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A measurable selection theorem

by

John P. Burgess (Princeton, N.J.)

Abstract. A family of subsets of a Polish space has the partition-selection property if the equiv-
alence relation generated by countably many members of the family always admits a selector
measurable with respect to the family. 1t is shown that the family of Baire-property sets enjoys
the partition-selection property. The same is true of the Borel-programmable sets, the R-sets,
the absolutely 4} sets, and the Lebesgue measurable sets.

§ 1. Measurable selectors and transversals for countably-gemerated equivalence
relations and partitions: A survey

1.1. Introduction. Throughout this scction, let X be an uncountable Polish
space (topological space admitting a countable basis and a complete metric).
E.g. X might be the Baire spaceJ = o® of infinite sequences of natural numbers under
the topology having as basis the sets U, = {y: y extends s} for s a finite sequence.
Or X might be the Cantor space J = 2° of infinite {0, 1}-sequences, considered as’
a subspace of J. The letters Y, Z will also denote Polish spaces.

Let E be an equivalence relation on X, and identify E with its graph
{(x, x"): xEx'}= X2, Let x/E denote the E-equivalence class of x e X. Associated
with E we have the partition Q = {x/E: x e X} of X into disjoint classes; and con-
conversely, every such partition is associated with an equivalence relation. A section
for Eisamap ¢: Q — X satisfying o(4) € 4. A selector for Eis a function §: ¥ — X
of form S(x) = o (x/E) for some section o. Equivalently, S is a selector if we always
have S(x)Ex, and have S(x) = S(x") whenever xEx'. A transversal for E is a set
T< X consisting of exactly one representative from each E-equivalence class. Se-
lector S and transversal T arc associated if T = range S, or equivalently S(x) = the
wnique x' € T with xEx'. A< X is E-invariant if x" € A whenever xe 4 and xEx'.
A countable family {4,: new} of subsets of X generates E if

E = {(x,x"): Vn(ne 4, < x'edy)},

or equivalently if the A, are invariant sets which separate distinct E-equivalence
classes (so that whenever x/E # x'/E there is an 4, with x/ES 4, and X/End, =9
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or vice versa). A function f: X— Y induces E if E = {(x,x"): f(x) = f(x")}.
Thus f induces E iff { f~![V,]: ne o} generates E, where the ¥, are a basis for the
Polish space Y; and {4,: n e w} generates E iff f1 X — I induces E, where fis de-
fined by letting f(x)(n) =0 iff xe 4,.

Let o be a o-field of subsets of X. A function f: X — Y is 5 -measurable
if f7![V]e o for every open V<Y (and hence for every Borel set). # is called
a tribe if it contains all open sets (and hence all Borel sets). 5# will be called uniform
if it is a tribe and in addition any composition of two ##-mecasurable functions
X — X is again s#-measurable, or equivalently the inverse image of an element
of & under an s -measurable function is always itself an element of 3. In order
of size, the most important uniform families are: the Borel scts, the C-sets
(= smallest family containing the open sets and stable under complementation and
operation &7 = smallest uniform family containing the analytic sets), the Borel-
programmable sets of Blackwell [1], the R-sets of Kolmogorov (cf. [4]), the absol-
utely 43 sets of Solovay (as in [5]), and the universally measurable sets (sets measur-
able w.r.t. every complete, o-finite, Borel-regular measure). Non-uniform tribes
include: the o-ficld generated by analytic sets, the sets possessing the property of
Baire, and the Lebesgue measurable sets (for X = [0, 1]). Note that if 2 is a tribe
and § an J#-measurable selector for the equivalence relation E on X, then
the associated tramsversal T = (identity x S§)”![diagonal of X?] belongs to .
But even for uniform 3# the existence of a transversal in J need not imply the
existence of an #-measurable selector, except in the case # = Borel sets. £ will
be called J#-generated if it is generated by a countable subfamily of #, or equival-
ently induced by some # - measurable function f: X— ¥'to some other Polish space.

o will be said to have the partition-selection property if every s -generated
equivalence relation admits an #-measurable selector. We will survey the status
of the partition-selection property for various families. The main new positive
results have been listed in the Abstract above. Conversations with R. D. Mauldin,
D. E. Miller, S. M. Srivastava, and D. H. Wagner have contributed materially to
the development of these results in their present form.

1.2. Borel sets. The Borel sets lack the partition-selection property, as the follow-
ing example from [9] shows: Let f: X — X be a continuous function whose range A4 is
properly analytic. If there existed a Borel-measurable selector S and hence a Borel
transversal T’ for the induced equivalence relation, then 4 would be the injective
image under a continuous function f or a Borel set T and hence Borel, a contradic-
tion! The failure of the partition-selection property for the Borel sets is the mo-
tivation for turning to larger families.

13. C-sets. The C-sets are the smallest reasonable family for which the parti-
tion-selection property is known to hold. From the treatment of this family in [3] we
isolate four propositions (corresponding to the following items in [3]: proof of
Lemme 1, proofs of Lemme 2(i) and of Proposition 3, Proposition 3 as stated,
Théoréme Principal) which will be used below in connection with other families.
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First, a refinement of a theorem of Kaniewski [6]: Here analytically measurable
means measurable w.r.t. the o-field generated by the analytic sets.

ProrosiTION 1. Let Z be a Polish space, P€Z co-analytic, RSZ? analytic,
D = R~ P2 Suppose that D is an equivalence relation on P and that every D-equiv-
alence class is relatively closed in P. Then D admits an analytically measurable selector
whose associated transversal is co-analytic.

As an immediate consequence we get what seems to be the sharpest general
result available about Borel-generated equivalences:

COROLLARY. A Borel-generated equivalence relation E on the Polish space X admits
an analytically measurable selector S whose associated transversal T is co-analytic.

Proof. Let f: X — Y be a Borel-measurable function inducing E. Apply Prop-
osition T to Z=Xx¥, P=graph f, R= {{(x, ), ', »): x,x’ e X&ye ¥},
obtaining selector S, and transversal T, for R n P2 It suffices to set S(x) = Ist
coordinate of So(x,f (X)), so T = {x: (x,f(x)) e Tp}. B

1t is worth noting that in the situation of the corollary, to get just an analytically
measurable selector (resp. co-analytic transversal) the celebrated theorem of
Yankov-von Neumann (resp. of Kondd) on the uniformization of analytic (resp. of
co-analytic) sets would have sufficed.

Second we have a consequence of Proposition I involving a technical notion
which here will be called presentability. For # a o-field of subsets of X' and A< X,
an o -presentation of A is a quadruple (¥, B, P, G) where (1) Y is a Polish ppzce,
(i) BS X x Y is clopen, (iii) P< X x ¥ is co-analytic, (iv) G: X — ¥ has graph € P,
(v) A = projection to Ist coordinate of B n P, (vi) G is #° -measurable. S is present-
able if it is uniform and every 4 e 5 admits an 5 -presentation.

ProPOSITION 11. Every presentable family has the partition-selection property.

This result obviously provides a general criterion for the property that interests
us. It will be applied below to several families.
Third in [3] comes the application of the above criterion to the C-sets:

ProrposITION IIL. The family of C-sets is presentable, and hence enjoys the
partition-selection property.

Fourth comes a consequence of an observation due to Miller [11] and indepen-
dently to Srivastava. The outer saturation of B X for the equivalence F is th.e
smallest invariant set containing B, viz. B* = {x: 3x’ € B(xEx')}. Note that if
(the graph of) E is analytic, B* is analytic for any analytic B.

LeMMA (Miller-Srivastava). If E is an equivalence relation on the Polish space X for
which every equivalence class is a Gy set, and if {V,: ne€ w} is a basis for X, then E is
generated by the outer saturations {V, : ne w}.

PROPOSITION 1V. An analytic equivalence relation E on the Polish space X for

which every equivalence class is a G; set admits a C-measvrable selector.
2
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In this connection a question arises naturally: Let E be as in Proposition IV.
Does E admit a co-analytic transversal? We will see in the next section that this
cannot be proved from the usual ZF axioms of set theory; whether it can be refuted
is open.

1.4. Borel-programmable sets. The Borel-programmable or BP-sets were in-
troduced by Blackwell in [1]. While assuming a nodding acquaintance with this
paper (which contains e.g. the proof that the BP-sets form a uniform family con-
taining the C-sets), we recall the basic definitions. The termwise partial order =< on Jis

{x, 9): Va(x(m<ym)}.

A Borel-measurable function p: I— I satisfying p(x)=<x for all x will be called
a program. Its oth iterate for ordinal a<@ is defined inductively: () p°(x) = x,
(D p"*1(x) = p(p°(x), (iii) at limits p"(x) = =<-inf{p(x): B<y}. An encoder is
a Borel-measurable function from a Polish space to I; a decoder is a Borel-measurable
function from I to a Polish space, e.g. the discrete space {0, 1}. A BP-function
Polish spaces is a composition of form d o p? o e for encoder e, program p, decoder d.
The characteristic function y, of a set A satisfies y,(x) = 0 for xe 4 and = 1 for
x¢ 4. A BP-set is one whose characteristic function is BP.

TreoreM 1. The family of Borel-programmable sets is presentable, and hence
enjoys the purtition-selection property.

Proof. Let A X have y, = dop?oe where e: X — [is an encoder, p: I — [
a program, d: I— {0, 1} a decoder. We must produce a quadruple (Y, B, P, G)
satisfying clavses (i~(vi) of the definition of presentation. We will verify (vi) by
showing that G is a BP-function, G = ko g% f for some encoder f, program g,
decoder h. Before defining all these items we need some technical devices.

Let 7: wx® — o be the bijection n(m, n) = 2™(2n+1)—1. Let A: I— power
set (wx w) be the bijection A(y) = {(m, n): »m(m, n)) = 0} Let @: I — I° be the

bijection sending y to the sequence whose mth term Ym = O(¥)(m) is determined

by yu(#) = y(n(m, n)). For y e I, let v(y) be 1-+the least n for which y(n) = 1 and
P())n) = 0 any such exists, and 0 otherwise. Now to define Y, B,P, G, fqh

Set ¥ = IxIx{0,1},B = XxIxIx{0}. Let P be the set of (x, y,z, k) e Xx ¥
such that 4(y) is a wellordering of its field and: (i) if 7 is the A(y)-least clement,
then @(2)() = e(x); (i) if 7 is the immediate A())-successor of j, then
O = p(@(z\(/')); (iif) if 7 is a limit point in A(y), then

OO = -inf{O@()): j # i&(j, e A} ;

(iv) 0 is the A(y)-greatest element, and 6 (2)(0) = P(@@)(0) and k& = d(@(2) ));
(v) if i ¢field of A()), then O (2)(i) = constant sequence with value one.

Towards defining G we introduce some auxiliaries: For x e X let ar(x) be the
least ordinal 6<Q with PHe) = ple(x)). Let

20 = {p(P"(@). v(r"(¢))): y<B<a()}.

@ ©
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Let 9(x) € I® be the sequence with S(x)(v( pB(e(x)))) = pf(e(x)) and 8(x)(n) = con-
stant sequence with value one, for other n. Finally let

G@) = (A7), 07 (8(x)), x4()) -

In defining f, g, h we will cheat slightly, doing our programming on I rather
than 7 itself. Thus we will have f: X—13, q: I’ — I, h: I® — Y. We define
F(x) = (e(x), y, z) where A(y) = & and for all i ©(z)(i) = constant sequence with
value one. We define h(w, y,z) = (y, z, d(w)).

We define q(w, y, z) to be (', ), 2') where: () w' = pw)=<w; (ii)

A7) = AG) v {(n, v(W): ne AD) U (W)},

so p'<y; (if) @@E)(v(w)) =w and @(z')(n) = @(z)(n) for other n, so =<z

The verification that all these items do what they are supposed to do will be
left to the interested reader. Very roughly, the idea is that G(x) keeps a complets
record of how y,(x) = d(p"(")(e(x))) was computed. H

1.5. R-sets. Traditionally the R-sets are defined as the union cf the Kolmogorov
hierarchy R* for a.< @, where R® = Borel sets, R! = C-sets, etc. In [4] an alternative
characterization is provided, according to which the R-sets are the union of the
Black-well hierarchy B®, where B® = Borel sets, B! = BP-sets, ctc. By laborious
argumentation, presentability and hence the partition-selection property could be
established for each R”. To establish presentability and hence the partition-selection
property for each B* is much less work. Indeed, everything difficult is already con-
tained in the proof of Theorem I. Without entering into any further details we
announce:

COROLLARY. The family of R-sets is presentable, and hence enjoys the partition-
selection property.

According to [4] we have: C-sets & BP-sets & R-sets & absolutely A} sets.
We have treated the first three families; we defer treatment of the fourth to the next
section.

1.6. Baire-property sets. This is the logical point at which to take up our main
result,

Recall that A < X is said to have the property of Baire if there exist Borel Band C
such that the symmetric difference 4 A B is contained in C, and C is meager (1st cat-
egory). Given Borel-measurable f: Y — X, will be called f- Baire if there exist Borel B
and C with A AB<C and f~*[C] meager. g: X — Z will be called Baire-measurable
if g7 [V] has the Baire property for all open ¥, Z, and f-Baire measurability will
be similarly defined. A set which is f-Baire for all relevant f is called universally
Baire.

A classical theorem tells us that if g: X — Z is Baire-measurable, then there
exist a meager Borel M and a Borel-measurable 2: X — Z such that the restrictions
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g\ X—M and h| X~ M agree. The usual proof applies to Jf-Baire-measurable g as
well, producing M with f~*[M] meager. Another classical theorem tells us that
operation &f preserves the Baire property, so that all analytic sets possess that
property. One of the usual proofs (involving a covering by an Q-sequence of outer
approximations) applies equally well to the f-Baire property. These observations
made we proceed to:

TrroreM 1. Let # be a o-field of subsets of the Polish space X, all possessing
the Baire property. If the equivalence relation E on X is A - generated, then there exist
an E-invariant meager N e # and an 3 -measurable selector S for the restriction
of E to X—N.

Proof. Fix an #-measurable function f: X — ¥ inducing E. Fix a meager
Borel M and a Borel-measurable g with f|X—M = g|X—M, and let 4 be the
analytic set g{X—M]. Apply the Yankov-von Neumana theorem to graph
g™ A (A% (X—M)) to obtain an analytically measurable 4: 4 — X— M satisfying
fh = gh = identity. Apply our observations above to obtain a Borel L&Y and
a Borel-measurable k: ¥ — X such that g~*[L] is meager, B = A n (¥Y-L) is
Borel, and k|B = h|B. It suffices to set N = X—f"![BlsM ug~*[L] and to
define § on X—N by S(x) = k(f(x)). B

COROLLARY. The family of Baire-property sets enjoys the partiticn-selection
property.

Proof. Given a Baire-property-generated equivalence £ on X, apply the
foregoing theorem, obtaining N and S. By the Axiom of Choice there exists some
selector S’ for the restriction of E to N. Then §” = S u §’ is a Baire-measurable
selector for E. B

1.6. Measurable sets. Let y be a complete, ¢-finite, Borel-regular measure on X,
e.g. Lebesgue measure for X = [0, 1]. Reasoning almost identical to that of the last
section establishes the partition-selection property for the family of u-measurable
sets. Indeed, a measure-theoretic analogue of Theorem II for s = Borel sets is
obtained (in a rather special group-theoretic setting, which is inessential) by
Mackey [8]. It is unknown whether the universally measurable sets enjoy the partition-
selection property, and the corresponding problem for category is also open.

§ 2. Classical hierarchies from a‘:modem siandpeint, Part IV: Absolutely A} sets

In this section, which can be viewed as a continuation of [4], we study equival-
ences and selectors connected with a metamathematically defined family of sets
introduced by Solovay. We assume familiarity with the analytical hierarchy, con-
structibility, and forcing. For the space J we use logical notation: analytic = )3},
co-analytic = II}, etc.

A famous result of Shoenfield tells us that a truth-functional compound 9(t)
of Z} statements about an element ¢ e J is absolute. This means: (i) if 9(¢) is true in
the “real world” ¥, then 9(z) is true in the inner model L[x] of sets constructible
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from x eJ, provided of course teL[x]; (ii) if M =V or M = L[x] and te M,
and if Z € M is a set of forcing conditions, then if $(r) is true in M, it remains true
in the Boolean-valued extension M? of M obtained from the Boolean algebra as-
sociated with £. Actually, we will only be interested in forcing conditions 2 e L[x]
which are x-accessible, i.e. such that inside the model L[x] there are no inaccessible
cardinals < the least o with # e L, [x]. We call a IT; statement 9(z) absolutely true
if it is true in every L[x]? with e L[x] and Px-accessible. (By a short argument
using Shoenfield’s theorem, this implies that 3(¢) Is really true.)

A triple (¢, ¢*, ™) consisting of a parameter feJ and two II} formulas is
said to provide a Aj (resp. absolutely 4 1) definition of a set 4<J if

A= {x: 3yp*(@t,x, M}

and the following is true (resp. absolutely true):

© Vx@ye*(t, x, ) « T13ye~(t, x, ).

A is A% (resp. absolutely 43) if it possesses such a definition. Ours is not quite the
absoluteness notion used in [5], but the arguments there do suffice to show that our
absolutely 43 sets form a uniform family of universally measurable sets.

TuroreM III. The families of A% and of absolutely A} sets are presentable, and
hence enjoy the partition-selection property.

Proof. Consider the plain 43 case first. Let (7, o™, ¢7) be a A} definition of
a set A=J. We must produce (Y, B, P, G) as in the definition of presentatiop. Let
Y= Jx{O 1}, B = JxJx{0}. Let P = {(x,», k): ¥(t, x,¥,k)} wherey(u, v, w, k)
is the I} formula [(™*(u, v, W) & k = O)v (@~ (u, v, W) &k = 1)].

Apply Addison’s effective version of Kondé’s theorem, to obtain’a I} formula
9(u, v, w, k) for which the following are provable in ZF:

Q) Yu, v, K¥w(9(u, 0, w, k) > ¥ (u, v, w, k),
2 Yu, v, k@, v, w, &) — Awd(w, v, w, k).

Let G(x) = the unique pair (y,%) such that §(¢, x, y, k). Clauses ()~(v) of the
definition of presentability should be evident.

To get (vi), we must consider a basic open subset U, x {k} of Y for s a finite
sequence of natural numbers and k € {0, 1}, and show that G~ U, x {k}] possesses
a A} definition (¢, o*, ¢™). It suffices to let o (u, v, w) = [$(u, v, w, k) & w extends s],
and to let o~ (u, v, w) = {8(u, v, w, 1=K) v [$(u, 0, w, ) & 1 (w extends s5)]}. For
we do indeed then have: ’

o) Vx(3yot(t, x,3) < 1IpeT(t, %, 7).

This completes the treatment of the plain case. For the absolute case it suffices
to note that (1) and (2) are always absolutely true, so that if (0) is absolutely true,
so is (4). &
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This is the result promised in the preceding section. We now take up a question
mentioned there. For xeJ let Q* denote the ordinal (necessarily < Q) which inside
the model L[x] plays the role of the least uncountable cardinal. The following hy-
pothesis is known to be independent of ZF, and equiconsistent with the existence of
an inaccessible cardinal:

+ VxeJ(Q <Q).

ExaMPLE. Assume (4-). Then there exists an analytic equivalence relation E on
a Polish space X such that every E-equivalence class is a G set, but E does not admit
a co-analytic transversal.

Proof. Kechris [7] and independently Sacks have shown that (+) implics the
existence, for each 7 eJ, of a largest countable I j-in-f set C,, and indeed of a single
I} set P<J % J such that for each ¢, the cross-section {x: (z, x) € P} is precisely C,.
Let E be the X} equivalence velation on JxJ defined by

E={{(t,x),x): x=xv({t,x)¢P &, x)¢P)}.

Each E-equivalence class is either a singleton or a set of form {¢}x(J—C,), and
hence is a Gj set. If there were a transversal T for E IT i-in-t for some ¢, then for that ¢
the cross-section {x: (¢, x)e T} would be a IT I-in-¢ set comsisting of C, together
with one additional clement x ¢ C,, a contradiction!

By contrast we have a result which has already appeared in [2]: An analytic
equivalence relation E on a Polish space X for which every equivalence class is
simultaneously G, and F; admits a co-analytic transversal T In view of the virtual
inaccessability of this reference, it may be well to sketch the proof: We take X = J
and let <] be the lexicographic linear order.

T,={xeU: M3ycUxEy x # y&y < x)}
is, for each basic clopen set U,, a II} set containing at most one representative of
any equivalence class, and containing one from any class whose intersection with U,
is nonempty and closed. Now any set which is both G, and F, meets some U, in
a nonempty closcd set. Let P = (J({§} x T)cwxJ, where § denotes the code
number of 5. Impose a I norm on P, i.e. a map ¢: P — Q such that the relation
RS ={(x,3): y¢Pv(xeP&yeP&o(x)<a(3)}
as well as the similar relation R™ for strict inequality are both X1, It suffices to set
T= {x:‘ 3nl(n, x)e P & T1Im<ndy(xEy & y # x & (m, ) R¥(n, x)) &
& T13m>n3y(xEy & (m, Y R“(n, x))]} .
Before closing, we cite some equivalents of (+) connected with matters studied
in this section.

Remark. The following are all equivalent to (+):
(a) VxeJ(Q is an inaccessible cardinal in LIx]).
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(b) Every I} set is either countable or has a perfect subset.

(c) Every X set is either countable or has a perfect subset.

(d) Every X}-generated equivalence relation has either countably many equiv-
alence classes or else a perfect set of pairwise inequivalent elements.

(e) Every A3-generated equivalence relation has either countably many equiv-
alence classes or else a perfect set of pairwise inequivalent elements.

- (f) Every 4} set is absolutely 43.

(g) Every H} truth is absolutely true.

Proof. The equivalence of (a) with (+) is folklore. Mansfield [10] and inde-
pendently Solovay gave (b) and (c). Trivially (e) implies (d) and (g), (f). (¢) immedi-
ately implies (€): given an equivalence as in (e), we apply (c) to the transversal given
us by Theorem IIL. ~1(b) immediately implies —1(d): if P is a counter-example to (b),
then the equivalence E generated by the sets U, u (X—F), i.e. the equivalence
E={(x,p): x=yv(x¢P&y¢#P)}, is a counterexample to (d). (a) immediately
implies (f): for it implies that for any x-accessible set & of forcing conditions, the
power set of 2 as computed in L[x] is merely countable, so that a & -generic set G
exists in the “real world” V; then any I statement that is true in ¥ will be true
in L[x][G] and hence in L[x]®. It only remains to show that ~1(+) implies 71(f).

To this end, suppose we have a 7, with Q" = Q. Let A be as in the proof of
Theorem I; let W be the IT7 set {y € I: A(») is a wellordering of w}; and let = be
the Z} equivalence {(y, y'): A(y)is isomorphic to 4 ()")}. Using the canonical wellor-
dering of L[t,], the usual construction of a stationary set S=Q whose complement
is also stationary, can be carried out in such a way that D = {y e W: order type
A(y)e S} is 4 3-in-f,. Suppose for contradiction that D possesses an absolutely A3}
definition (¢, @, 7). The following are then absolutely true, (5) by hypothesis
and (6) since it is a I3 statement and is true.

(5) Vx@ye*(t, x, ) vAye™(4,x, ),
(6) Vi, x', y, y'(x 2 % &o¥(t, x,5)— 1o~ ¥, )

For any ordinal a<Q let 2 (x) be the usual set of forcing conditions for adjoining
a map of w onto «, and hence an x € W with order type A(x) = a. Let ¢ be the ca-
nonical term of the forcing language for this x. Assuming as we may that ¢, is recur-
sive in ¢t #(Q) is certainly ¢-accessible.

We claim that, forcing over L [¢], either all p e £(Q) force 3yp* (¢, £, ») or all
force dyp~(t, £, ¥). Indeed, suppose p~ does not force the former, and pt does
not force the latter, so some g~ <p~ forces the negation of the former, and some
g*<p* the mnegation of the latter. By the absolute truth of (5), ¢* forces
3ypt(t, &,y and g~ forces 3y~ (t, &, ). Then forcing with Z(Q)xZ(Q), the
pair (g*,q~) forces the existence of two elements x¥,x~ e W with order type
A(x¥) = @ constituting a counterexample to (6). But (6) is absolutely true, a con-
tradiction which establishes our claim. Suppose for definiteness it is 3 yot(, &, )
that is forced by all p and hence true in L[t]**?,
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The assertion that this formula is indeed true in this model is a ¥y statement
about @ in Levy’s hierarchy, by routine computations. Being true for £, it must
therefore be true for all countable ordinals in some closed unbounded set C<@Q.
But for « € C the truth of this statement about ¢ is readily seen to imply that for
somefany x € W with order type A(x) = o we have Jypp*(t, x, ). It follows that
C<S, so @—S is not stationary after all, a contradiction! &
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Analytic sets with countable sections
by
Ashok Maitra (Calcutta)

Abstract. This article contains a new proof of Lusin’s theorem that an analytic set in the
product of two Polish spaces, having countable (vertical) sections, is a countable unjon of analytic

graphs.

1. Introduction. Suppose X, ¥ are Polish spaces. If E< XxY and xe X, we
denote by E* the set {ye ¥: (x,)) e E}. Aset GE XX Y is said to be a graph if G¥
contains at most one point fot each x € X. We denote the family of Borel graphs
in X'x Y by 4. Let my(n,) be the projection of X'x Y to the first (second) coordinate.

Lusin proved the following fundamental results on Borel and analytic sets
with countable (vertical) sections in his celebrated monograph [2]:

(i) If E is a Borel set in Xx ¥ such that (Vx € X) (E™ is countable), then mty(E)
is Borel in X ([2], p. 178). '

(ii) If E is a Borel set in XxY such that (VxeX) (E” is countable), then
Ee%, ([2], p. 244).

(iti) If E is an analytic set in Xx Y such that (Vxe X) (E® is countable), then
there is a Borel set B in Xx Y such that ESB and (VxeX) (B* is countable)
(2], p. 247).

Finally, combining (ii) and (i), Lusin obtained

(iv) If E is an analytic set in X' X Y such that (¥Yx € X) (E* is countable), then E is
a countable union of analytic graphs ([2], p. 252).

We shall prove the following:

THEOREM. If A is analytic in Xx Y such that (Vxe X) (4" is countable), then
there is He %, such that ASH.

A notable feature of our proof of the above theorem is that we do mot use

results (i)-(iv), so that these results fall out as easy consequences of our theorem.
Our proof, though quite different from Lusin’s proof of (iii), is based on ideas con-

 tained in Lusin’s proof of (i) and also on certain ideas in a recent article of Saint

Raymond [3].
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