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Differentiability of distributions at a single point
by
Be MARSITALL (Prinecton, N. J.)

Abstract. Wo dovelop tools neoded Lo study thoe differentiability of distributions
at o point of KW,

The purpose of this paper iy to develop tools to study distributions
at w point @,. The integral expressions that we will he examining are
Josely related to thoe ares integral of Lusin and the Littlewood-Paley
g% functions. Rather than use the theory of harmonic functions we will
consider analogous expressiony that are independent of the mollifier
that is used. Tho resulty of this paper are nsed to study tempered nontan-
gentinl houndedness and convergence in [3].

Lot ¢ bo o Sehwartz fonetion with [ g (o) da == 1. Using this as & mol-
lifier, form

w(a, t) = frg (@) wheve g (@) == 1"p (:)
Tf f is o continuous function then w(w, 1) approaches f(z) as t—>0. It soems
reasonable then that by examining w(x, 1) in the set 2 == {(z,1): » e R,
0« t < 1} we should bo able to understand the behavior of f at a point,
say ay. Wo form o cortain integral ‘ﬁf,’;,’}( Fey) of w(w,t) over the set Q.
Of the wvarious parameters invoived the most important is ¢ e R.
We will soo that i @24(f) () <0 0o then y gives the order of differen-
tinbility of [ at a,. .

18 we add ewtain harmless terms o these @ funetions wo can forin

norms Nk Thus

NS (o)
Tn the second and third soetions wo show that both the @ funetions and
the norm N ave essentially independent of the mollifier ¢, In addition,
nsing o different % gives an equivalent norm.

With these norns we ean define Banach spaces

ADH (@) == {fe s _Ng;:/ff(f)(mﬂ) < oo for some k> y--n/p}.
Contragt these with the Sobolev spaces LI (R™) of functions that have

o GUR(F) (@) -1 “other Lerms?”,
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derivatives up to order % in L?(R™). Rather than looking at global dif-
ferentiability we are looking at a single point. These spaces A2 (w,) can
be viewed as a pointwise version of the Besov spaces AZ*(R™) (sce {51,
[7D).

The fourth section is devoted to various elementary propertics of
these spaces. In § 5 we discuss the use of the Poisson kernel 22 as a mollifier.
Since 2 is not rapidly decreasing at infinity, certain modifications have
to be made. § 6 concerns inclusion relations. In § 7 it is shown that cer-
tain pseudo-differential operators are bounded on the Aﬁ’"(mo). Section
eight deals with differentiation and powers of (I — 4). For example wo
show that (I — 4)“*is a Banach space isomorphism from A () to 422 (w,).
Finally in § 9 we discuss an alternate difinition of A:‘(mn i U /1 Haeg),
ag a Lipschitz space.

In the sense that we are trying to free cortain expressions in harmonic
analysis from their dependence on the Poisson kernel, this paper can be
considered a local version of the work of Fefferman and Stein on the real
variable theory of H? spaces. In their paper [2], they demonstrated that
the H? spaces could be defined using any meollifier rather than just the
Poisson kernel. .

An earlier theory of differentiability at a single point can be found
in Calderén and Zygmund [1]. There they consider spaces of locally inte-
grable functions that are differentiable in a certain sense at a point x,.

I am happy to have this opportunity to thank my adviser, Charles
Fetfferman, for the help and encouragement that he has given me. This
paper and [3] comprised my doctoral dissertation written under hig di-
rection.

§ 1. Introduction. The goal of Sections 2 to 4 will be to define the
spaces A% (xz,). In this section we will introduce some notation and give
a summary of the results leading np to the definition of A% (x,). We post-
pone defining these spaces in order to study the norms N2:*(f)(w,) and
to show that they are essentially independent of k and the mollifjer ped,
[o(x)de = 0.

The dilates of ¢ will be written as g () = t""p(2/t). Wa adopt the
convention that whenever s or ¢ appears as & subscript then that subscript
denotes dilation.

Let 2 = {(x,%): x e R", 0 < i< 1}. We will write Z, for the non-
negative integers and Zj for the coucgpondmg n-fold Cartesian product.

n f\B
I f=(f,..., ) €2 then | = Zm, o=t el and (u,]’._)

8\~ 9 \fn iz e )
~ (@) (]

‘We now give the integral expressions that will be our measure of
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integrability. Define

e 1 n ATCAY P qwai
o e = [ ) | ) e 5]
L

s (W), p & fq) @)de # 0 and L<p< oo, i>0,
ihe expression in (1) is.to be interpreted as

where  w(x, 1)
p ez Ror p s
;.

o\
e %, 0) .
(?)’ﬂ) wlw, 1)

i
LBy

oxitted - e
[ea]
As we have mentioned, ¢ will give the order of smoothnoss of f ab .
At eortain tines we will be Interested in the cl(snmtlveq of u with
o\ 0
ospect to . Thus if we replace (-] in (L) b then wo
respect to ¢ Thus i woe replac (841‘) ) by ) \Fr

g4

will denote the 1 osulimg expression by G,,,M( ) (o). We will needk to have
control of these exprossions for example when we prove that L(f)(w)
and N (f)(x) ave ossontially independent of the mpproxnnwto identity ¢y.

B
we will want to be able to control all the derivatives of a specific order.
Therefore it is natural to define

0
T GPA(f) () < oo, then we have control over ( " ) w(@, 1). Usually

L () () == [ \! {E2(F) (o }7,] v

l/’l al
- . | Ap F} il P qadt 1Un
RS J *6.;. ) {ﬂl’ﬂ' <-—) wix,t k -~——]
I‘lﬁ‘ [) bl | — | on @, 1) jooamt?

and

f[/wla(f) (i) = ;}“p Gy () ()

l,’ a f
N e | (=) wi, ).
,o|)‘ \(()w) wies )

The most important special case will be p == 2. W@th Hmootlm-(am
p w0 the exprossion. @ (f) (@) becomes the Littlowood-Paley function

!l;‘m,‘ () (#0)s
12

. p § 24 . . X
i [ [ [ Wt ot e-raya] = gt

- NUP  BUD (f«-
- Gndes \ B 12

bl i =y

This ease will bo important in the next chapter when wo gtudy the con-
naection between the @ funetions and tempored nontangential boundedness.

Our first goal will be to show that if wo had used a different function
@ in the (l(*fxmwm of G(f) (@) wo would have’ gotiten. & similar quantity.
Thus we Wl[l prove o change of approximate identity theorem.
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Since we are concerned with the effect of a change of mollifier ¢,
we will congider f and %, to be fixed and we will emphasize the dependence
of G on ¢. Consequently we will denote G’-;?;ﬂl( F)(®) by GPk(p).

We begin Section 2 by studying the effect of a change of approximate
identity on @. We will prove that

@H(P) < APIETH(g)
where 4 is a constant independent of f and @, and ||@[ is & norm of &,
Thus changing the mollifier gives an equivalent ¢ function.

Before proving the same theorem for ¢ functions involving derivatives
in ¢, it is necessary for us to examine certain differential operators @.
After doing this we prove that

G (P) < ANPUG Y ()

The ultimate objective of the third section is to define the spaces
A2 (@,). Since the G functions contain only derivatives of high ovder,
certain harmless lower order terms must be added to give a norm. These
lower order terms are defined as follows:
9 \f P 1o
(—a;) w(w, 1)i dm]

D, A 1
m e = [ [ s g
n
9 \8
(—5;) w(m, 1) ‘

where as usual u(z,1) = frg,(#) and 1<p< o0, 1> 0, f 27,

These terms are harmless because if f is in &', then u(z, 1) = fxp(v)
is & tempered ¢ function. Therefore Rf;"( f)(my) is finite for all A sufficien-
tly large.

Just ag before while studying the effect of a change of mollifier we
will write these terms as R2*(p). '

After several preparatory lemmas we prove the change of approximadtio
identity theorem for these lower order terms:

RpHD) < A\PI{Sk i (0)+ B ()}

‘Having done this we then define the norms

and

1
Roo,?. FY (5 — R
2 () (@) ft;p EENp—

NUR( Y @o) =GEF) @)+ D) BEA(F) (wy).
1Bl <l
That changing the mollifier gives an equivalent norm follows from the
change of approximate identity theorems for the G and R functions.
In the norm Nf;,’}( ) (z,) the most eritical information comes from the
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derivatives of w(m, t) of order k (from the % funetion). It turng out though
that for any & - y--n/p we get an equivalent norm.

AN () (o) < N () (o) =0 AN 2 () (i)

Now that wo know that the norms are independent of ¢ e and
K=y -nfp we ave ina position to define the ypaces AP (i),

ARGy = {97 NUA) () = o0 for some & 2y l-alp, @0y 0},

The A4 gives tho omdler of growth as wo oxamine w(e, £) = fag, (@)
over cones of larger and larger aperture. Often, particularly in {37,
this parameter will be unimportant. Tn these cases wo consider instead
the spacoes

A5 () - :HA,’,""(.’X)(,).

We elose section three by proving that AD*(m,) is a Banach space
and by showing that L# AL (wg) == 7"

pedt

§ 2. The ¢ functions. In thiy seetion we will prove change of ap-
proximatoe identity theorems for the ¢ functions defined by (1).

Note in the definition of the ¢ functions that integrating over £
i equivalent to considering cones that have been truncated at height
ono. This is done strictly for convenicnee and all results are valid for any
height of truncation. Tn fact it can bo shown that changing this height
gives an oquivalent oxpression.

In several proofs of this section and the next we will change from
one mollifier ¢ to another ¢, The key to these proofs is a certain decompo-
sition of @ into pieces closely related to @.

Let Ny = {w e R" |a| < 1}, N} = {x e R™ 277° < joj < 21 forj =1,
2, ... Lot #; be w ¢ partition of unity gubordinate to this open covering
of R such that g 3= 0 for all § and
»

((?x ) 77y('?"«)L s 42700 for all fe i, )l

“Wo assunie that (o () da 4 0, and that ¢ is 0% in a small neighborhood
of the origin, Thus for & <2 1 paall enough @ iy of clasy OV and bounded
away from 0 in {jo] < e}

Dofine p; by the condition that
. GEE) o
2 Py (E) 2= m e Do for § = 0,1, ...
2) Py () = f(ei2 )
By our choice of & we soe that the denominator is smooth and bounded
away from zero in the support of the numerator. With ¢, defined as above
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we get the desired decomposition of @:

= Z(psz_]-*ipj(m).
i=o

The subseript 27/ here denotes dilation. By considering w,, instead of
@, a8 our original mollifier we niay assume that ¢ = 1. (The change of
mollifier from ¢ to ¢, is controlled by a change of variable in ¢.)

If we write (2, ?) = fxg,(z) and U(z,t) = f+P,(x) then wo havo

(3) Uz, 1) Zju a—ty, 127y (y)dy.
3=
This equation will be the starting point of many of the change of approxi-
mate identity results.
In the following we will need estimates of the functions ¢ in terms
of @. The next lemma gives the necessary information.

Lmyvva 1. Let N be an integer such that N > n-+A. Then

22 [ L+ ) vy (9)l dy < A |||
i=0 ~

Yée)a
£) |4
i
and A is & constant depending on ¢ but independent of O.

Proof. By applying Leibnitz rule to (2) it is not difficult to show
that

where

el = > [+

1Bl<N

-~

> (ff)péw)‘.

1Bl<N

(L — )y (8)] < A

Since 9, is supported in ¥, ; then we have

[ —apeiyeas< 4 >

[
2 ) de

dt.

Thus
J @ D imy o)1 ay < sup (ol gy (o)) [ (14 -V

2eR™

3 [l

IBI<N Ny

<
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Now by recalling the definition of the sets .N] we see thab

Szf“f(l i @ldy <4 > ) f” w(&)‘ds

7= W= J===0

<4 YZ JICERGIS
IAT=N 70 Ny
The first application of this decomposition of @ is the following
theorem stating that the G functions are essentially independent of the
approximate identity ¢,.
Tunownum 1. Suppose that N is an integer > a--4, 4> 0, and 1 < p
< oco. Let p be a % function such that $(0) # 0 and ¢ is of class OV in
a neighborhood of the origin, Then for every 0% funclion B,

GO (DY < A|)|D]]| G ()

( 05)”«!‘)(5)‘ ag = A\

where
. e
@ i< > [ iy () dea
1Bl

and A is a constant independent of D, f, and ;. ‘
Proof. Lot w(w,t) == fsp,(®) and U(w,?) = fxP(x). It Lollows
from. equation (3) that
B
(—?i-) U(m,t)l

A I
. i[ﬂr"?
) ow

2ff(l | — %I)tww

For p = oo, we have by the definition of G4

o 18l=y | —ty —a I -
lw(w —1y, 1277)| < (‘T) (1 -+ ""*7}_:;""2~) G‘T,bA((P) .

0
(5) u(w—1y,127)| y;(¥)ldy.

Bk

. oy o=ty =g\ g el )
(6) (’1’] r2“-! )“ AB (1A =g (-
Pubting this into (5) and simplitying gives

A ¢ o=y (2 /}U( )
e oo
{7 Gy (P) (m‘%ﬁ;,(t—HW-wo\) O ’

< A{%} QA=A (L Ly |y () | dz/}ﬁ"i‘?‘ﬂ‘(tr)-
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‘We will now try to prove that this inequality is also true for p < co.
First we insert (5) into the definition for G2; and apply Minkowski’s
integral inequality. This results in -

sio<a 3 [[[] (=)

o \f e deas 1y ]
X {tw-—y (—51—) u(w—~ty, 12 1)?} '{Tﬁﬂ“] () dy .

‘We use the following estimate similar to (6)

¢ 1277
8 e | A -1 (1 y)).
Q () <42 (=)o
Using this and applying the change of variables & = @ —ty and g==(27%
produces

XA deds T
(—3;) (2, 5) } 2= s’”'T] (L4 Jy1)* oy () g

<AGZH) | DT HHI 04 i)y, (0)1 ).
i

8o we have succeeded in showing that (7) is true for all P1<p< o
Lemma 1 now tells us that

37 gitiai-n [ (a +lg lw () dy < A 191,

J

X {SI/JI—V

where [|D]| is defined by (4). Therefore

G74(9) < AlP11E75(p).

This completes the proof of Theorem 1.
‘We have now shown that if G containg only derivatives of the formm

8
(%) then it is well behaved under a change of mollifier. Our noxt objec~
]
tive is fo prove that if we have this control over all the derivatives (—;L) ,
2z

|8 =k, then we can dominate G k, Whenever |]+ Ik, == k. Before doing:
this however it will be useful to know more about the derivativey witly
respect to ¢.

Define 9 by

(99)(0) = ~np(a) - \“’ (o —Z( )(w

and define 2, recursively by @1 =92, Dy =(2—1)2,.

Differentiability of distribulions o @ single point 18%

1
Lmpma 2. (i) - ~'( Y@) = = (Dg) (@),

o 7
o 1
(ii) ra (@) (@) = ftﬁ(@/c‘)°)t(x):

(iii) [ @ (D) (@)idw= 0 for all 18] < k~1,
ey "
(iv) Dy = (1)" 2, Gﬁ(,) ) (@ p).
Wk N\ OF
Proof. The proof of (i) is simply a matter of differentiating @, (@)
== ~,Lr77 (2}) with respect to 1. Assertion (ii) is proven by induction. Fox

(iii), if & == 1 then

[(@n @i = —2 I (—6%) @@y =0.

Assume that (iif) is true for & = j. Then

f & (Dy10) () A = fa,'/’(@——j)(.@jq))(w)dw
n
g [ ]
= —(n-+j) [ (@) @) de— S [ &Pm—— .
= = .7)‘f ®" (D) (w) dw r_f f o oy o, (2;p) (%) dw
Integration by parts gives

[@"(@ynp) @ an = [ —n—j+ Y JM ﬂ¢+1 )| [ 2" (2,9) (2) do

= (I181=3) [ w“(.%w) (@) do.

This expression is clearly zero if |8] = 7 and if |8] < j —1 we use the induc-
tion. hypothesis.

Assertion (iv) is obviously true for % = 1. Assyume that it holds for-
% == 4. Thon

) X o\ I ,

) B
o () il '@”1 0 .
= ( —1)7H1 2 On(;j}) I‘}J (”;)7; (g ) -ﬁq:wﬂm) +-jat p .
b= T 4

ki
But sinco Y f; =7, it follows that
1

RO EAYE: a (2,
Dy = ('-1)“121 4}405(%) (an )("1' afp) = (—1)H ldl%lc" (%)(m )
=g T=1 =i

Thus the proof is completed by induction.
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The next theorem states that if we have control over all derivatives

8
-of the form (56—) , |8 = &, then we have control over all derivatives
1

B o\
(-B—av—) (—at—) where |B]--j = k.
TumoreM 2. Let ¢ and @ be as in Theovem. 1. Suppose that |} --§ == k.
Then
@i (D) < A NPT (o)

where
RGN
(9) o) = [a+r 1z|>““"“"l(—g;) b (o) | da

181N+
and A is independent of D, f, and x,. Note in particular that
G2 (P) < ANDIF5 () -

Proof. By Lemma 2 we have

2,0 = —«1)12 o (.%)6 (' D).

EIE
‘Consequently
2 \f o \8+P
— = (—1) S —_— ° Dy
(Bm) 2@ =(-1) mwj.c"(am) ()

Therefore remembering Lemma 2(ii),

(%)p (%)7 Uz, t),= (—1)f2 Cs (»a%)a+ﬂf*(m" D), (2).

\ 61=7
“Hence ingerting this into the definition of G »; (@) and using Minkowski’s
inequality gives
(10) @B <A D @h, @ P).

161=7
Now we can apply Theorem 1 to the right-hand side. If @] ig the norm
given in Theorem 1 then notice that |2 @l < [|P|| where the latter norm
is the one in (9). Thus (10) becomes
GRE (D) S ANB| D603, (p) < ANBY D) GRi(g) = AIPIGTEWD).
181=3 1814 :

"This completes the proof of the theorem.

§ 3. The norms N (f)(m,). The G functions introduced in the last
.section can be used to define norms for spaces of distributions, Since the

Differentiability of distribuiions at « single point 183

¢ functions contain only derivatives of high order, certain harmless lowe
order terms must be added to give a norm. We will examine th@ﬁo R)( f )E’Dﬂ)‘
terms now and will study how they are affected by a change OfJIllollifi(‘:J?'

After showing that these terms are well-behzwed n;;dcr a chan, e
of approximate identity, we will be able to combine them with ﬁhegG
functions to form norms. Wo then will show that these norms are essen
tially independent of k, the order of the derivatives in t,h.e ’G'-‘ fl;n;}{ii;)l;

B = | [t

(for & > y-n/p).
i a2\f NG
R (Lo | — )7 (—HE) w(w, 1) (lw]

Reeall that

and that ’.r,]mse terms are always finite for 4 sutficiently large.
In this section we write R{I"‘((p) to mean RP*(f)(z,) with ¢.
Lemma 3. Suppose that k> y. Then

(1) I3 (0) < Al (o) + ) BEa)).
1B1=1e

1

Proof. It will suffice to prove
G (0) < A{G7 () + B (p))  for every || = k.
Write
o
u(w,t) = —;f (-58—) w(z, 8)ds -+ u(w, 1).
Then
l—y 4 ! 1
(12) ¢ (%) w(o, ) = —t7f

i

o\ @8 9\f
() (5 )ut@ a0 77 () ute, 1.

But by Theorem 2 and the definition of 2k (@)

(2 e

Sl

ety [y @ =) \P
< AgmE (H* *“'“;:—g”l‘) lplt 52351 ()

Since
) } A !
) and  gFY fs"’“”""”ds < A,
it follows that the first term on the right-hand side of (12) is dominated by
R .

@8)  Ar=r(g 2N e .
Lo =) gl 952 () [ (870 as

h
— A
< AT () (1 + l“.._tle‘_) .

6 — Studia Mathematica 67.2
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Now we want to majorize the second term. in (12). By the definition of
R$* we have

( ) ‘ < B () (L | — o)

Sinee &> p, *" 1. Also

—p 1\
(14| ——.’I;ol)" < (1 4 _I_"'?__i‘?_(’]) .
Therefore
i o ! 200, [:’,U"‘.’Yw A
(14) v ( am) w(a,’ )l R )(1~|- ‘“’“"‘i""") .

Ingerting (14) and (13) into (12) yields

(%)ﬁu(m, )<<

But the fact that this is true for all (#,1) in 2 is exactly tho statement
of (11).
LeMMA 4. If k> y--n/p then
9mi(p) < A{90a(0) -+ ) BPH @)

18l==le

kg

A{G L (0) + RPN (@) (] o ,,li_t,‘f"l ) .

Proof. Again it suffices to be able to dominate G2:A(p) for every
18] = k. As before we start with

15 v | (2 ' i
(15) (45) wter0
: 8
<t"-ytf (%)ﬁ(—:—s)%(m,s) ds 17 (7%) u(w,].)}.
Thus
(16) v (?)

G2}
P ) f \1) dndi 1p
Y R N dwdy
[f:.} (t+|7'*wol) {t j(()a) %('b’t)h t”"']]
v ) P dodt 1
[ f(m {‘Ivf‘ u(w s) ds} ad ] 4

[f [ )M -

P dt
( u( 71)1] Liﬂ“

= J;+J,.

icm®

Differentiabilily of distributions aé a single point 185
We will first examine J,. Liet 1/p +1/g¢ =1 and let ¢ > 0 be g0 small
that
(17) k> y-+nfp-te.
By Holder’s inequality

(18) f’ o .s- (@, 8)

1
1y oo
< [ f gplja+e) (3;) (—58-) u(@, §)
t
1

But notice that
) 1 — gy
fs~q(1/a+s)ds - fs—sq—lds ,,( - ¢ )<_/1t'““.

[ i
Therefore from (18)

f‘ aw u(’v $) (:w)ﬂ(aa )u(m 8)

1 A
= A R, D(k—y)—ap (0(1/g+5)
[Uﬂmw—w) rEe X
« O\ o
() () ier

. Consequently by changing the

ds

» p g
d&‘] [j o+ (l?] .

3

1

» .
dS] < A J $PMate)
]

1?

an.

? ds dudt T4
t'ﬂz-}-l

< 8
Flo—ag| s+ o —a|
order of integration in s and t it follows that

Observe that

SN .
Jl <4 [ f f ({tp(ln—-w—«s)—n.—ldt) (w_ S W) gP(Ua+9) %
$ - [ — |

a\Bl D » 1p
X ('5;) (-—57) u(m,s) dwds] K

Sinee we know that & > y 4n /p - e then the integral in ¢ equals A4s?E—r=9-m,

Henco
] I Fi »
(-—@—w—) (—58—) u{w, s)

$ Ap
J R, (k=) +pla—n
[ ”(sﬂm wol) *

Because p(k—y)+pjg—n = p(k+1—y)—n—1 what wo have shown is

nn b E)

. 1'}’1)
de ds‘] [
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that Jy < 462} (¢). In view of Theorem 2 this means that . d 9
Since 5 = A + ... qlzna— —l«—— if we write m,,,= t, then
19) \ Ty < AT (). - -
. ; . ] » KITEAYE >
Now we estimate J,. Since (aT) ( )16(Tu—|-*31 8)| <(1+ Izi)AZ ‘(E) (&T )74(’1‘o+8~, s)
. 1 G=1
(t] Igﬂicﬂﬂ(l) < ( ‘I |1 —’ful) Hence putting this into (20) produces
A — ey - v :
then

o \B :
("E'T) (e, 1)

P 1y ! 1w
dw] [ f ol MM](H] nbl o1
b < AL+ o) [ f grinte)

: 1
Tas U (1+ & — )™

ol » p
O ( ) (~5~-—)u(7'(, -1-82, &) ds] -+
==l { Wy
< ARF(p). A%
As a regult, this and (19) eombine with (16) to complete the proof of the + ! (;9;0‘) u(@y+2,1) l
lemma: .
. N Ltinly thi $le—=y)p—1 h Sy o
GoA) < Tyt o < A{BDE () + B ()} ow multiply this by t and infegrate
» Up
In the applications we will want to be able to use any &> y. The [ f et 7 ,; (ffo*tﬁ, ?) tﬂ] <ALz x
proof of the last lemma can be adjusted so that the result is true for all et 1
% > y. There is the minor annoyance however that the A must be increased. _ & 0 a » 1y
ftm DT > f‘””’“ K w(o-t-sv, 8) | dsdt|
COROLLARY 4. If k> then y o) \w, )T
D,A+2 yJ Z+ )l Up
g"’k (!P) { s ’”'H + Iﬂlzj R } ) -+ ("5;) ’ll(?() +2 &y ) ‘ [ftp‘rk—")—ldt] < —/1.(1 -+ }Zla) X
1
Proof. This time we will integrate over line segments dirccted toward & AR o . P 9 p Al
@, rather than vertical line segments. Consider the line segment L = {(#,-- [ Z f (J gl ro=tymen df) Watel ( E)’v) ( " )u (wo+s2, 8) dé‘] +
+1z,%): 0 <t <1} Let 0/0r denote differentiation along this line. Then =10 0 ’

4 (3 uwy e 1)
P RR; *é)zv‘ LTy &, .
(20) l( amﬁ)(wﬁrtz t)’ Note first that
o f 3 (famm e ) == 1 . W=y, ‘. R DRy eY (p (1 )
fl u (wo+ 52, 8) | ds V14 fa]* ‘(Mg_) u(m(,.vi»z,ll.)\- ufll A= AT A s g
44
Tlence

Let &> 0 be so small that & > y e By using Holder’s inequality as in ! o »
(13) it follows that ‘ [[t”“’—")" , = (@ -~ 12 t)‘ cll]

1
(@82, a 0 S
[/ 1) ()uease ) (ot ] "+
1
71

; oa”
< At D(Lg-+e) 3 9\
< At fs ds. | -|-A‘(-55) w(wy+2, 1)‘,

d]l) w11
S

(1 + |e]2 )[ § [su(hu ¥)-1
2\" [0\
(%") (W)lb(mo—l—sz,s)

4=l 0



GUEST


188 B. Marshall im

Differentiability of distributions at a single point 189

Use the fact that

Now multiply by a +|WW and integrate over R"in the 2z variable. -
Then change variables to @ = @, 4. So de = t™"dw and ( 8 ) < (‘ 8 ) ( o+ lz —y| ) <9 ( . A_#M__)
1 y s+ @ — ] S [y — @ 8-k |y — |
1412 = T+ —a,) and apply Hélder's inequality to the right-hand side of (23). This produces
‘When we do this the result will be (24) .
1 Aled ¥ 1 Yq
G2 (p) < A (O E () + BP0 (i ;) B, < A \’w" )[ [ [ sy
0 \
LuMMA 5. Suppose thatp € ', [o(@)de st 0. If v > yo, k> yy, |l =T, N = | b ly—al=s
then > .
yu ﬁ A{ggli'bl () -+ Rfi]’l(?’)}- jh—l V’M
Proof. Let x be a O funetion supported in {|o] < 1}. Define ¢ = pxy o A1 1 Theorem 2 : g 4
and v(x, £) = f+¢;(x). As in the lagt lemma we have where 1/p+1/¢ = 1. Bub by Theorem 2 and Lemma 4,
Lo\ g ) (26) @A)+ O (9) < A (I () + BP0}
21 » f 1).
(@) v, 1) = (300) (3 ) v, s)ds—k( ) v, 1) Thevefore we have shown that
Since ’U(my 3) tf*%* Xs(w) then . 1(2(1)) (“T’&ZT) ik—y(’J -A{(q?zlf[ 1 )_I_R]J 2 W)}
e KR (1 R (o ER R -
—— —_— ] % 3 Z) || — - x).
b | \ os x| \ 0s Fof*te & s os %o Now we will take care of the seccond term in (21)
This allows us to dominate the first term of (21): o\s PRy,
i 7= () vt =|(£) seoeo]
1 1 1
o\’ Therefore
= —_— -1
tf (Ba;) ( S)v(x 8) |d. Hxllmtfw g (ay) (as)fmqa,,(q/) dyds , - i ) ]
27 e | T s
@0 (t—r-[w»wol) R
o [ () sormton |51 ayas ] i,
i le-yl<s - { ; ( e ) s (y) | (1 - —y Yy (e —w)| dy .
_1_1 - ,,n(l |- l’/“fol) Ay ! Vi yirix niey

<A

(o) (£ semtn

For 1 < ¢ and k > y,, (22) can be used to give

§TIH Qs

i=0 1 |y-zl<s By Holder’s inequality the lnst integral is dominated by

1"/')1(‘}’)[ f(ll»-ln ]yl)‘”|x(;l/)|”dy;a/'r/" where  1/p--L/g = 1.
e
2 S —— g (]
&3 (t+|x—wo|)t 7
N s 2
<A —] gF%
2 (s+fw—mo|) )

Hoenee we now have

(=] (&) 7m0

s Gy (28) ( ' ) g, < ARDMg)  for all (a, 1) 0

i=0 1 |y—zl<s t | 1fr-—1,0|
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Combining (26) and (28) then gives
Gl (gxg) < sup

' i
1 R NI - o o)
Yool (e R+ ( b | —ay) )

S AL (0)+ B (@)

Hence an application of Theorem L completes the proot,
In the proof of Theorem 5§ below we will need w slight variant of
this lemma.

ConroLLAwry B. Let ¢ and y be as in Lemma 5 and lot
0, ) == by ()
If yo <y, 1Bl =k, k2 yy, then

FALATACOH

» n
dm]

S A{G0E () | R 0)).

i B i
("e;;;;‘) (o, )]

(29) - ! ey
2 sup % f e ( e B GTR
u<t£1 [ - (t“|‘ [ "”’()]) l \(').l?) i)

n»u

Proof. Let J; and J, be defined as in Lemima 5. So
< Ji+dJ,. Using (22) we get, instead of (23),

E ey t n LT
oo ] [l foal
o V0T [ — |
doy s V2 e
s | ('l',:'n-l .

<A21 L/ {/ I (8-;“ \—m) (a)z)/("f*)”“” ST

J=0 "pn "t . |y—xlxgs
Then just as in (24) an application of ITolder's inequality simplifies the
integral on the right of (30). Tmitating steps (25) and (26) then completes.
the analysis of this term.

The second term J, is very easy to handle. This is done in the same
way as in (27).

This completes the proot of Corollary 5.

Now we ean deal with the problem of the offect of w-chango of, mol-
lifier op the 15011115 BE*(p). The following theorein thon is change of
approximate identity theorem very much similar t0 Theorem 1 of the
second section. :

THEOREM 4. Suppose that N is an integer groater than w-- A and | - P
< o0 Lot @ be a 0% function such that §(0) +# 0 and ¢ is of class O in
a neighborhood of the ovigin., Assume that 1B} =

7 ? =Ty o> . Then for every
0% function @

BYHD) < ANBIGLE () -+ R H))

icm®
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where
5
. X L [\ A i) (j),, ds
(31) 1] = IZ JICERS 5) B@)| &

SV
Jor any fiwed y, <. Furthermore
{oi(@)+ 3 REA®) < Aol {wio)+ ) By )
1l lhl <k
where
6,
D) == ,_/}_;f(l + lgl)mA-l.mux(o,—vo)‘(_7)(1) b(2)| de.
o

IfFEN

Proof. Let x be a 0% function supported in {ja| < 1}. Consider ¢
== yxp. We will now construct @ as in the first chapter but this time
we start from the mollifier ¢ and not from g. We use the notation U (#, t)
= f* @, () and v(w, ) = f+¢,(2). Therefore, ag in (2) and (3), wo have

. 7;(2) P (%)

() = -

p(e2™)
and
U(w, 1) = qu(m—ty, 127 yp (y) dy

J
Hence differentiating and setting ¢ = 1 yields

o\ O 2\’ i
(32) ’(%) Uz, 1) <% {Hﬁ) v(@—y, 27| ly(y)ldy.
Therefore

(83)  RpH(®)

1 ( a )/) ] » :|1/p
- e ) U, 1)| A
R Ap - H
[R{ (1 | —my]) 0w
< . 1 ) )ﬂ _ » ]1/1)
< o ) ooy, 27| |y )y
1>-‘ J [,f (Ll o =z ) (dr =y, ’

To simplify the estimate (33) we will ‘apply Covollary b, If we write B
= {00 () -1 R M)} and notico that

o

1 ( 9~
(Lol =) \27 o o=y —

) 27 (1)

then by Corvollary b

W

PRV , 1 e N
T) v(w—1y, 279) (?.}] < AQIEH=R (L4 | Y I8
1z
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Thus (33) becomes
(34) RpM®) < AB_jEzﬂ“”’ﬂ—m) [+ @) dy.

Lemma 1 allows us to gain control of the sum over j by using the norm
defined in (31). Therefore (34) simplifies to

RpHP) < A9 B.

The rest of the theorem is a direct consequence of this and Theorem 1.
Now that we know how the terms R(f)(w,) change with a new ap-
proximate identity we are able to examine the norms

(38)  NUA(N) (@) = G o)+ SURPAS) o) dor T p-lalp.

i<
. In Theorem 4, we have just proven that
Noi(P) < AP Nz (p).-

‘Therefore these expressions do not depend in any oessential way on the
mollifier ¢.

The Nk ave in fact norms since

N2 (Frk o) () < N3 (F2) (o) -+ Mo (fa) (ao)

( ) N(ef ) (0) = lel N3 () (o) for all ¢ e C,

(i) NBE(F)(@we) = 0 and it N22(f) () = 0 then f = 0

All of these properties are cvident exeept possibly for the second
property in (iii).

Suppose that N? L () (%) = 0. We emphasize the mollifier by writing
NEE (). Let po < 0. Using (35) and Lemma 5 we can show that

@ (p) < AND(p).

But smce N”’ %(p) = 0 then
(36) If(g |f*(p(0)|\G00((7)) < AND (@) s

where @ (z) = ¢(—). Since by Theorem 4 this is true for all @S we
have proven that f = 0. Therefore N is a norm.
Our next objective will be to show that the dependenco of N on k
is unimportant. That is, if we use a different &k we got an equivalent norm,
TrrorEM 5. Let 1<p< co. If & ds .o positive integer > vy |-nlp,
then
(37) ANDE 2 (F)(0) < NEEF) () < ANPE () ()

Jor some positive constanis A independent of &, f, and x,.
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Proof. Let 6 eZ}, |[S] = k--1; then there exist f e Zfand te {1, ..., n}

a\° 0 0 .
suech that {—) = [——] |——]. Thercfore
ow ow | \ Om;

0 e\ o
PLER e == RV f 3 (___)
(( ) (fre) =t (().I) (f’l aw, e

and
i - (’jﬁ) < A ).
©Combining this estimate for all 4] - 1 gives
(38) G (p) < 'fi’.’li(fﬁ)-

Similarly since k= 0, for every [0 = I there exist § and ¢ such that

AN o\ 0 . , .
;(—3—;) = ( 9»‘?) (;r—[-), and |f|==k—1. Hence

(()7') (f *7) (i) (f (68:*0))
and so

&
9) REMg) = 11 () < 410800+ R ).
Therefore using (38) and (39) wo get

4 i , (4

NoE () @) = Bt (Dlme) + D) REH (@) + D) B (@)

1Bl=k 1AT<te
A A
< A @)+ D) REAS) @)} = AN (o).
1Bk

The second inequality in (37) is a direct consequence of the definition
and Lemma 4.

Weoe have shown that any k> y-+nfp gives an equivalent norm.,
Thevefore when wo write N ;3"1 we will agsume that & is the smallest integer
greater than y-l-a/p.

§ 4. The spaces A2* (). The norms of the preceding seetion detormine

cortain spaces A0 (@), For 1< p = oo, 12 0,y e R, define

ARy == {f e 9": NoA(F) (o

oo for some k> y--
+np,ped, [p@)d # 0}
{f‘e S N () < oo for all k> p+

+np,ped, f(p(a;)dm % 0}.
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We have shown already that wo have the freedom to choose k and ¢ ws
we like. Making such & change gives us an equivalent norm for Al ().
As mentioned in the introduction to thix article tho Imrlunm«r
v gives the order of smoothness of f, the p tells the type of integral being
used. The 1 gives the order of growth as we examine w(w, t) = faq(2)
over cones of larger and larger aperture. On certain occeasions whon we
have little control over the parameter A it will be natural for us to examine
the spaces
Ay (wo) = ) Ap* ().
Azl
For these spaces it is possible to wse any & > o in the norm (rather
than & > y--a/p). By the first part of the proof of Theorem 5 we can show
that
Gl (@) < A2 ().

(This i3 (38).) Also by Corollary 5,
i) <A{ine)+ 3 B ().
1Bl 1
Remember that the B terms will be finite for 1 large enough. Therefore
these two estimates combine to prove that
AL (w {fc S’ Nl < oo for some k> y, e 7, fq:(w)dm o 0}.
These spaces 4% (w,) arve of interest in particular when we consider

the connection between the ¢ functions and tempered nontangential

boundedness (see [3]). In this context it will be important to be able to
use the lower values of k.

We now mention some eclementary facts about these spaces.
THROREM 6. AD*(3,) is a Banach space.
Proof. Let {f,} be a convergent sequence on AP (a,). Thus

’A 1 s 7
Nﬁ,k(fml _—-flna) (mn) -0 as Myy My —> 0O,
As in (36) we have

(40) ‘jml () fmq (D) = A ||| Nl]'/c 7:1:1 fm. (ieg) =+ 0

where N2/ depends on one fixed mollifier @. Deline f(®) = lim f,, (h).
From (40) it follows that |f(D)] =< A | DYl Ko f e 7. Also e

(41) (Fnrep) () = £, ($)—>F () == gy ()

for all (z,7) e Q where (/) (¥) = @, (@ —y). Since

o\ . AV
() em = “r () |,

this also shows that all the derivatives converge pointwise,
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Let

V@, 1) = L )At’/‘"v(ﬁ) (Fou ) (i) £~ (DI
m t‘I‘ IJG .1"()] o n

Bince Gn’l(fml _'fm_ "‘0)">'0 and Gg:g(j;n) (:L‘o) == ”.Vm,”_m)(_q) then Vm con-
verges in the L”(Q2) norm to some function V e L?(RQ). But by (41) we
know that V,, (x, ¢) converges pointwise to

A
(42) ) Y (fae ) ()t D

Therefore GZ:5(f) () < 00 and GLA(f —f,) (@) = 0 as m — oo,
A ﬁlmlla.r argument proves the same thing for the R} * terms. Com-
bining these results gives

Noa(f) (@) < e and  NPE(f—f)(@)>0 as  m—oo.

Henee f is the limit of {f,,} and f e A2*(z,). So 4%*(2,) is a Banach space
LuMMA 6. UA (@) = .

Fi [

Proof. If f .9, then f = 2 s (—8;) gs where ¢, are constants and
16182

gs aro slowly increasing continuous functions. Therefore it is casy to show

that [f*p(@)] < A(L+ o —a,)"t and

M
A( |-Im m"') " for i=1,..,m

for some M, and N sufficiently large.
Therefore consider y < 0.

p(A—27) dwe dt 1P
AN YN AL e »(1—y=~N)
Fil) [f [ mol) ’ v
1 »(A—21y) ) i p,
e S fp(L=y—N) ]
‘1[ f(:u o)l [f

This last expression is finite it 2 > M, +-n/p and y < 1 —N. Since the B
terms are always finite for large enough values of A, we have shown that
NBH(f) (@) < oo for A large cnough and y < 1—N. Therefore fe A2 (x,)
for y small enough.

( )f w) <

§ 5. The Poisson kernel. Because the Poisson kernel does not decrease
rapidly at infinity the problem of changing to and from the Poisson kernel
must be dealt with separately.
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G5 (f) () will denote the expression corresponding to G0} but
obtained by integrating over Q* = {(x,t): 2 e R" ¢ > 0} rather 1;ha;n over
0. Thig corresponds to looking at untrunc'»ted cones rather than truncated
ones.

TaBOREM 7. Let ¢ € & and let 2 be the Poisson kernel. Also 1 <p <

(@) If [o(») dw ;L 0 then GD(P) < AGL] (@) for 1B > y—{—fn/p ——1
In addition, if 95 @8 fimite ( 7‘, > y), then (ﬁ” ‘1*(9’ < oo for 4, large
enough.

(if)y For oll p e, G;{’;,;l( )<< AGD /,( ).

The constants A here depend on o and 2 but not on f or @y,

Proof. Part (i). We mention first how the second assertion Lollows
from the first. Let &> y-+n/p. By Theorem 5, 957 (p) < oco. Part (i)
of this theorem implies that 27" () < oco. Then the proof of Corollary
4 shows that ¢ fff’ll‘ (2) < oo for 1, large enough.

Now for the first assertion in (i). We write
AL+ [p[2)" 04 = 3T, (0277)

J=0

(@) =

where @, is of the form @;(z) =7, (2)2(2/x). Hence if Uy(w, t) = f+(P;)(»)

then
a 8 o0 n
“7) (0o <Zj=., :

Put this into the definition of G273

8\ ,
(_6;) U, (w, 271) .

and use Minkowski’s inequality. This

gives
N v 2 N awar
@i @) <Z2’"Uf(t+;m ) e (LY vy, 20 [ ]
=0

27t
127 | — |

X 11
. h ariable s = 2/t and <4
By using & change of variable s nd (H— o — | ) = (
it follows that

0
le < A Y pmg-ilel-y 21}@17 l‘((pj)
=0

g

N (et 114-7)
<A@ g Y oyt
<A ;;0’

By the proof of Theorem 3 of Chapter I of [3] we already kunow thab
1?5, < A2~9+1) | Hence
2"’ (B 1014+7=1)

i=0

GoE (P) < AGTY(

icm
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Sinco this serios iy convergent for || > y-+njp —1,
(i) is complete.

Part (ii). We write p(@) = [2,(@)g(s)ds where g(s) is supported in
[1, 2] and

the proof of part

k=0,

O (R
[sg)as =1 ho=1,..., M.

o it

IE M in sufficiently large then the norm || in (4) will be finite. Thus tho-
I)J'o'b](a‘m again reduces to changing from 2 to this p. But we have ¢, (»).
= [P () g(s)ds. So it we write u(w, §) = fxqp () and Ulw, 1) == fxP, ().

Lh(m
2\ 2\
(,55) u (2, 1) mf(—é)?) U(w,styg(s)ds.
Therefore '
@ile)
1“] a\f ? dxdt T
4444444 Hel= v ©. st
[jf( T %I) § f‘(m) U, s1) m(s)rds} Wl]
A o\ P dadt P
.................. U= | | & ;
[” f(st o= mo[) (et (&v) Ut &1 'q(‘*”ds} t“”]

We have used here that s = 1. So by Minkowski’s inequality,

1= [ iz o [ e

= ([ s"1905)15) €23(2) = @i,

Y dx di

| lotias

This completes the proof of Theorem 7.

In the applications to tempered nontangential boundedness wo will
change the mollifier to the Poisson kernel in order to take advantage of
cortain results about harmonie functiony, To do this howover we must.
be able to control fxe,(2) over all of Q% rather than just Q. We will now
diseuss how that will be done.

LowimA 7. Let w(w) be o tempered C°° function such that p(x) == 0 for
all @ in some open set W. Let f e &, Then for all wy e W and for all y e R,
ywf & A3 (wp).

Proof. Fix @y, and y. Also take o particular &k > y-n/p. Suppose
that ¢ e & with support in {j#] << 1}. We will use this funetion as our
mollifier. Since ¢ has compact support and z, e W, thers exists an & > 0-
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such that

(r»i’--)ﬂ () ) = 0
(&

| =gt Also as we

for all 2! and all (w,1) in Q* gueh that o -—ay

have noted before there exist M and N such that

M
W
A(]]“ .!?l)

s tN .

(—:;)ﬁ (wf ) ()

for all |f] <k and (,¢) e £*. Therefore

( 4 )wr ) [jon AV durdl ]””

1t [ — g oy et

W) edunei<| []
£
= glsrent

1

] ; 1p
4 f f ——_{imw)m(ﬁ. ) (ﬁnt(k po N1 dt] .
= i+l "

0 |zl > e—1 .

But

e o dy
(43) / (“{Im) i f (L fy|yr-n

| >e~1 [uh>efl—1

For all ¢ the integral in (43) is bounded by

dy " o
= A i A Mo
fL (1+ ly)re=20 Z
RY

But if ¢ < ¢/2 then (43) is bounded by

- Alp(hﬁl)-—au.

Ty |B=3E)

lyi>s/at vl
"Therefore there exists an A such that (43) is bounded by A#¢ " for
all t(A > M +-n[p). Putting this into (42) gives

hS ) .
G2 (@) < A [ Agpti=30=ng(= W= |
4

Since this last integral is finite for A large enough, we have shown ‘thn{‘i;
G (wf) () < oo for A sufficiently large. Sinco this is true for all 1{3|’--:: (a
then yf e AZ*(,) for 4 large enough. Thus we have proven the agsortion
-of the theorem. .

TurorEM 8. Consider a fized &, and « tempered 0% funciion y such

B, Marshall im
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that y == 1 in a neighborhood of 2,. Then
fedjm) iff  gfeAl(m).

Proof. Since f = yf-- (1 —x)f this is a divect consequence of Lemma
7 with ¢ =1 —y.

Levwva 8. Let  be a bounded st and let W be a bounded open set
containing B. If fe AD(w,) for cvery w, in B, then there exists a distribution
g with compact support such that f — g in W and g & A (ivy) where the as-
terisk moans that tntegration is over % rather than .

dw
whare kb is o slowly increasing eontinuous function. s can be integrated

0a
. « C . d
Proof. Tvery tompered distribution can, be written ag f == (~—~) h

) . . . L o \M
toproducea slowly increasing continuous function hysuchthat b = (8—~ hy,
i

where M is some large number. Let y be a O function of compact
support such that y = 1 in W. Define

AV

We will now make M so large that g e A (zy). By expanding (44)
uging the product rule it follows from Lemma 7 and Theorem 8 that if
S e Al (@) then so is g. Therefore we need only worry about the integral
G2l of ¢ over the set {(@, 1) we R ¢ 1} So it suffices to prove that

- .2 £ M]J'k—y
@ [ el

n’ﬂ, 1

o\ \? dwdt
k™ g @ j ’"IW< ]

for all |8] = k. From its definition we see that

o\ ; oM ae
*(,)";; gH*p Xy -(,‘1 P (Pl

T e
o +16]-- 1

; 5 \M H\0
1| (5 - ‘F’
& on h A4
. "‘fé/.-lw|fi?7)ii“ T R N
Lutbing this into (45) gives
.o ; »h | D Jon
46) f ( b A)" [ppr A7 ‘Z"'f_ii
nn 1 bl —aol ) A A B

Notice that

f( ot S 7 1 {
RR R NY T "‘!/ (1 D)™ «y

](.,Il-

7 — Studla Mathematlca 67.2
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is finite if A > n[p. So if neceqmv y we make 4 large enough that this true.
Now (46) is dominated by 4 f 2= gr Choose M so large that this
integral is finite. Then the mtegl al in (45) will bo finite and so g € 43 (2,).

§ 6. Inclusion relations. The spaco AM(%) should Dbe thought of
as the set of tempered distributions with derivatives of order up to and
ineluding y. Wo will show now that as the order of differentiability »
increases the spaces A% (x,) become smaller.

TamorEM 9. If yy <y, ave any real numbers and 1< p = oo, A0

then
A;""z(m() < /],n, ()

and the inclusion map is bounded. Thai is,
NEHS) (o) < ANDH(f) (o) for all I A0 (o)

where A is a constant independent of f and @,.
Proof. In view of Theorem 5 we may take any k> y,--n/p. Since
ya < yy then #7772 #7771 for 0 < ¢ < 1. Therefore

G2 (F) (20) < G () ()
Since the remainder terms are the same this implieﬂ that
NBA(F) (o) < ND () (o) -

Hence an application of Theorem 5 completes the proof.
TumorEM 10. If 1< ¢<p < oo and yy > v, then A (w,) < A3, (@)

If 2> Mytm (% _ip) and > yy+nlp then for all |B| ==k
G (o) < AGY(F) (o)

where A is a constant independent of f and x,.

Proof. By using the last theorem. we may assume that p s ¢ Also
let p < co. Write & = 4, —4, and suppose that p’ is the econjugate exponent
of p/g; that is, q/p +1/p’ = 1. Observe that

; A
v, B 5 () (@) = [f!;f (m)q

GQ:
s
X {t’“"’l (%) w(z, 1)

lq ¢ “ 18v1—72) dodi ]]Iq
f i+ o —ay| T
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We will apply Holder’s inequality to thiy integral using the exponents
/g and p’. This will give

w0 e <aine [ f

Note that

qap’ 1/q
— 122 (71~ ¥2) dov dt
n — 9"0 tn—{-l

f ( i )‘W" di / dw
i o NIV
- |7' f()l ¢ s (1 -+ foof)

nn
Also
qap’ = (pp—?q) (A —41) > n.
Therefore
1 ' 1pr
[l s 8] < vl <=
[

0

sinee ¢p’(y,—ya) > 0. Hence (47) becomes

Gt () (@) < AGE, (f) ().
If p = co then the same argument works but with certain obvious
modifications.
We finish this section with a result stating the relationship between
tempered nontangential boundedness and the spaces A;°*"(a:(,). ‘We will
write

t
M) () = S0 ( —
(7) (@) (cvt)gﬂ b | — |

J i7enton
and we define
B (o) = {fe S M (f) (@) < oo}
TuroreMm 11. For all y > 0

A2 ag) = B @) < AP (@)
and
(48) -ANo I (f)(mo) < -//ﬂ(f)(“'o N;iolc/l(f)(’”o
where A is o positive constant not depending on f or @,.

Proof, We will write .4*(p) to emphasizo the mollifier. Tf we do this
the first inequality in (48) becomes trivial because we can use the chango
of approximate identity theorem for tempered nontangential bonndedness.
Thug because

l) I
-a(f) (Foq) () = Fr(Doph (@)
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2

we have then the pseudo-differential operator T corresponding to o is defined by
t - YN
NMp) = sup ( -~ ) (D) ()] (Tf) (@)} = (2=)7" [ ¢ a(w, £)f(&)ac.
(n,t)e2 l | |/X'_T)I
1 The main result of this seetion iy the following:
+ S T =) [ S ()] Tunorm 12. Let 1< p < oo. Suppose that a is o symbol in 8. If
@yen ( a 48 independent of @ and f e ', then there ewists a constant A such that
— Al G 2 - 7|
< MADp) A ) < Al () G2 TP (@00) < AGDh o0 () (@)

Henco Tor general o & 84y, if f e then

NP HL (= A)F) (w0) < AN (F) ()

where I is the smallest nonnegative integer greater than A--n. The constant

Ny FOP) (o) 5 At (f) ().

To prove the second inequality it suffices by ’l’]mmmn 9 to congider

0 < y < 1. Buf this means that we ave froe to take & == 1. Sinco 4 i3 independont of f and @,.
A D There are & number of special cases that are of interest.
frp (@) ‘Sf’“l’(w)'-f ("5;) () (@) ds Bxavern 1. If a(w, &) = p(z) and |Dy(@)| < AL+ @)™ for all
¢ a € Z}, then Tf(z) = p(2)f(=).
it follows thatb EXAMPLE 2. If (@, &) = m(&) and [DPm ()| < A[El""‘" for all ge 22,
( t ) \f5,(@) then the multiplier transformation determined by Tf(E) = m( f(é) is
b [ — ) bounded from AL*(z,) to itself.

1

J t Lrran, Examern 3. If a(z, &) = &, e 27, then (Tf)(z) =+~ " .D?f(»). Thus
< |) oo+ (=) J (gs)romto

ds this differentiation is bounded from A2:* (o) to A2 ().
LXA"MI’LL 4. If m e R and a(z, &) = (1L |£2)™?, then wo see that
1 X s I ‘ (I—4)y™ is a Banach space 1somorplusm from AP*(zy) to AP . (2),
A=) o | fxp(e)] j (S—i ryp— »I) {(—ng)fmpﬁ ()| ds for 1< p < co. This will be proven in Theorem 14.
In this section we will prove Theorem 12 only for the case m = 0.
In §8 (Theorem 14) we will show that (I— 4)™* is bounded from A2*(2,)
< RO (wo) + (G,l (f)(me)s™ 7 ds “AN”’ (f)(@y)- to A7 . (@) for all m e R. Suppose that a is a symbol in 8%. Define

bz, &) = a(x, f)(1+[§’z)(ﬂ~m)/z

N

Therefore
2 ol and let § be the pseudo-difforential operator corresponding to b. Then
M) (o) < AT () (o). b is & symbol in 8%, and S(I—4)" =" = 7. Therefore if § is bounded
§ 7. Pseudo-differential operators. In this scotion we examine the then 1' is bOTjIlfl(‘d Thl'S reduces Theorem 12 to the case m > 0.
effect of certain preudo-differential operators on thoe spaces 42*(a,). It we write U(w, ¢) = (I(—4)"f)*p(«), then
Let: M and m be real numbers. a C""’(R“ X B will be m]]ml o symbol 50 Ul t i(z—-p)¢ anf
( @,t) = || ¢ a(e—1y, &) |E™f(E) dEp,(y) dy
of order m, a € 8%, if for all a, f e Z7 there exists & constant A such that (50) (w?) f f R (@—y, O1EFS (&) dé
B - gk g oh - Y& —
(49) [DgDfa(m, &) < A (L o)™ (L -+ &y |g~" ~ = [ f(€) €] {fﬂ a(e—1y, E)w(y)d?/}dé
for all # € R®, Ee R™ e fu“j £) &M (2, £, 16)ds
- Let a be a symbol of order m in 8% and let ¢ be & 0 funetion. gupported where J is defined by

in {j#| < 1} with [¢(x)dz # 0. If f € & is sufficiently smooth that 1) T(@,1, & = e aw—ty, E-)p(y)dy
- 1 by 6) = 'Yy K .

f(l +IEN™ (8] dE < oo, Our first step is to get a favorable estimate of J (z, t, &).
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LeMuA 9. Let @ be a O function of compact support and let a be a sym-
bol in 8% with m = 0. Then for oll N € B, «, 6 € Z}, there exists  constant

A such that
€1’ |DEDST (@, 1, &) << As™™ (L4 Ja])™ (L1 £~V
for all », Ee R, 0 <t 1. A is mdependmt of @, t, &

Proof. We may assume that [8] < N. To 11r()vo the lemma wo esti-
mate the expression & D{DiJ (w, ¢, &). (“Onm(mr 18] «% |B]. Then

EDIDET (1, t, £)
=& SA [ (—iyfrem DR Dial (w0 —ty, El0)g(y)dy

where the sum is over d;-F d, == &. Liet » he such that |y
Integrate by parts using DS~*. Notice first that by differentiating and
using (49) it iy easy to show that

W&l Dy~ {y" [ D2 Dia) (o —ty, &[4) (9))]

<4 D) DY) (L lo—ty ) (L4 £ o)

0<yspr
‘ S AT (L4 @) (14 ) e ()
where y is & 0 function of compact support. Thercfore thoe integration
by parts gives .
DD (v, < Y [ 1o LA (Lo ] (L £y () dy

- dy+dg =0

<A™ (14 o)) (1
These estimates for B such that 18] =
complete the proof of the lemma.

Proof of Theorem 12. Since fe.%, Lomma 9 shows that for h
sufficiently - large (30) can be used to defme U(w,t). We will estimato
NEAHM(T (— AY'f) (o) by using (50) and by breaking J (w, ¢, £ into picces.

Let {n,} be a 0% partition of unity on R" guch that 7y 2= 0 for all 7,

7, I8 supported m Ny ={la| <1}, 9 lﬂ supported in N, == {& ¢ R":
27 < |z] <27}, and :

D @) < A2 for all et i 1.
-i+ 80 that
W(8) = (5T (@, 1, &) (827

where ¢ iy chosen so that {$(&): || <1} is bounded away from zero.
Note that y; depends on @ and ¢ and will be written 9;(£) for Py, 1, E).

L en™.

16] or |f] = |8|+N combine to

Define y; for j =0,1, 2,

= || and v 5 B,

icm
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Trom cquation (50) it follows thatb
”’J(w 8, 1E)m, (16)dE

= 33 A [ DL 08) 152

where the sums are over -+, = f and 05 j < oco. I u(x, t) = f+q(x),
then by Plancherel’s theovem Df U (w,t) is a linear combination of inte-
erals of the form

(52) g ahen f Dy (e —y, 12
where Dy == (— 4, D
Note that y,(y) == ¢, (2, t,y) and if a(2, &) is independent of » then

80 is y;. Thus the only nonzero term of the form (52) is the one with §; = f
and B, = 0. Instead of (52), DEU(w,1t) is equal to

N (Dywy) (e, t, y 1) dy

(52") A== [ Do —y, 1277 (Df2y) (y 1) dy
where || = |f.] = %8| = 2h. In this case let Dy = D s In fact, equation
(52') is how DL(Tfxep)(x) is to be defined for |f| = & sufficiently large.
It f e & then Diw is a ternpered ¢* funetion and we will see shortly that
if |8, = 4% is large enough then the integral (52') is absolutely convergent.
The inequalities given in Theorem 12 will be proven simultaneously.
If o is independent of » define S = 7. This will be referred to as case (i).
Otherwige define § = T'(—4)". This iy case (il). In both cases Ul(w, 1)
= 8fxqp, ()
Observe that ¢, is supported in N;. From Lemma 9, it follows that

ID {Iél%Dﬁq W:I }1 At-—m(1+ ]19])M(1+ IE])—Nz—i(N-—n)

for all |8] < k. Therefore since ||j]l, << |lgll;, for all g e I*,
(= 4" Dy (y)] < AET (1 |a]) 27
and

Doy ()] < AL (Lo @) 2N (L ()™

The same estimate holds in case (1) it & iy sufficiently large. In particular,
it |B] = T > 4 then the fact that @23k, .(f) (@) is finite will quarantee
that the integral in (32°) i absolutely convergent.
Thig simplifies (52) or (62') to
30 ) [ iDba(w —ty, 271 Dawy ()1 dy
By

(83) DT (m,t)| <A™

<Ay ) D27 [ DR (e —ty, 127 | (L+ ) ~"dy
(23]
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where A, , = A7 Je)M. In ease (i) there iy only one fi,. In ease
(if) the swm is over all f; < f. Henceforth this sum will be denoted by 31,

Put this last estimate into the definition for G2HM (1f) (n,). Umm
Minkowski’s inequality and the fact that

( ot )HJ‘{(,] )T (L I),”-( t )"-- /]( t P
4 | — o L )™ (L iy thle—a) | e [,«,,,..u.4,;,,0|)

gives the result that

(54) Gt (8 () < A \” \1” e ")f [ f ( t )M)x

|- |,rm'n(,]

X {{fEmstr—m f])ﬁl w (@, ) dade ] (L) )

where 2 = & —1ty and s = 277, Notico that

(1+ IZ';’”(:’) - (1_]_ [0/:‘——-.’1:‘:":\'1’1?{‘[) A 7(1 g | - = | ) (L y]).

Thus the change of variables # = @ —1iy, ¢ == 127 {ransforms (b4} into

G5 e < 4 VIZW] U / (s RN 1)“3’”
ity

1Y
x | Dl (e, 8)|”d,’3‘dh‘—| (L g )" dy

where » = N — Z+2h»—k—}-y—1—m, Y1 = (b—2h —y — 'm)p—-n ~1 and £
= {(#,t): w e R™, 0 < ¢ < 279}, Choose N s0 large that » 2 1. If v, ==y
“+m - ]/31] +9/L-k, then since b > n -4, it follows that

(55) @IS @) <4 D" 2 270G, () ()

=4 2 G;’jw.ﬂﬂl (‘I'O

0 tIn case (i), k = 4k and yp, = p-4-m and (58) for all {B] == 4h shows
thay

,H My
&7 ] lf gvyiam,m(f)(wo)'

0 tIn case (ii), if 2> y+m “+2h+n[p, then by Lemma 4, (D) proves
(86)  Fir M (T (= AV} (o) <4 3" NUN(F) () < AN pan (F) ().

Consider next the B terms for case (i), Bstimate (63) and the defi.
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nition of R(Sf)(n,) give
(B7)  RPAI(S) (m,) <7 A Z‘ 2’ 9= J(N~n)f{f<1 @~ g )TN 5
X | D (@ —y, 279) P (L+ |} do} ™ (1+ y)) " dy
<4 D" %j 9~iN=n) { [ (Ll o) [ DB (s, 277) 7 dw}””
But by Corollary § of Section 3,
[f b | )™ | DB (2, 279) 1P e } p

. o9~ A e
[ —

1 [ — 2y

AN

< A27o=D) {{5;1«)1’10—11 () (@) + fojll(f) (%)}
< 427100 N2 £) ()

where yo <y, Yo < b = |f], o = p--m+2h. Therefore for N sufficiently
large

(58)  RPH(Sf)(m,) < A Z{ZF} Dovsan (F) (0) = ANZL 0 (F) (o)

This completes the proof of Theorem 12.
If a is independent of #, we have shown that it is possible to domln%e
the higher order terms of N (If). More precisely,

GOL(T) (@) + D) BYA(Tf) () < ANDE,(F) (o)

where the sum is over 2h < (6| < 4h.

LumMA 10. The tempered C° functions are dense in Ag’"(mo) for 1< p-
< 00,

Proof. A C* function f is tempered if for all a € Z} there exist 4
and N such that

1Df (@) < A (L4 2N

Lot fe AP () and lot qv e sueh that ¢(&) =1 for |§ < 1. Con-
sicler a® (w0, &) == 1 —@(8&). &’ is a wymbol in 8% If wo denote the corre-
sponding pseudo-difforential operator by 29, then T°f = f— freps.

Weo will write
fo it jE<1

QO =10 i |g>1.

If J (@, ¢, &) is defined as in (51), then

J (2,1, &) == a"(0, E)P(&) = ¢(&) —P(8E1)P(£) -

j
g
—
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Instead of Lemma 9 we can show that for overy N eR, aeZ} thero
-exists a constant 4 such that

|EI51DET| < AQOE[) (L&),
If |v| = 2k, then
|DE(E D6V} < AQ(SE ) (L | &)~V 2~ -n)
and

[y Dy ()] < A2V [ (1 gV ag,
181.-4/8

If this integral is ealled H(1/d), then the ostimate of 08U (w,1)
= DL fx, () is the same as (53) exeopt that A, , now equals AL 2" 1 (1]8).
‘The proof then is the same as that of Theovem 12, leading to

, . § pa ) A N 1/n
-Gi’;é(T"f)(woKA;’z”[ { j (—5@5:55{{() s711(2% /) \,l)g'm(z,s)|%(zs] .
J

Since thig series converges absolutely and each term approaches zero
as -0, we have

GDHTf) (@e) =0  as 6 ->0.
Let I e &' be such that DAF = f and |By] = 2h. Then.
RPHI'f) = Rp:L, (T°DPF).
As in the cage (ii) of Theorem 12
BRI DO ) (w0) < AN () ()
and aginthe case of the ¢ function}R%’:ﬁ,,l (T°DPR) () = 0 a8 6 — 0. Therefore
N2HIf)(w)) =0  as  6—0.

.Sincf? T°f = f—fxp;, Wwe have shown that any fe A»*(w,) can he ap-
proximated arbitrarily closely by a tempered 0% function. frg,.

§ 8. Diffe%-entiaﬁon .and powers of (I—4). In this section wo study
the cffect of differentiation on the spaces AB(wo). Tt is heve that wo soeo
‘that the parameter y is indeed a measure of differentiability.

TumOREM 13. If f & A2*(2,), then —%{7 & A2:% (2y) and
1

of
(©0) 22 () 00 < 493447) 0.

. Of .
Conversely, if T e A7 y(wy) for lallli =1, ..., n then Fedl(ay). In fact

e ©
Im Differentiability of distribulions at e single point 209

we have

] |
Y of
() S0 54 Dopha{ ) 0.
If 4 is big enough that RY*(f)(wy) << oo, then
n
it W of ’
NP o) 5 A )5 () o)+ BEHD) )

gl
where A 48 independent of f and a,.
Proof. Consider # & Z% such that |8] = & —1. Lot f¥ = (B, ..., fi™, ...

weey Bu) Then,
. NEAE a\"
|B | == k andl ("F)::B") (—5&“};) == (—5';) .

o\'[(.of | o \"
1) ==1) [} | [ = Y e .
o & )] -8

Putting this into the definition for G},’j resulty in.

(@) 6324 L ) = 62 @0
i

Hence

Notice that if (8,)" 5 (8.) then f; # B,. Thus by combining the estimates
for all |f] = & —1 we got

(63) P (‘%) SEP {oss ) (”")}ﬂ]lm

1 =I—1

— 2 P v A
<[ SlamnwlT" = ozt
|Bt=l
Tho terms RP* satisty & similar equation

o

o[ 8
.zc},’"( )[

oy

) (o) < B (F) (o).

Thercefore
- ! ) o, O
6o 3wl = Y wimes< S B0
[/Jf::‘r}ﬁl P =1 ‘ 1BI<ie

Hence combining (68) and (64) completes thoe proof of (64):

e of N o (U NP
NoA (—5[{-}:) () == f/”gzyl,k—l('b'@) (@) + mr;k’—l B3 l(—g&; (20) < NP (f) (o) -
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The converse is proven using the sune ideas. I ] ==& then there
exist 6 and 4 such that ¢° == f and |§] = k—1. So as in (62) we got

5 : U oy e N ([
@) G = 0[5 @ < ot () .

Summing over |f] ==k completes the proof of (61). Similarly if g F,
B # 0, there exist 6 and ¢ such that 6 == f. Consequently,

(06)  2p)o0 = g () (o) =N > () 0

r 1 m|</(

Combining (65) and (66) gives

, of
e <4 330 (2 o+ mp o,
=
This completey the proof of Theorem 13.

Lumma 11, Let 1< p < oo and let b be the swmallest nonnegalive inde-
ger greater than n--2A. Then

(67) NOAP) (@0) < AN (AF) (o) -+ Y BYA() ().
|8)<2 420
Proof. It follows from Theorem 13 that

F) @) < AJZNM(( r)w)af) m)+ D RS (2 )}

la]= m| z9

Let 2; denote the ith Riesz transform and lot % = &1 ... #% for a e Z o-

Thpﬁn R — . 4) = (9/9x)*. By Theorem 12, the higher order terms in
N2 ((8]2m)°f) (%,) are dominated by ANDA (Af)(:no). Thercfore

Ngfa((%)"f) (00) < ANZZ (A (@) > By (() )" /) ().

mw‘zl
These two estimates yield (67).

TarorEM 14. Lot 1 < p < oo and aeR. Then (I —A)** is a Benach

space isomorphism from A% (z,) to A3 (o). There exist constants A, and
A, such that ‘

AL NEH) (@0) < N2 (L= 4)) (00) < A, N22() ()
Jor all f & A2 (w,).

©
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Proof, Consider (I — 4)Y* where = 0. Theorem 12 shows that wo
san dominato all the high order terms in N2:2, (T — 4 )”/ﬂ‘f) (@,). In particular,

UL = AYEF) () < ANDA () (@) 3 B (T =AY} ().
|Blmaele
But ([— M"pes it pe. Then by a change of mollifier ¢ we soe
that these lower order J2 terms are alse houndod by ANDA(f) (). Henco
(1A i o bounded oporator for ajz 0. To show it (F —A)""" iy
bounded for oz 0 it suffices to cammi«lm’ 'l‘}m operator (- A)", Let B
o (I AYLE, Then, by Lemnma 11,
NEAY () = ANPA(AF) () + ) RPA(I) (@)

pom

(]2 - 20
But
Ny (AR (i) +22 N0, (1~ AVE) () - 5y (1) ()
= Nﬁsz(f)("’n) | Nﬁ:—'—’b (47) ()
and
N RpAI) 0 = AND (I ().
182 20
Therefore,

N (B) (o) = AN, () (tg) -+ N 322y () (o).
Thus in ovder to show that (I — A" is bounded we need only show that
Ny (1) (g) < AN (S) () -

Binee (I — A4)~'iy a pseudo-ditferential operator with symbol in 85, Theorem
12 takes care of the higher order terms. The lower order I terms are
covered by a change of approximate identity .from ¢ to (I — A)7'p. This
completes the proof of Theorem 14.

§ 9. The Lipschitz spaces /15 (2). We finish with the observation
that the spaces A7 (@), 0 <y < 1, can bo defined by @ moduluy of conti-
nuity. We will seo that this modulus of continuity is closely relatod to
the notion of 101111)(\1‘(\(1 nontangential convergeneo.

Tunorn 15, Lot 0 < g = 1. f & AN () 4f and only if for some 4> 0,
A=
{68) sp [ (g ) ==t (i £)| 20 AR (L[ @)

[ERA NN [l "(Jﬁ)

Jor all 0 =2 h <21, a0,

Proof. Fivgt suppose that fe AP (x,). Cousider (wy,t) and (2, 1)
in (@), For some ¢ bobween @, and @,

[ (e, 1) — (g, 1) <5l —ay) (e, B)].
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Since f e A5 (z,) then

1 2 ey
(?—*':‘l;;:a‘) t “77.’/((/, t)qu A.

So

7ue, 1)) < At”"l(l et

Since |#; —o,| < 20t we know that
(69) [y 1) — (s, 1)] < A (L4 )7 L A (LA )Y,
Now consider two points (g, ;) and (z,, ) in [%(w,). Then recall that

Theorem 2 says that we can control the derivatives with respect to f.
Therefore

iy,
W7
[ (@0, 8;) — (@ T)| = ’ f “—ar‘:" (o, 8)ds
by

ll i
<A f (1 + —[-5-”—‘1;8—-0—”9‘) 135

h
<A f’n‘"‘”ld.s' = AW,
t 0

" Now combining this with (69) proves that (68) is tiruoe.
Assume that (68) is true. Let ¢, = (0,...,1,...,0). Suppose that
pe¥ and [g(x)dr 5 0. Then there exists @ € & such that

a L4
(3] 2 = pioor—pt0.

I (z,t)e Tg(wo) —Fr,:/z(wn))

b7}
tl (E&:) (f+ @) (@) | = |f*p (@ +1og) —F ey (w)] < AL (1 a)*

. t 2
Since (t+ [w_%[) < ita) this shows that G;’,‘j;j(![)) < oo, Because
[P (#)dw + 0 then we can use the change of mollifier Theorem 1 to prove
that 65 (p) < oco. Since this is true for all 1< i< n then G2 ) < oo
Therefore [ € A% (z,). N G

Note that the above theorem can be combined with Theorem 13
to show that f e A7, (%) if and only if all the kth order derivatives of f

satisfy (68). (Here k< y < k+1 and % is a nonnegative integer.)
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