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The stability radius of a bundle of closed linear operators

by
1L BART* (Ainsbordwn) and D, G0 LAY (Colloge Park, Md.)

Absiract. Given & bundlo of linoar oporators T— A48, whoro 7 is cloged and §

is hounded, a soguoneo {py (T 8} of exbonded real numbors ¢ defined. When T

in tha idoentity oporator, p, (1 8) is equad to |§7~1=1; when § is the identity operator,

i (2's 8) i the voduced minimum modulus ¢ (2™) of "™, It is shown that in several

imporbant coses (ineluding the enso when 7' i a Iredlolm operator and § is arbitrary)
iy (T §)Um

M-+o0

oxists and {8 ogqual to the supromun of all pogitive r sueh that the ranges R (T — A8)
e ologed and dim N (T'— A8) and codim B(7—A8) are constant on 0 < (4] < 7.
This worle genoralizen the wsual spectral radius formula, a recent theorem of K.-H.
Forsior and M, A, Banasbook, and an owrlion rosuli of H. A, Gindlor and A. E. Taylor.

0. Introductiom. If § iv & hounded linear operator on a Banach
gpace, the usual spectral rading formula implics that
(0.1) Tin || gm)j=3m
Mr 0O
existy and is oqual to tho supremum. of all # > 0 such that I — 18 is a bijec-
tive operator on |A| < r. Recently, K.-H. Forster and M.A. Kaashoek [6]
studiod & similar Hmit, namely
(0.2) Tinwy (2™,
N0
where I'ix o (possibly unbounded) Wreedholm operator and y(I™) is the
reduced mininum modalug of 2™, Borster and Kaashoek showed that
the Timdt i (0.2) oxisty and oquoads the suprewum of all » > 0 such that
the dimensions of e null wpaees N (I'—AI) and tho codimensions of
the rnges B(T—AT) ave conslant on 0 < jA] <
In the present paper wo doseribe o general setting which includes
the results involving (0.1) and (0.2) as speelal cascs. We consider an
operatior bundle I'— 28, where § is a bounded linear operator between two

* The researeh for this papor was done while the fivst author was supported
by the Nelhorlands Organization for the Advancement of Pure Rososreh (Z.W.0.).
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Banach spaces X and Y, and T is a closed lincar operator with domain
in X and range in ¥, For such a bundle we define a sequence {y,,(T: 8)}2.,
of non-negative extended real numbers. When X = ¥ and T = I, one
has y,(T: 8) = [8™Y~Y; when X = ¥ and 8§ =1, onc hag 4, (T: 8)
= y(T™). We also introduce the notion of the stability radius »(T: §)
of T and S. In most of the cases discussed in this paper #(T: 8) is equal
to the supremum of all # > 0 such that dim N(T—A48), codim R(7T—AS)
and dim R(T—A8) are constant on 0 <2 [A] <r. We prove that under
rather general conditions
(0.3) P(T: 8) = lim p,, (T: Sy,
MO

Our main results apply to the following situations:

(i) T is a Tredholm operator, S is a-rbitmmﬁ;

(ii) T is a semi-Fredholin operator with complemented range and
null space, 8 is compact; ' '

(iii) 7' has closed range, § is degenerate (i.c., 8 is of finite rank);

(iv) The resolvent (I'—A8)~' of T and § has a pole at the origin.

We also present an example showing that the condition in (ii) thab
T is a semi-Fredbolm operator by itiself iy not enough, not even when
X =¥ 'is a Hilbert space.

The idea of finding cxpressions (or estimates) similay to (0.3) for
the stability radins originated in a paper of H. A. Gindler and A. B, Tay-
lor [7]. They studied the case when X = ¥ (possibly non-complete),
8 =1I and T has a bounded inverse.

1. Preliminaries. Throughout this paper X and ¥ are complex
Banach spaces, T is a closed linear operator with domain D(T) in X and
range B(T) in ¥, and § is a bounded linear operator from (all of) X into ¥.
Whenever we write Tw, it will be understood that & e D(T).

Define subspaces N, = N, (T: §) and R, == R,(T: §) of X by

Ny = (0), By =X ’
N1 = L78Npy By = 87IR,, m=1,2,...
The sequence {N,} is increasing; the sequence {B,} is decreaging, Put
. N(T)
BT: 8) = dim ————
(F: 8) = dim g

where N (T) is the null space of T and R is the interscetion of the sub-
spaces R, . The extended integer %(T: 8) will be called the stability
number of T and 8. One can show that &(T: 8) is less than or equal to

R
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enth of the extondod integors

W N (T,  codimB(T), dimSN(T).
Thus, for example, BT 8) i finite whenever T i gemi-Tredbolm or S
in degeneradic,

The reduced mindmum modudes of 2 s defined sy the supremum
() of all ¢ 2= 0 such that

Tl s ood (i, N(TY), e D(L).

Tlere d (o, ,N(,’I,‘)) denoles the distance from @ to N (1. We recadl from [9]
thatn 4" has closed vange i and only i 9(7) > 0.

The following thoorem iy due o M. A. Kaushoek; it is & general-
ization of the well-known pevtuehation resulis of I 0. Gohborg, M. G. Krein
and. T Kado for somi-Iredhohn oporators, (See [8], [10], [11]. Part (if)
of the theoremn doos not appear in [10] but way be dedueed without
difficulty from the stoatements (i) and (iv).)

L1 Tororwm. Suppose that R(T) ds closed and k(T: 8) =k < oo.
Then there ewists v > 0 such that, for 0 < |A] <1,

(i) AN (T—a8) = dimN(T)—k,

(i) AT —A8) = dimB(T) + k&,
(iif) codim L(T = A8) = codim B(T") — &,
(iv) B(d'~2A8: B) == 0,

(v) R(T--A8) s closed.

In the particular case when I == 0, the constant v may be taken to be
(L) 18]

Motivated by this theorom we define tho stability radius of T and 8
ag the supremum #»(2': §) of all » > 0 such that R(T —18) is closed and
BT —28: 8) 0 for 0 < |A <# I is clear that the functions

(L1)  A-dimN(T—A), AdimB(T—18), ArrcodimR (T —A8),

aee consbant on 0« |4} -2 (T 8). In most of the cases discussed in this
paper ¢ (T 8) s neduadly the supronmum of all # > 0 such that funetions
(L) are countant on 0 -7 |A] <7 '
Given g s Lo elomoents ay, .., m, 0 D), we say that the tuple
Wy ooy itty) 0 o chain Tor T and 8 i
Doy e Btygyy 4 2 8y oy m

Tt is eawily veritiod that o ¢ N, i and only if there exists o chain (0, ..., @)
with ,, @ and Ty, - 0. We Tt g, =5 9, (T 8) denoto the supremum
of all oz 0 with tho property that

1Tl 2 ¢ d (g, y Non)
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for every chain (#,...,%,). Observe that y, it just the redueed mini-
mum modulus y(T) of T.

To illustrate the definition of y,,, we examine the two gpecial cases
mentioned in the introduction.

1.2. Examere. Assume that T is bijective and let L be the inverse
of T. Then L is a bounded linear operator from all of ¥ into X. It is clear
that N, = (0) for all m. Also, the chaing for T and § are of the form

(Ly, L8Ly, ..., L(SLY*'y), yeY.

It follows that, for m =1,2,...,

(1.2) Vo = (8L Y=L,
But then, if 7,(8L) denoties the spectral radius of SI, we have
(1.3) 7o (8LY ™ = Hm plm,

m—od

Observe that 7,(8L)~" is also equal to the ml]irenmm. of all #> 0 such
that T.— A8 is Dbijective for (4| <r. When X = ¥ and T = I, the right-
hand side of (1.2) becomes [§”Y7! and the left-hand side of (1.3) is
equal to 7, (8)~%

1.3. Examprn. Suppose that X = ¥ and 8 ==I. Then

Ym = 'V(Tm)y m == 17 2:

The proof of this is based on the observation that the chaing are now
of the form

and N,, = N(I™).

We conclude this section with two lemmas, the second of which
will be used in Sections 3 and 4.

1.4. Lmvva. Let T be surjective amd suppose thal

0 < |u| < limgupy,, (T: 8)m.
m-»co

Then R(T ~ul) is dense in Y.
Proof. Take 0 2y e X, let &> 0 and choose ¢ such that

) < r < limsap ylim.

M—+00
Select m so that

(18
7™ < Vans _!Ml " IL"':"/‘"‘ <e.

ym
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Sinee BT ¥, there exinie o chain (o ;

fine ) ,< )N y there ex HTH | f" VN ey ) Wibh Ly =y, Observe

Ghadi d(a,, Ny -7 fyll. Teneo theve iy o elain (%15 oy ) With T, = 0

and [, -ty | -0 ™ yll. Now put
K

T e
_,\J,u,’ Nom-ttg)y @ (T — p)an
A

o

Then s e BT pd) and a0 stendahiforwad caleuladion shows that lly — =it
< & This proves the Tennmn. |

The Banaeh space of all hounded Jineay operators from X into ¥
will he denoted Ty 7(X, Y.

LB, LismmA, Let BOTY be closed and B2 8) == 0. If

O -2 |ul << limuupy,, (1': §)Ym
m roo

and B(T'- - n8) s closed, then k(D - s 8) == 0,
Proof. Define

‘Yw ﬂ 5 ‘)’ww You N ﬂ Vi »Rm~
e

4 m

Trom [L0], Lemmn 2.8 wo know thad
(1.4) TX Ve SY, =X

o0

Tuvthermore, sives g 2 0,
(1.5} NI —uN)y « X

The condition (7 8) - - 0 means tha; N(T) < R, for all m. Using this
one canily shows, as in the proof of Theorem 8.1, in [10], that R,, and
TR, wre cloged. Tenee X and Yo are closed.

Lot Lo and 8, be the vertrictions of 7 and § to X, considered as
operators jnto V. Then Ty s closed and S 6L (X, Yo). Observe
that B(T') -~ Yo By [1L], Lemma B, the hypothesis k(T: §) =
fmplien that Ny, (s N) e Vo Tor adl m. TLenee Nop(Lor 8) = N, (T: 8)
and eonnequently

Ml NY TPt By moe= 1,2,
Bt then we hwve
O ] =2 1 jup 9, (L So)¥™
MWheebrss
Applying Lomma 1.4 we find that (77— (i) Xog o= B(T g~ ul,) is dense

in Y. IMowever, in view of (1.5), Lomma IV.2.9 in [9] implies that
(T~ p8) X, s closed, Ho (T pil) Ly #+ Y. This, together with (1.5)
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and the sceond part of (1.4), gives
N(T—p8) = N B, (T—p8: 8),
m

and the proof is complete.

2. An upper bound for the stability radius. The proof of Prop-
osition 2.1 will he based on the cxistence of global velative inverses of
certain holommorphic operator functions [2]. A gimilar  argoment wag

used in [6].
An operator L e Z(Y,X) is called a relative inverse of T it B(L)

< D(T) and

Tw = TLT%, Ly == LILy
for # e D(T) and y € Y. Tt D(T) = X, then LT is a projection of X7 along
N(T) and TL is a projection of ¥ onto E(T).

Let X be D(T) endowed with the graph norm ||j][] == |l + | T
Then X is a Banach space.

2.1. PrROPOSITION. Suppose 'N(T'—28) is complemented in X and
RB(T —A8) is complemented in ¥ for |A| < r(T': 8), and k(T 8) < oo. Then
(2.1) #(T: 8) <liminty, (T: )™

M=+00

Proof. Let 7 and § be the operators T and S congidered as maps

from X into ¥. Then T, 8 € #(X, ¥) and, for |A] < (I': §), the operator

-

T'—28 has complemented range and null space. Also k(T —a8: 8) = T —
—A8: 8) =0 for 0 < |A| < #(T: §). But then [2], Theorem 2.2 cnsurcs
the existence of an £(Y, X)-V&lued funetion L with the following
properties:

(i) L is holomorphic on 0 < |A|<r(T: 8) and meromorphic on
A< r(T: 8); . :

(if) L(A) is a relative inverse of T8 for 0 < A <r(T: 8);

(i) The projection functions AmsIL(A)(T —48) and A (4 —A8)L(4)
have holomorphic extensgions to all of |A| < #(T: 8).

Now let p be a positive integer and leb

L) = > I,
: oD

be the Laurent expansion of L at the origin. From (i) we have

. 1~(T: S) < Hning "Lm—- 1“— lhn-

M~+00

So it suffices to show that y,,(T: 8) = [Lpyl™* for m = p.
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Take w2 p. Freom (i) wo have
TLy 0, "’[YILﬂ (2 ’g])wz)-rt—-n b=y, p—l
enee R(L.,) e N,. Since mzp, i follows that

(2.2) R(I_,)c N

M
(notice that N,,(T: &) - N, ).
Now lot (my, ..., 4 a chain fop 7 J £ ar
<) (#iy ooy w,) oo chain for I and 8, D.(stme, for 0 < |
N N "
P L=~ 8)]( 3] #a).

feal

By (iil), tho function p has o holomorphie extension, also denoted by »
to all of [A] <2(T: 8). On acoount of (i), we have ’

(T—A8)p(2) = 0, 14| <e(T: 8).

It follown that the (m—1)-th coefficient p,,_, in the Taylor expansion
of w ab the orvigin bolongs to ,,. A routine computation, based on the
fact thatdi (my, ..., ;,) 8 w chain, shows that

P == Oy =~Tipy L0y -+L_; Sy,
But then wo seo trom (2.2) that @, —T,,_,Tw, € N,,, and so
AWy N) < [ Ligyen L] ey T4 ||] < (Lt | 1Ly |

Heneo p,, (T': ;S!)>. 1Lpyrl™?, amdt the proof iz complete. :

In the following remark wo show how to apply Proposition 2.1 in
threo important casos. :
‘ 2.2, Romark, (i) Suppose that T is a Fredholm operator. Then it
follows from Theorem L1 that 7 ~—218 is & Fredholm operator for ||
<7(T: 8). In partioular tho conditions of Proposition 2.1 aro satisfied.
We conelude fhwi formuls (2.1) holds.

(i) Amsumo that & is compaet and that 7' is & semi-Fredholm operator
with ecomplomented range and null kpace. Tiot T and 8 bo as i the proof
of I’roposi‘tzi.on 2.1 Thon 8 is compaet and T is & boundod semi-Fredholm
operator with complomoentod range wnd null space. This implies that,
for all 4 € €, the oporator 1'— A8 is semi-Fredholm with complemented
rango and null spaco (of. [4]). In particular the hypotheses of Prop-:
osition 2.1 are satisfiod, and so wo obtain the inequality (2.1).

(i) Tho set of all A e C such that T—A8 is bijective is called the
resolvont set of T and § and denoted by o(L: 8). For A in ¢(T': 8), let

0~ Sudia Mathematlen 1XVLS



314 H. Bart and D. C. Liay

R(A) be the resolvent of T and 8 given by
R(Ay =(T—28)""y, yeX.

Then o(T: 8) is an open (possibly empty) subset of € and R is a holo-
morphic £ (Y, X)-valued function (cf. [3], Seetion B5). Suppose now
that R has a pole (or is holomorphie) at the origin. Then it follows from
Theorem 1.1 that Aeo(T: 8) for 0 < |A| < r(T: 8). Moreover, it L(1)
is R(2) viewed as an operator from ¥ info )f, then obviously L has the
properties mentioned in the proof of Proposition 2.1. As a result, for-
mula (2.1) is valid.

3. The case when 7' is a Fredholm operator. Whon T is & Iredholm
operator, 7(I': §)is equal to the supremum of all# > 0 such that dim N (7' —
—18) and codimR (T —A8) are constant on 0 < |A] <r. This i§ 2 con-
sequence of Theorem 1.1.

3.1, TamoruM. Let T be a Fredholm operator. Then

r(T: 8) = lm p,(T: §)™
M= :
» This theorem is & generalization of [6], Theovemn b and [7], Theorem 3.5.
The proof requires the following'_lemma.

3.2. LEMMA. Suppose that T' is a Fredholm operator and k(T: ) = 0.

Let

(3.1) 0 < |u] < limsupy,, (T: 8)'m.
. m~roo

Then T'—pu8 is o Fredholm operator amd T(T—ul: 8) = 0.

Proof. In order to show that 7'—ud is a Fredholm operator, we
shall relate the right-hand side of (3.1) to tho spectral radius of a certain
element in the Calkin algebra over X. Let m be a positive integor. As
k(T: 8) = 0, we have N(T) c R,,_,. Since T is Fredholm, the subspaces
R, are closed and have finite codimension. Using these facts one can con-
strict a relative inverse L,, of T' such that L,TR, = R, for n=0,.

«.ym—L. (First construct a projection’ of X along N (1’) ‘which maps
R into R, for n =0,..., m~1.) ‘

Since T is & Fredholm operator, we have T'R,,_, dlosed and
dimN, <mN, codimTR, _,<mN,

where N = max{l Aim N (T), codim R(T)}. Hence there exigh a pro-
jection P of X along N,; and a ‘projection @ of ¥ onto TR, , such that

llPll 2(mN )4, ol < 3(mN)"’ N
{cf. [5], a.nd the references giveni . there)
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Tako o ¢ ¥ and pul

ay o (L, YL, 0, e Ly oooym.

Uging the specinl properties of L,, one ean show that (@1 .00y @) 15

a chain with Tay - Qu. Bot then, .

2 Qe
Wty ) s i I < ”J“"/Il
Y Y
Sineo P 8w projection of X along N, 'woe have '
]’ Ay
1Pl Iy ) < LT ~
Vo

It follows thab

12 (Lo 8Y™ M, 0 < a2 I < bmN

Yo Vm
Sinee Iy —I amd Tp—Q arve dogenerate, wo have
: o |8
(3.2) (L 8™ M LS ’
m

for some degeneratio operator I, in 2(X, X).

Lk % denote the eanoniend mapping from #2(X, X) onto the Calkin
algobrn over X (voe for ingbance [4]). Sineo for cach m the operators L,
and Ty e relative verses of the Treedholn operator T, wo have that
Ly Loy i dogeneratio. Moneo wly, 8 == xL,8, and it follows from formula
(8.2) that

L

6
(3.3) (2T Y7 < my |8}
Ym
The spectiesl vadiug r,(xLy 8) of =L, 8 is given by .
Po(rLi§) - lim J|(xLy Y, )
N=»00

Tormule (3.8) now implios that

linn s i s (ol S) 4,

N w0
Phus g bl o uliy§ I8 invertible. Ag iy woll known, this means that
Ty ulo 8 s Tredholm, and honea so {y 2 w0, 8, Bub L0, = Iy—Qy,
whaere @y {8 degencrabo projeetion, Tt Ec»]lows that T 8 is a Fredholm
operator, In parbicular, B(7 - ) ix closed, But then wo know from
Lomma 1.5 that &L —uS: §) = 0, and the proof is complete.

Wo are now able to prove Thoorem 3.1, The proof uses a decompo-

sition theorem {due to T, Kato [L1]. In this connection we note that
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the hypothesis %&(T: 8) = 0 is equivalent to the condition »(T': 8) == oo
appearing in [11].
Proof of Theorem 38.1. In view of Remark 2.2(i), it suffices to
show that
r(T: 8) = lmsupy, (T: 8y,
m—ro0

So take x satisfying
0 < |u) < limsupy,,(T: §)4m,
M~+00

We need to show that RB(T--uS) is closed and k(T —uS: 8) -0

Congider topological decompositions X = X, @X,; and ¥ = XY,
ag given in [11], Theorem 4. These decompositions complet (lly (*(lm'(s
T and 8. For 4 = 0,1, let T; and 8, denole the restrictions of 7' and §
to X; viewed as operators into ¥,. From [11] we know that 1, 8,
€ #(Xy, ¥y), that 8, is bijective and that S77, is nilpotent. Sinee » # 0,
it follows that T,—uS; is bijective.

Next we consider Ty and §,. Clearly 8y e Z(X,, ¥,). Recall frow [11],
that Ty is Fredholm and &(T: §,) == 0. Let P be the projection of X
onto X, along X,. A routine argument shows that N, (T): 8,) ==
PN, (T: S). Hence

Vm(TO: SO):’/> |IP”~1'Vm(T S), m === 1, 2,...,
and consequently '

0 < [u] < lmsupy,(Ty: o)™
M+

But then Lemma 3.2 yields that T, — u8, is Fredholm and %(Z — uly: 8,)
= 0. It is now clear that T—puf is Fredholm. In particular R(T — uS)
is closed. Moveover, k(T —uS: 8) = k(Ty— uSy: 8¢) -+ k(Ty— uSy: 8,) = 0,
and the proof is complete.

We now apply Theorem 3.1 to the case when 7 hay closod rangoe
and 8 iy degenerate.

3.3. TrmoreM. Suppose T has closed range and § is degencrate. Then

(T 8) = lim ,,(T: 8)Um,

M—>00

Proof. Put ¥; = R(T)+R(S8). Then ¥, ix a closed hulmpn(o of Y.
Further, let X = X|W, where W = N(IT)nN(8), and let 7 and § bo
the induced operators from X into ¥. The hypothesis that § v de-
generate ensures that

. N(T :
(3.4) dnnN—(fL)——< oo, dim- ( HTR,(S)

< oo,
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Henee T is 8 Fredholin operator, and 8o, by Theorem 3.1,
r(d': §) =l p,, (£ Syum,
Mo
It remaing fo prove that ym('f': ﬁ) = (L' ) and 7(1’ »S‘) =7(T: 8).
Tiet ¢ be the canonical wapping from X onto X. Observe that (7P
rey W) 38 0 chain for 17 and 8 it and only if (p(@), ..., (v,,)) is a chain

Im' 7 and & Tenee .Nm(.’l' N) = N (T 8). Using the fact that
W e Np(T': d) one now easily deduees thatb

dfw, NI ) = d(p(0), Ny(T: §)), weX.

Tii follows that ym(,’l,. ﬂ) = (T 8).
Lot 4 e €. T s eloar that Iﬁ(’l' ~ A8} is cloged if and only if R(T AS)

in elosed, Observe that N(T' ZS) = @N(T—28) and Rm(T—lS. 8)
= @l (T —- A8 8). Pub »

RA = m ,RM(T-—-),S: S), -[\/;, = m I{m(i’_—ﬂg, AS?)
" m

Bince W < N(1I'-A8)n1,, wo have

N(E=18) o pN(T—-18)
NI A8 nk; gV (T —a8) ]
N (T —18)
N (T —8) ngE,
(1”' 28)

N —28)nk,

Thus 70(.’[¢-—M§: ﬁ’) = Jo(I'—A8: §), and the proof is complete.

Theorem 8.3 vemaing valid if the condition that S is degenerate
ig replaced by the woakoer assumption that (3.4) holds. Also, Theorem 3.3
applies when 7' aud 8 arve both degenerato. In this latter case, Theorem 1.1
implies that #(2': 8) is oqual to the supromumn of all # > 0 such that
B - 48} 18 conslant on 0 < Al < 7.

(hm

== (lim,

4. The case when 7' is a semi-Fredholm operator. Theorem 3.1 does
not remain, true i the econdition that 2 s Bredholm is replaced by the
woeaker asgumption that 7 is semi-Fredholim.

4.1, Bxaverm, Lot X -« ¥ bo the Hilbert space [, and define T, 8
€L (ly, 1y) by

T (vyy 04y gy .0.) == (0, @y, Byy 5y By ..0),
S(d’o, m_l, ma, --.) (aw(” w1~}-w9, w‘;"l“%‘wd,, w,-}-%ws, -..)-
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Here 0 < a < 1. One can show fthat
YulTs ) = @™,
where, as usual, 07* = co. Therefore

Hm g, (T Y™ =™t > 1.

m—+oQ
On the other hand, the range of 7'—-8 ix nob closed, and ro »(T: 8) < 1.
Tu fact, r(I: 8) = 1. Observe that ' 38 surjeetive. Tleneo this example
also shows that the hypotheses of Lemma 1.4 do not imply that 7' 8
-is surjective.

Suppose that T is a semi-Fredholm operator and that 8 is compact.,
Then T'— A8 is semi-Fredboli for all 4 e €. Tt follows from Theorem 1.1
that »(T': 8) ix equal to the sopremum of all » > 0 such that LmN (7T -
—8) and codimB(T —28) are constant on 0 < [A] < r.

4.2. THROREM. Suppose that 8 is compact and that T is o semi-Frodholm
operator with complemented range and null space. Then

W‘(T: S) z}jlu ym(_f[’: S)I/m.
00

m =23 ...

Proof. In view of Remark 2.2(ii), it suffices to show that
r(T: 8) = limsup p,(T: S)m,
M0

So take p sabisfying
0 < |u| < limsupy, (T: 8y,
. M=o

We know already that R(T —u8) is closed. In order to prove that k(T —
—p8: 8) = 0, we once more apply the decomposition result of T. Kato
"([11], Theorem 4). Using the same notation as in the proof of Theorem
3.1, we have that T, is a semi-Fredholm operator, %(Zp: 8,) == 0 and

0 < |u] < limpupy,,(Ty: )%™
M~*00

But then it follows from Lemma 1.5 that B(Ly—puSp:8,) == 0. This, togethor
with the fact that T,—pu8, is bijective, gives B(I'—ul: 8) =0, and
the proof iy complete.

The conclusion of Thecrem 4.2 also holds when X = ¥ ig o Fil-
bert space, T is a semi-Fredholm operator on X with a non-empty resol-
vent et and 8 = I is the identity operator on X. Tho proof is basically
the same as that of [6], Theorem 5, with the reforence to [11, Theorem 5.2
replaced by a reference to [2], Theorem 2. The hypothesiy that X is
& Hilbert space serves only to cnsure that T —AI has complementiod
range and pull space for [4] < #(T: I).
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5. The case when the resolvent of 7' and § has a pole at the origin.
Lot o(Z: 8) be the st of all 1 e ¢ guch that T —28 iy not bijeetive. If
the resolvent (1'--28)' has a pole ab the origin, then »(T: 8) is equal
to the distance from 0 to o(T': 8)\{0}.

5.1, Tunornm, Suppose that the resolvent of T' and 8 has & pole at
the origin, T'hen

r(Ts 8) o= lim y, (T )1,
MW 00

The proof follows the sumoe pattern as that of Theorem 8.1. The
main differences are: the reference to Remark 2.2(i) should be replaced
by a roferenco to Remark 2.2(iif), tho reforence to [11], Theorem 4 shounld
be replaced by a reforence to o decomposition result obtained in Scetions 4
and & of [3] and, Linally, ¥xample 1.2 should be used ingtead of Ternma 3.2.

In ihe following corollary T in a closed linear operator with domain
and range in X. Tho spectrum of 7' is denoted by o(T) and the identity
operator on X by I.

5.2. COROLLARY. Suppose that the resolvent (T—AI)™* has a pole at
the origin. Then

limy (Tm)llm
Moo
ewisls amd is equal to the distance from 0 to o(T)\{0}.

The spocial case when (I'—AI)~' is holomorphic at the origin was
troated by I, A, Gindler and A, B. Taylor ([7], Theorem 3.5). The result
of K.-H. Forster and M. A. Kaaghoek ([6], Theorem 5) covers the situ-
ation where (I'—AiI)~' has & pole of finite rank.

The conclusion of Corollary 5.2 need not be true if the origin is merely
an igolatied point of the spectrum of T. To sce this, let T be a quasi-nil-
potent operator such that for all # the range of 7™ is not closed.
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