tp i a=a,.

Proof. Ttem (i) expresses a well-known fact about pseudocomplemented distrib-
utive lattices. Ttems (i) and (iii) follow from (3.4) together with the fact that the
operations defined on A4 satisfy the corresponding identities. For example,
p= Y (e.,nd(e,, p)) holds for T-algebras because the composite \/A(a/\ d(a, =)

ag

acA
is a unary operation on A which coincides with the identity operation on 4. B

4.5. PROPOSITION. For any T-algebra B, R(%) is a K-algebra, and for any
T-homomorphism ¢, R(p) is a K-homomorphism. Furthermore, R, construed as
a functor from T* to K*, is naturally isomorphic to C.

Proof. Let a: 22— 2% and f: 24— 22 be the K-homomorphisms defined
in the proof of (4.1), with a,, a, respectively taken to be the least and the greatest
elements of 4 as specified above. Note that af: 24— 2% is the K. -homomorphism
@d(es,—y Which represents the T-operation d(ey, —). In the discussion immediately
before (4.2) it was indicated that there is a natural isomorphism from Td 4 to Jr
which matches each element p of a T -algebra & with the T-homomorphism
0,1 F7(1)— # sending the free generator idya of Fp(l) = EL(1) = EQ% to p.

For each T-algebra 4, define a function hat R(B)— UyC(H) by ha(p)
= 0,E(), each pe R(%). Then hg is 2 bijection, its inverse hz' being given by
ha3'(q) = [gE(B)](id,4) for each element q of C(%). Note in particular that

G, E@EP](idza) = [0, E@PI(id2a) = Oy, p(idya) = dley, p) = p
for all pe R(%) .

Since Uy creates isomorphisms, there are a unique K-algebra &, and a unique

K-isomorphism y4: %, — C(%) such that hg = Ux(yg). The K-operations on

C(2%) are simply pulled back through /4 to define corresponding operations on R(%)
to create %,. For each X-ary K-operation J (represented by Yo 22— X029,
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the K-homomorphism [X o]t B: 24 X-2* represents a T-operation which
induces f on R(#) in such a way that /g preserves it. In particular, the Boolean
meet and complement are induced on R(#) by the T-operations A and ~1. To
see this, it is sufficient to check that ¢,o = [2-a]y, and Q=0 = oy, where
the T-operations are represented by ¢, and ¢—, while ¥, and Y represent the
corresponding Boolean ones. The checking is done for A by using the isomorphism
0,1 2-2% — 2% provided by (1.8) to figure out how ¢, works and then chasing the
element x of 2% We have

@ ae(x) = ¢,({a) = oofa D aoi({ar}) = [2:a] (o Ax)) = [2:0]¥ 1(x) -

The procedure for 77 is similar. The computation showing that y: R — Cis a natural
transformation is routine, so we omit it.

4.6. PROPOSITION. CE is naturolly isomorphic to Idgs.

Proof. Using (3.6) one can verify that, for each a € 4 and p € E(#), where % is
any K-algebra, we have [d(e,, p)I({a,}) = p({e}). Then by part (iii) Aof (4.4) we
see that the regular elements of E(%) are the K-homomorphisms p: 2*— #Z such
that p({a}) = O for all ae A—{a,, a,}. Let 54 be the function which maps each
regular element p of E(#) to p({a,}) in &. If fis any X-ary K-operation .and
Pt x-2* — & is induced in K* by a sequence {p,: x& X of K"hOl’ﬂOmOr};h]SmS
pyt 24— 2 which are regular elements of E(4), then (noting that p[X-«]: X-2° — &
sends the xth free genmerator of X-2% to p.({a,}), all xe X) we have

BLX-ely Bl({a)) = [BLX-a¥ J(B({a})) = [BLX-a]¥,1()
= fa(pl{a]): xe X3),

$0 84 is an isomorphism of K-algebras. We leave it to the reader to verify that § is
a natural transformation. A natural isomorphism &: CE— Idg# is then given
by =251 B

4.6. PROPOSITION. There is a natural transformation n: Idg+ — EC.

Proof. Given a T-algebra and an element p of %, we define n4(p) = C(Hp)r?;},
where 0,: EQ* — 2 is the T-homomorphism which sends the free generator id,.a
of E(2Y to p. .

To show that ng: # — EC(#) is a T-homomorphism, let {p,: xe X'> be
a sequence of elements of &, and let f be an X-ary T-operation, represented by the
T-homomorphism E(p): E (2" — E(X-2"). The T-homomorphism

0;: E(X-2Y—> &
is such that 6;E(s,) = 6,,, all xe X. For each xe X, let g, = na(p,); then
0;: E(x-2%) — EC(%) is the T-homomorphism induced by {0, xeX)>. We
must show that 740;E(p,) = 6-Elp,), so clearly it suffices to show n46; = 03-
First, note that

[120,,1(0d24) = 718(0,,(0d2)) = 71a(px) = ¢x = 6,(id24),
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80 g0, = 0,,, all xe X. Then n40;E(0,) = 0;E(0,), all xe X, 50 540; = b; as
required. The computation which shows that #: Idy4+ — EC is a natural transform-
ation is straightforward, so we omit it. B

4.7. PROPOSITION. E and C are adjoint equivalence functors.

Proof. It is sufficient to prove that # is a natural isomorphism, i.e., that each
component 14 of # is bijective. Let & be a T-algebra, p an element of %, and a e 4.
We claim that [74(p)]({a}) = ya(d(e,, p)). This implies that 7, is an injection,
since if p., py are elements of # such that #5(py) = 74(p,) we have

?’m(d(em Po)) = 79&("1(511, Pl))
But then the second identity of (4.4) part (ii) tells us that p, = p,.

To prove the claim, first note that

5ZA(E(¢II(EE,—))E(M)) = [SZA’Y.Z_AI](E((/)d(E.;,‘))E(a)) = [[E(Pace,,~y) E@B)](id20]({a,})
= [E(@u(e,,-Nid20)]({a;}) = Paea,—({ar}) = {a} .

for all ae 4.

Then we have

()1 ({e}) = [C(0,)6241({a}) = [CENNE@uten-)E@) = 0,E(Pye,,-) EG)
= ed(emp) E(a) = 'y&ﬂ(d(ea,p)) .

Our proof that 74 is surjective is based on two claims — first, that C preserves
surjections, and second, that nE is a natural isomorphism. Given these two facts
let &2 E(X-2%) — & be a surjective T-homomorphism from a sufficiently large frec:
T-algebra E(X-2%) onto &; then by the naturality of # we have 5,6 = EC(e)pcx. 24y
But EC(e) is surjective, by (2.4) and the definition of E together with the first ClZliH)l
and fgx.24) is surjective by the second claim. Then zze is surjective, so 74 isj

The C preserves surjections follows casily from the fact that E(2%) is regular-
projective in T*, since it is a retract of the free 7-algebra EQH.

To prove that 7 is a natural isomorphism, we show that it is the inverse of the
natural isomorphism £8. Let 4 be any K-algebra and p: 24 — % an element of E (%).
Note that 6,: EQY— E%) is actually E(p). Then

[EGa)1pam](p) = [EGH)I(C0,)654) = 64CE(p)s;4 =p. B

It is noteworthy that the main ideas of our proof that E is an equivalence functor
are present in Foster’s first paper [2] on Boolean extensions. The use of the “Post
algebra” structure on T-algebras, and particularly of the identity p = > (ea A d(eq, 12)]

aed

i?’ quit? clear in that paper, while the K-homomorphisms «, § used in our proof to
tie various coalgebras together correspond to Foster’s device of looking at a two-
element “subframe” of his “kernel” algebra & to recover the “core” Boolean al-
gebra & from f [4].

.The category-theoretic analysis of set-valued extension functors which we have
carried out above makes it possible to define algebra-valued Boolean extension
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functors in a way which is independent of the Foster formula given in (3.6), avoiding
the completeness and distributivity conditions on the K-algebras required by that
formula.

5. Algebra-valued Boolean extension functors. Because E: K* — T* is
a component of the unit of the structure-semantics adjunction for varietal theories
(see [S]), it has the following universal property.

5.1. PrROPOSITION. Let V be any varietal theory, and let H: K* — V¥ be any
functor such that Uy H = A[—). Then there is a unique mapping of theories h: V— T’
such that H = h*E. B

5.2. DeriNITION. Let K be a varictal theory of A-complete Boolean algebras,
and let E: K* — T# be the canonical functor defined in Section 4, with T being
the varietal theory determined by a Boolean extension functor 4[—]: K *— Set.
Let h: V— T be a mapping of theories. Then the .Booledn extension functor in-
duced by h is h*E: K* — V¥, .

The functor 4[—] is the Boolean extension functor induced by ¢: Set— T if
we regard ¢ as a mapping of theories, while E is the Boolean extension functor induced
by the identity mapping Id,: T — T. The classical definition of the extension < [%]
of a universal algebra & by a Boolean algebra & (as given in Foster [2] or Burris [1])
requires that &/ have only finitary operations and that 2 be at least || *-complete,
relying on Foster’s formula (3.6) to extend the operations of & to &/ [#]. The Boolean
extension functors corresponding to the classical construction are those induced by
mappings of theories of the form i: ¥ — T where V is a theory of rank <#;. The
so-called bounded Boolean extensions, which are constructed using partitions which
have only finitely many nonzero values, are not covered by (5.2).

A functor U: M — N is (weakly) monadic if and only if it has a left adjoint and
the canonical comparison functor D: M — N7 is an isomorphism (resp. equivalence)
of categories, where N7 is the category of Eilenberg-Moore algebras over the
monad 7 induced by U (see [6], [8] for details). In particular, it is proved in
Wraith [8], Appendix C that every algebraic functor is monadic, and it is not dif-
ficult to sec that the composition of a monadic functor with an equivalence functor
is weakly monadic. From these considerations we obtain the following result, which
accounts for many of the known properties of classical Boolean extensions.

5.3. PROPOSITION. Every Boolean extension functor h*E (of type defined in
(5.2)) is wealkly monadic.

Our concluding result is a characterization of the Boolean extension functors
defined in (5.2) which eliminates the definition’s reference to the functor E: K > T¥,
We omit the simple proof.

5.4. PROPOSITION. A functor H: K¥ — V* is a Boolean extension functor
in the sense of (5.2) if and only if H is represented by a V-coalgebra in K¥ whose
underlying K-algebra is isomorphic to 24 for some set A with 1<[d]<} B


GUEST


90 - 1. Dukarm

Preliminary versions of some of the results in this paper were presented in
seminars at Warsaw University and at the Mathematics Institute of the Polish Acad-
emy of Sciences (Warsaw) while the author was a guest of the University in
1975-1976 and of the Institute in December 1976-January 1977. The author is
particularly indebted to A. Wiweger and members of the category theory seminar
of the Polish Academy of Sciences (Warsaw) for their interest and helpful discussions
during the latter visit. Thanks are also extended to A. H. Lachlan for valuable
comments on an earlier version of this paper.
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A measurable selection theorem

by

John P. Burgess (Princeton, N.J.)

Abstract. A family of subsets of a Polish space has the partition-selection property if the equiv-
alence relation generated by countably many members of the family always admits a selector
measurable with respect to the family. 1t is shown that the family of Baire-property sets enjoys
the partition-selection property. The same is true of the Borel-programmable sets, the R-sets,
the absolutely 4} sets, and the Lebesgue measurable sets.

§ 1. Measurable selectors and transversals for countably-gemerated equivalence
relations and partitions: A survey

1.1. Introduction. Throughout this scction, let X be an uncountable Polish
space (topological space admitting a countable basis and a complete metric).
E.g. X might be the Baire spaceJ = o® of infinite sequences of natural numbers under
the topology having as basis the sets U, = {y: y extends s} for s a finite sequence.
Or X might be the Cantor space J = 2° of infinite {0, 1}-sequences, considered as’
a subspace of J. The letters Y, Z will also denote Polish spaces.

Let E be an equivalence relation on X, and identify E with its graph
{(x, x"): xEx'}= X2, Let x/E denote the E-equivalence class of x e X. Associated
with E we have the partition Q = {x/E: x e X} of X into disjoint classes; and con-
conversely, every such partition is associated with an equivalence relation. A section
for Eisamap ¢: Q — X satisfying o(4) € 4. A selector for Eis a function §: ¥ — X
of form S(x) = o (x/E) for some section o. Equivalently, S is a selector if we always
have S(x)Ex, and have S(x) = S(x") whenever xEx'. A transversal for E is a set
T< X consisting of exactly one representative from each E-equivalence class. Se-
lector S and transversal T arc associated if T = range S, or equivalently S(x) = the
wnique x' € T with xEx'. A< X is E-invariant if x" € A whenever xe 4 and xEx'.
A countable family {4,: new} of subsets of X generates E if

E = {(x,x"): Vn(ne 4, < x'edy)},

or equivalently if the A, are invariant sets which separate distinct E-equivalence
classes (so that whenever x/E # x'/E there is an 4, with x/ES 4, and X/End, =9

2 — Fundamenta Mathematicae CX/2
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