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STUDIA MATHEMATICA, T. LXVII. (1980)

Central limit problem for symmetric case:
Convergence to non~Gaussian laws

V. MANDREKAR and J. ZINN (East Lausing, Mich.)

Abstract. A general theorem is proven giving necessary and sufficient con-
ditions for the row sums of a uniformly infinitesimal symmetric triangular array
(with independence in each Tow) to be conditionally compact. Using this limit theorems
are proven in spaces of type p-Rademacher, cotype g-Rademacher and type p-gtable.
Characterizations of these spaces in terms of these limit theorems are also obtained.

0. Imtroduction. This paper is devoted to the study of the Central
Limit Problem in a real separable Banach. space . We first establish
necessary and sufficient conditions for the row sums of a triangular array
of uniformly infinitesimal symmetric independent random variables to
be stochastically bounded as well as to be compact, in the ease that the
limit points are non-Gaussian. These results generalize a result in Feller
([5], p- 309) as.well as some work of G. Pisier ([26], Theorem 3.1). The
main fools are a result of Le Cam ([16], p. 237) and ideas involved in’
proving some inequalities as in (H-J [8] and Jain [11]). A8 a consequence
of these results wo characterize Banach spaces for which the classical
conditions hold. In particular we show that the spaces in which classical
conditions ([6], p. 116) are necessary and sufficient are isomorphic to
Hilbert space and the spaces for which both halves of the domain of
attraction problem hold for stable laws of order P << 2 are preeigely the
type p-stable Banach spacos. We also derive from the NECERSATY con-
ditions in the latter problem the existenco of the oth moment of the norm
with respoet o the laws in the domain of normal attraction of the stable
lww of oxder p for a < p. Our work includoes some of the recent work of
Woyezynski [297] and Mazreus and ‘Woyezynski ([19], [20], [21]).

Acknowledgement. Wo would like to thank Gilles Pisier for allowing
us to incorporate some of the results of [27]in Section 4.

1. Preliminaries and notation. Let B be a real separable Banach
space with the (topological) dual 7’ and Borel field # (H). Let (R, F,2)
be a probability space; then X on_Q to B will be called an H-valued random
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variable it X is (#(H), #)-measurable. We note that due to the separ-
ability of F, X is strongly measurable. The distribution induced by X,
namely Po.X~* will be called law of X and written as £ (X). We say that
an H-valued random variable X is symmeiric if £ (X) = Z(—X). We
ghall be dealing with truncation. For an H-valued random variable X
and a subset 4 < F we denote by

X i Xed,
(1.1) (X, 4) = o it X¢d.
‘We denote by
(1.2) X, 4) = 7(X, 4°

and note that X = (X, 4)+7(X, 4).

A family of symmetric B-valued random. variables {X,,;, j =1,2,...
gk, m=1,2,...} will be called a symmetric triangular X-array if
for each n, {X,;, j =1,2,...,k,} is an independent family of random
variables. Associated with a triangular array we shall use the following
notation :

Ty,

(a) 8, = Z-va

j::l

b = Z(8,),

Top,

(1.3) ) B, = Zg ) B = Y #(#(X,,, B,),
J=1 Je=1
k’n
(6) 8,(8) = D) (X, By,
J=1 ’

where 7 and % are as in (1.2), (1.3) and By = {u| [jo| < 6}

We conclude the seetmn by recalling some standard results and
definitions. We say that a sequence of finite measures {1,}3., on (@, %(B))
converges weakly to a finite measure » it [gdw, - [gd» for every bounded.
continuous function g on B. It is known that {»,}3., is weakly conditionally
compact (for short, compact) iff for every &> 0 exists “a compact set

K (z) such that v,(K (& )) < & and sup v, () is finite. Given a finite measure »
n
on (B, #(B)) we denote by ¢(v), the exponential of », defined ag

e(») = exp(—» () {504.2%}

1A =1
where 8, is the dirac measure at zero and »** is n-fold convolution of ».
I furtljlver, v = Z(X) for some E-valued random variable X, then e(v)

=2 (;Elxj) where {X;} independent B-valued random variables with & (X;)
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= Z(X) and N is Poisson random variable with parameter one, inde-
pendent of the sequence {Xj},,,1 Finally the characteristic function of
a cylindrical measure u ([4]) is defined to be

ouly) = [exp(idy, )udo for yel,
L

where (-, - denotes the duality function on B’ x B.

2. Stochastic boundedness and compactness of row sums. A gequence
{1 0f B-valued random variables is said to be stochagtically bounded.
it for every s> 0, 3¢ finite such that P {[¥,|| > ¢} < efor all n. Given a sym-
metric triangular X-array we get the following extension of Feller’s
Theorem ([5], p. 309).

2.1. Turorem. Let 8, be as in (1.3); then 8, is stochastically bounded iff

(a) for every & > 0, there exists t large so that sup F,,(BS) < e,

n

b) for every ¢ > 0 supE 18, ()P 4s finite.

-1

Proof. Since X,; = Z‘ X— 2 X,; we have by the tma.ncrle in-

cquality | Xyl < || 2’ X+ Z an“ Hence

(2.2) P( (max I,/ > 1) < P ( max ”Z Xm” > }1).

LTy,

By independence,
Ly, N

(2.3) P (max || Tyl > 1) =1~ []1 —P (Xl > 1)

By the exponential 1nequa11ty
(2.4) L —P (| Xl > 1) < exp [P (1 Xl > 1)].
From (2.2), (2.3), (2.4) and Lévy inequality we get for all
] "'S’n” > %t =1 ’*OX}_)( —Fn(t)) .
Ience wo get (a) from stochastic boundedness of {8,}. Let now o> 0;
then following an argument gimilar to ([11], Lemma 5.3) we get for ¢ > 0,
P (18, (o)l > ¢) < 2P (18,1l > 7).

Therefore for every ¢ > 0, {8,(¢)}.;, is atoolmystma.lly bounded. Let o
be fixed. Following the proof. of Hoffmann-Jergensen ([8], Theorem 3.1)
we get that (8, (e)|° < 3K, where K = 2-37¢?4-8-3%1f . Xere #, is chosen
so that

s

P8, > 1) <
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To prove the converse,

kn
(S, > 20 < P(18,(0 > 4 +2 (| X (s, B | > 1)
: : J=1
1 i ;
< BIS, (@)1 + D (Xl > o),

T=1

Given &> 0, choose ¢, 50 that sup ' (B) < e Since sup I8, (e,)I” is
n n
finite we get limsupP (||S, || > 2t) < ¢ giving stochastic boundodness ot {S,}.
fao0 N
Before we study compactness of {8}, we give some general regults,

2.5. DerInItioN. We say that a symmetric X-triangular sarvay is
uniformly infinitesimal (UI) if max P{|X,;|> 6}->0 for every &> 0.

1<y,

2.6. DEFINITION. (a) A probability measure x on  is said to be infi-
nitely divisible (i.d.), if for each n, there exists a probability measure y,
on (B, #(H)) such that g = " (If u, exists, it is unique.)

(b) A probability measure u on (E, #(H)) is said to be centered
Gaussian it for each y € B', yoy~" is symmetric Gaussian.

2.7. Remark. By the uniqueness of the measures w, of Definition
2.6(a) if u symmetric, the measures y, of Definition 2.6(a) are symmetric.
It is known ([24], [13]) that each symmetric i.d. measure # can be written
as p = g*y, where ¢ i8 centered Gaussian’'and » = lime(y,) whero #, is

n
an increasing sequence of symmetric finite measures. Furthermore, the
meagure g and » are unique. We shall refer to » above as non-Gaugsian i.d.
‘We note that u is i.d. implies that poy~" is i.d.for y € B, The follow-

ing result gives a converse in case y is symmetric.
2.8. TEEOREM. Let H be a real separable Banach space and o Symmetrio

probability measure on Borel subsets of H. Then w48 4. iff woy~t is i.d.
for all y e B'®, for all E. ‘

Proof. The “only if” part of the theorem being obvious, it suffices
b0 prove the “if” part. Let # be a non-negative integer then for each yed®
there exists asymmetric measure u, (y) on BY, soy=! = 4 (y). Sinco uwoy™!
Is 1.d. we get for all 1, g, ~1(t) > 0 (teR) giving {u,(y): yel™, b1}
i a cylinder mecasure ([4]). Call it Uy 5 then Puger—-1(t) = ¢ () for all
{eR*. We then got p,(y) = ¢4 (1) = o, (), giving m”';b;i;ln_ A is
symmetric this implies ([4]) that w, is a measure, giving the result.

For E-valued r.v. Z and y = (y,, y,, s Yp) €BF, Cy, 2> will denote
(<f‘/1: Zy {Ysy ZDy v vy Yy Z>) ’
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2.9. THROREM. The symmetric i.d. laws on B coincide with the limit laws
of row sums of UI symmetric triangular array. ‘

Proof. Let {X,;,j =1,2,...,7%,; n =1,2,...} be a UI symmetric
triangular array. Then for each % and y e W', {Ky, X,;>, j =1, ..., k,,
n=1,2,...}is a UL symmetric triangular array of E'-valued random

ki

variables. Let 8, = 3 X,; and u be weak limit of £(8,), then poy=! is
=1

oy,
the weak limit of & ( 3 <y, X,,>) giving uoy™' i.d. by a result in [24],
Sl

p. 199. Now u being symmetric we get, by Theorem 2.8, that u is

i.d. Suppose ¢ is symmetric i.d. then for each %, g == ui" where g, is

a symmetric probability measure on H. Let {X,, .. . (n =1,2,...,n)

be triangular array such that for each n, {X,}_, . , are independent

identically distributed with distribution u,. Clearly, u = limg}". It
w

therefore remains to prove {X,i;.1.. 1, (n'=1,2,..) are uniformly
infinitesimal. Since u, is symmetric and w* is relatively compact we get
by ([24], p. 89) {t,, » =1,2,...} is rclatively compact. Also we getb
by the one-dimensional result ([17], p. 297) <y, X,,;> — dp0y~" for all y.
This implies u, = 8. Flence
max P (| Xl > &) = u, {w: ) > e} -0
legjsn .

We now give conditions for the convergence of row sums to a non-
CGaussian i.d.

2.10. TanorEM. Let {X,;, j=1,2,...,k,, n=1,2,...} be a UI
symmetric triangular array omd 8,, 8,(8), F,.(6), u, etc. be as in (1.3).
Then {u,} is conditionally compact with oll limit points non-Qaussion iff

() for each 6 > 0, FD is conditionally compact,

(b) timsux)EI[Sn(cS)llf’ =0 (0<p< oo).

-0 N

for every &> 0.

Proof. Sinco {u,} is conditionally compact we get by ([16], Theorem 2)
that (a) holds. Using symmeolry, we get as in ([11], Lemma 5.8), 7(X,;, Bs)
wr f (K- Xg) where Xy, has the gaane law as X, Tence wo get that
{ (8, (8)}n,s is conditionadly compaet if {u,} is. Furthermore, for y e 1’
and Fnj B “‘ZI( fn/)7

Iy, Ty,

(2.11) By, 8, (8)p% = DBy, v(Xyyy Byt == D) [ <y, )2 T, dm.
Jul Fe=l lwllgd

By clagsical eonditions ([6], p. 116) for convergence to non-Gaussian i.d.
laws wo get ‘ '
I

lim sup
e M el (K@i}

(2~12) <Y m>31ﬂnjdm =0,
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Since B; = {2} <y, )] < |ly[d} we get from the conditional compactness
of {(8,(8): m>1, 6>0}, (2.11), (2.12) and Chebychev’s inequality,
for every e¢>0,

P{I8,(d)> e} -0 uniformly in # ag § - 0.

Given 5 > 0 choose &, such that Vi< 4,

Sup (118, (8)]] > 3'7 (16)7/7) < £-377.

=

Now following the proof of Theorem 3.1 ([8]) we got that
Sup |8, ()7 < 4-37 677,
n
From this condition (b) follows.
To prove the converse, given e > 0 choose 6 > 0 so that
(2.13) Sup B8, () < ¥
el
and K < Bj, symmetric compaet so that
(2.14) FE) < fe.

Choose a simple function ¢: B — ¥ such that |z—t()]|<» on I, and
t(z) = 0 off K with < é and n SupZP{(B) < §e
n

, .
(2.15) P{ 8= ) t(XM)|
=1

> 4:8}

Toy, Fn
<P {H;’ o X,y —t(X,), By) ” > 26} 4P {HZ F( Xy —1(X,), By) H > 2¢}.

Now the second term of the RHS of the above inequality does not exceed

oy ko,
jZ P{Xy—H X )[> 8} = D P{X, —~8Z ) > 8, X, ¢ K)
=1 Fa=1 :

since {X,; € K}n{|X,; —t(X,) > 6} = @.
But #(X,,) = 0 if X,, ¢ K, giving

Fop, N
(2.16) P {||Z Xy~ 1(X,y), By) | > 26} < FO/(I).
J=1
The firgt term on the RHS of (2.15) does not exceed
ey, B
@i P {(LZ‘ 1 Xy =Xy, By)1(X, K)“ >ef +
=1

. En,
+P {HZ: (an—t(XM), Ba)l(Xm E.K)H > e}.

i=
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Since #(X,;) =0 for X, ¢ X and B, = K° we get that the first term
of (2.17) does not exceed

1
> o} < S BIS, ()P

(2.18) P {H’Z ©(X,y, Bo)
Je=1

The second ferm of (2.17) by Chebychev and the triangle inequalities is
kp

< (1/E)Ej zl (7 Xns —4(X,) 5 B) L( Xy € K)|| and hence does mot exceed

(n/e) ' (JC) using the fact that for X 6 X, [ X,y — (X, < 5 and X0 > 6.

Thug the gecond term of (2.17) does not exceed

(2.19) ZFQ’(E).

Using (2.13), (2.14), (2.16), (2.18) and (2.19) we get that {£(S,)} is flatly
concentrated. Now ag before, for any ¢ > 0 and X and § as in (2.13) and
(2.14)

P18, (e)ll > 24)
Tey,

Ty, i
<P (”ZT(XM, B,nBy)+ D 5(X,y, chzr.)ﬂ > 22, X, e Byu Kforsomel<T,)
Jal 7

wa ],
© o kp
+ D P Xyl > 8, Xy ¢ K).
Izl

Using the fact that K < B, first the argument of (2.18) and then that of
(2.18), yields that for all ¢> 0, {§,(e)} is stochastically bounded. Hence
<y, 8,(6)> is stochagtically bounded. Using the proof of Theorem 2.1
and condition (a) implies that {<y, 8,>} is stochastically bounded. Now
{[1], Theorem 3.1) completes the proof.

2.20. Roemark. We note that in the sutficiency part of Theorem 2.10,
woe have not used the UL hypothesis on the triangular array.

3. R-type, cotype and convergence conditions. This section iy devoted
1o the characterization of the Banach spaces H for which clagsical con-
ditions hold. Wao start with the definition.

3.1. DurinirroN. A Banach space B is said to be of R-type p if for
a family {X,, Xy, ..., X,} of symmetric independent random variables
with finite pth moment there exists o constant ¢ independent of » and the
random variables such thatb

(3.2) BIXyt o + X <0 D BIXP.
'Y
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We note that ([9], p. 589), condition (3.2) is valid for {X,, ..., X} ift
it is valid for X; = gu; (¢ = 1,2, ..., n), where {g}, are symmetric
independent Bernoulli random variables and for all {z,,...,s,} < E.
Hence we have the nomeneclature E-type (Rademacher type).

3.3. TmmoreM. Let {X,, j=1,2,...,k;n=1,2,...} be o UI
symmetric triongular array of H-valued random variables such that £ (8,)
= P (Z) where Z(Z) is non-Gaussian. Then there exists a o-finite-measure I
on B, F finite outside every neighbourhood of zero such that B converges
weakly to T for all 5 > 0 such that F(0B,) == 0.

Proof. We note that .£(Z) being a non-Gaussian infinitely divigible
law, by ([24], p. 103) there exists a unique e-finite-meagure @, finite outsido
the neighbourhood of zero such that for each y e B’ {y, Z) has LiGvy measuro
Goy’. Let {0x};.; be a sequence of positive real numbers converging 6o
zero. By Theorem 2.10, using Cantor’s diagonalization procedure we geb
that there exists a subsequence {n'} of {n} such that for each %, 7w
converges to a finite measure, say, F,. Furthermore F,}. Let us (1ef1ne
F = ]i’mlf’,a. Then F is o-finite. Using the fact that £ ({y, 8,>) = £ (<, Z)),

o

gives by classical results and the uniqueness of @ that Foy ™' = Goy~'Vy e ',
Thus F = @ and, in particular, ¥ = @ outside the neighbourhood of zero.
Hence I is the unique limit of every convergent subsequence.

3.4. COROLLARY ([29], Theorem 4). The following properties of a Banach
space T are equivalent

(i) ® is R-type p.

(i) For eash UL symmelric triangular array Xy 1=1,2,..., L,
n =1, 2 ...} of B-valued random variables and o o-finite measure I’ sausfymg

() 17'(") comverges weakly to PO = I 5¢ where T, is as in (1.3),

By = {o| =< 6} and -3 -F(0B;) = 0; and
(b) 11m lim 2 i)

llell® By (de) = 0
n j=1 |zli<s

we have S,P(Sn) = Z(Z) where £ (Z) is an 1.d. probability measure with charac-

teristic function
(3.5) exp [[eos(y, @y ~11P(do), yel'.
z

Proof. (i) implies (ii): We first observe that conditions (a) and (b)

imply M.L 2P F(dw) < co for some &> 0. Since, condition (a) gives
[ el F (d2) < f F(llolf >1"7) dt = f lim T, ()l > 8+2) @
llzl<e

which implies the desu'ed result by condition (b) and Fatou’s Lomma.
Now. X is of R-type p, F is finite outside every neighbourhood of zero

icm
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and for some & > 0, f [lo][? ' b 18 finite implies (3.5) is the characteristic
el

function of a measure x on B ([7]). Let Z be such that L(Z) = u. Also
by (3.2) condition (b) implies the condition (b) -of Theoremn 2.10 giving
2(8,) compact. Now by using the given conditions and UI (see [13],
Pp. 11.45—14(5) wo got L (<y, 8y>) = L({y, Z>) for each ye B giving

.Z’(;S ) = L(Z). To provv the converse assume {w,}2,; < # is such that

24 liony " convorges and \‘ a,wj does not converge a.. Then by ([10], p. 40)
for

thera oxigty Hubﬂommm-o {2y B (ly, by, - o0) such  that

v/ 1 ‘ . 0 s 7 OT Yofin ¢ — )
1/?(; %I 5 wy) 4 8y, the mewsure degenorate atb zero. Define Xy = ¢ o 4
e

+

”'L
(1< < Top). Now By = §(8y, |, -0 | Jandhence I, = , 2 %(6%—}-5_@)
’ =iyl
Cleaxly {Xyy, J ==1,... s By mo==1,2} is a UL gymmetric triangular

array. Fl:lr‘thomnom, condition Z flee |7, finite implies F® = 0 for all ¢ > 0
Feal

and ginco

flwnlzlﬂ d.,ﬂ 2 H(I;‘jﬂ”,
eliea {F3llyliezze}

Iyky, .
algo condition (b), giving % | _2‘ &ay) converges to zero sinee I' = 0 in
Joulpted

this case. This proves that D) [la||” << oo implios Z‘ & @; converges in distri-
i=

bution. ITence by ([10], p. 410) 9.8, But this gives E ig of R-type p.

3.6. DurINITION, Weo say that F is of cotype ¢ if for a family {X1, ..., X}
of symmetric mdepoudent random variables with finite gth momcnt there
exists a constant  independent of n (and the random variables) such that
(8.7 DXy ... +X 00> 0 )] B X, .

Jeal
We nobe s before that the condition (3.2) is valid i#f for any sequenco
{3, = B, 3ew; convergoes in distribution, implies > lly||” is finite ([9]).

8.8, Conortany. The following properties of a Banuch space B are

equivalent
(i) K is of cotype q.
({i) Tor each UI symmetrio triangular array {Xu, Gy 2y 00y By,

no=1,2,...} of H-valued random variables £ (8,) = & (2), 2 %on—Gausmm
implz’as

T
(3.9) lim Tm 3" | (0F,(de) =0.

L L dml flali <&
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Ty,

Here F,; =2(X,;) ond 8, =12 X
=1

Proof. In view of Theorem 3.3, it suffices to show that condition (b)
of Theorem 2.10 implies (3.9). But this is a consequence of X being of
c?type q and (3.7). To prove the converse, suppose 3 s, converges in
distribution but lewjnq = oo, Then there oxists {3}, and {l 3.y

byt lon, . -
(Ts by~ o0) such that lim Y ||+ 0. Dotine now X,, = g, 2,
. n Zn+1_ RO
Jj=1,2,..,k, Then {X,,j=1,2,..,k, n=21,2,..} is a UI
symmetric triangular array and

Ly, L+ Top,
ZX“ = Z 8%, 0,
F=1 Iy+1

Hence by (ii)

limlim > gyl = 0.
e
U <I<tytTo}

But 4; - 0 since ;'ejmj converges. Hence for n sufficiently large

It

- n .
lim 2 [lz;i? = 0 contradicts thg assumption giving B is of cotype g.

n g+l

From Corollaries 3.4, 3.8, Theorem 3.3 and Kwapier’s Theorem ; we gob

3.10. OoROLLARY. A Bamach space B is isomorphic to o Hilbert space iff
Jor every UI symmeiric triangulor array of B-valued random variables the
Jollowing are equivalent with the notation (1.3)

(i) Z(8,) = u, u non-Gaussian i.d.

(i) (a) There ewists a o-finite measure T on B such that IO

converges
weakly to B = F|Bj for each § > 0 with F(8B,) = 0. " !
k,

() limTim 3" [ [@]2F,(dz) = 0.

>0 2T Yalie
Furthermore, in either case ¥ is the Lévy measure associated with e
3.11. DeriNITION. A Banach gpace B is said to be of type p-stable if

o

for {m}2, < E with }|z,)® finite we get pX:) i
: ° i : ~fin. @;m; converges a.e, if are
m'dependent, identically distributed symmetr;c stable random. Vizgmbles
with Py (£) = exp (— [£[7).
From Definition 3.11, Corollary 3.4 and ([22], Propositi
. 08it: .
get the following corollary with ’ position 2.1) we

a 1
Cp =P f (Oos““l)%md“-

0
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3.12. CoronnAry. Let p << 2. Then the following conditions are equiv-
alent

(1) W is of type p-stable.

(2) There omists q>> p such that for every UL symmetric triangulor

on T = {w] ||| = 1} we have with the notation (1.3),

(3.13) tim 7 Lol ol >t and " e 4V 172 2(4)
pore "\ I

ol
Sor each 2> 0 and d-continuity set A; and

lim Tim f || 2, (dit) == O

R & E

(3.14)
implios L (8,) = L (%) where Z is an H-valued stable random variable -5 -

(3.15) Py ) = OXp (~ fl(y, u)l»"’r(du)), yel's wherel = ¢,h.

pH
Furthermore, (3.13) 48 necessary for £(8,) = Z(Z).
Proof. The only fact that remains to bo proved is that if ¥ iy p-stable
then. (3.15) is & charactoristic functional of a measure x on H. But this
i known ([2], [23]), [181). The lagt statoment follows by Theorem 3.3.

4. Spaces of stable type and the domain of attraction. We say that an
T-valued random variable X is in the domain of attraction of a H-valued
random. variable Y if there exist b, >0 and @, ¥ (n =1,2,...) such
that & (‘1‘ AR Xa

[

that ¥ has non-empty domain of attraction iff £(Y) is stable. In case
b, == 0P wo sy that X is in the domain of normal attraction of Y. Recently,
([237, [28] 80 also [2], [18]) it was shown that only on stable type spaces 1,
the Lévy roprosentation of non-Gaussian stable laws can be completely
determined. Mho problom we shall sbudy in this seetion is to determine
proportios of the distribution of X. In easoe Z is a Hilbert space the problem
wast conplotely solvoed in, ([141), In Banach spaces B of stable type partial
rosuls on this problem wore obtained in ([197, [20], [21], [29]). Our methods
are difforent from all these s we only use Corollary 8,12 and technigues
developed in. [14] using the work of Fetler ([5]). )

Roemark, Wo note that X lies in the domain of attraction of Z iff X
is in the domain, of ativaction of tZ for 0 < ¢ < oo,

4.1, Tmorms, The following conditions are equivalent for p<2.

(1) H is of type p-stable.

(i) A symmetric random variable X lies in the domain of atiraction

— an) convorges woakly to % (¥). It is shown in [15]
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of a symmetric stable H-valued random varieble Y with @gp(y)
= exp[— [ Ky, wpPT'(dw)] and I'(Z)> 0 iff
=

(4.2.1)
(see [B], p. 276) and for every I'-continuity set A,
P(IX| >4, X[[X|[c4) TI'(4)
P(1x) > ) )

(ili) *P(|X| > %)~ 0 as t—> oo ¢ff X Ues in the domain of normal
altraction of ¥ == 0. :

Proof. (i) = (ii): We first note that
(4.3) U = [ IXI94P =gZ,,(t) ~14(1),

Xt

Z(t) = P([|X| > t) is regularly varying with exponent (—p)

(4.2.2)

. , :

where Z,_, (1) = [ w*~'Z(u)du. From (4.8) and ([8], Theorem 1, p. 281)
0

we get for ¢ > p '

" W7 (%)

m e =
oo U (1) P
Using an argument of ([5], p. 314) we get {b,} b, — oo, bb”’

(4.5) "

q4—>p

-~ 1 guch that

limnb, 2 U (tb,,) = 1072,

n
From (4.5) (putiting ¢ = &) we get (3.14). Now (4.4) and (4.5) imply
nP (X[ > b,t) — 3_;_1.’. .

Hence by (4.2.2) we get for a I“continuity set 4,

' ; X _4—p ., T(4)
(4.6) lim nP ([{X[I>b t -—eA) = i = A{A)™? (say).
5 "D T p | I AT
This gives (3.18). By Corollary 3.12 we get that X lics in tho domain of
attraction of Z; where

ul)*P 1

Pz () = GXP[—% fK@/, u)]"’l(lu] with ¢, =p f (eosu——l)—:—L—udu.
P 0

By the remark preceding Theorem 4.6 we get X lies in the domain of

attraction of Y. Conversely, by (3.12) we get that if X is in the domain

_ of attraction of the stable law L(Y) then (3.13) is satistied. But (3.13)
implies (4.5) using the fact that the b, involved satisty b, — co and

b ‘ ;

"f -—1 ([1B8], p. 136) asin ([14], p. 160-161). In the above proof {X;,/b,,

bn+l .
j=1,2,...,n}is clearly UL

icm
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(if) =+ (iil): Assume that X and 0 are independent and symmetric, X
B-valued and 0 real-valued, sotisfying #P(|X|>1#)—=0 as - oo
and J¢" == @4, Ohoose ¢l with [ef =1 and define Y = X --fe.
‘Wo first show that ¥ satisfies the hypothoeses of (if).

As in Fellor ([0, p. 271, 18t odition) for ¢ > 0 and ¢ > 0,

PLIYI > 615 LUIXY 5 (112 [10] < te]--P[10] > t(1+ &) 1P [1X] < te],
PLIYY > 8] 5 PLIXY 5 0L ~e) |- P[10] > ¢(1—~e)]+-
S PII\X| > te]1P[]0] > te].
Tleneo 4 () = P X = t) I8 vegularly varying of exponent (—p).
By ([6], p. 116)
0 - dr

where ' is supported on {1}, I'{::1} > 0 and I" iy symmetric. Hence
for every A > 0 thore exigts o symmetrie closed interval J such that interior
()2 [~4, 4] and & 8 > 0 such that
0
(J)Y & [=~A, A, and nb (—;;W € (J")") <e.

Now ehooso 8, = 0 sueh that [(Je)Ten Re = (J°)%e, where the Jg-ball
is computed with rogpect o the novin on B. Then. since 7P (|X|| >1 1) 0,
there oxists ng = = nwy(e, &) sueh that n 3= n, implies wP (| X1 > on 7y < e.
Therefore,

ra

\7 a
w/z'( > ¢J‘a)-a«z m(;;-f,, ¢ Jo, |X| < cw/l’) P (X > i)

(0 .
% nd (%Tm" & [(J 6) Jﬂo) +-2

0
S (;;377; & (J")G) e < 26,

Heneo {'n ? (“‘*ﬂif‘ @ } is conditionally corpacet outside cach neighborhood
L4

of 0 &0,
On. the other hand the eonditions on the tail of [X|[ imply that for

" \
each fe &', f( 3.X,) /' 55 0. Thorefore
a1

& I-f(‘}i: {Xet-000) )] . 2 (f(0e)) for each fell'.

i
1]
(123 !
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This implies by the one-dimensional result that nP(f () m'? &) = F-f7(+),

where dF = I x A -) and Fis supported on { 46} and I {e} =ﬁ{ —e6}

1+Z7
= I'({1}). We then obtain that
nP (-—Y~ € - ) = I.

This yields
PYl >3, Y/ &)

P([X] > 1)
The hypotheses now imply
k3
’ X+ 050
D = te.
F=1
n
By stability of 6 we then have 3 X, /w66 = 6¢. Finally this implies
J=1

) _ P>t y/lylie}
iyl >t

ﬁ’ X, & 0,
i=1
(iii) = (i): First we show that (iii) is a super-property. Let L
={X: Q> F| PP(|X||>e¢)~>0 a8 ¢~ oo} and define the quasi-norm
A,(0) on IP™ by A,(X) = [supc®P(|X]> ¢)]". Now let OL(p,r)
>

={X: Q- B||X|}, =

symmetrized X,’s. By (iii) (see Proposition 2.1, [26], and also [11], The-
orem 5.7) for r < p, we may define the inclusion map T: (IP, 4,)
—>(CL(p, ), || [p,r)- By atrivial applieation of the closed graph theorem there
exists a constant B < co such that 1 X, < B4, (X). It is also easy to
see that X e L»> if and ouly if X can be appromma.ted in 4,(-) norm by
simple funections. Now if Y is a sunple function then by the flmte dimen-

>0 .
sup B |8, /n*?|" < ec}, where §, is the sum of the
n

sional central limit theorem llmE | Z X, /n*?| = 0, since 2 > p. Hence the

range of 7' is included in the se‘o of X’s such that
Lim E||2xj | = o.
n =1

Hence (iii) is a super-property.

By the Maurey-Pisier-Krivine Theorem ([22], Theorem 2.3 and [307)
it now suffices to show that (iil) does not hold in 1. For this purpose let {e;}
and {¥;} be independent sequences of i.i.d. random variables with

Pl =1) =P(g = —1) = §,

{ln(Inn), n > 27,

P(N; > LLn =
(& > m) "1 otherwise,

= m ’ where

Central limit problem 203

and P(N;e{l,2,...}) = 1. Now let

oo
8 = & Z‘pjrera

Nj~Nyj<r<Ni+N; =1

.X'=€j

where {e,.} is the natural basis for ¥ and

oy = LN} —N; <r < Nj+ ;).

Then

- /i — ._..._mﬂ_._.,_
nP(| X, > (20)"7) = nP(N > n) = (n+1)LL(n+1)

’

S,
On the other hand, if — — 0 in probability, then 'S:m = 0 in probability,

nlP

nipm

where S;, 2 #,.6,. From the proof of Theorem 3.1
r=1

n
= DXy and X,y = ¢

7
in [8] we have

t

n | ’ 10
B\~ <B—|—2-3”Elmsz——ﬁ].
K » lgj<n N
But [ X,k = 2N,I[N,;< n]. Hence
nfllp i J
-
< oo,

"
0l

sup H
n

Now by Khintchine’s inequality for the Rademacher functions, there
existy K, < oo, such that

n24n

S n? I_1n 21 b ( » X n 9 0i2
|~ 0| D[ > 3] 3]
T=1 Tl Tl
1 w“\jn 3 1 n“ﬁ-_gn
> I’( \ e ) S MY
Peal
n2pa
1
e "’;""‘A}_J (L~p, )""1'”277 cdy,
Pl
where

p'_ ES _';

=)


GUEST


294 V. Mandrekar and J. Zinn
N 0 < <—O- for some 0 < 6, C< oo and > >
oW rLLfr\pT\vLL'r ! ¢ Py Pa e
Therefore
(L—p)" = L —p,)""t  (since » > n)
0 -1
>l ——] .
( nLLn)
Then
o VU 1 o NS 1\ Im
A, > 61— : >8[1——r 2 —
n= ( /n,LLn) g rLLr~ (1 'n,LL/n) ( rLr)(LLn)
= P ==

) 0 n—1 IJ%
>6L@) [1— ——) |=
L@ (1 fnLLn) (LL%) -

4.7. Remarks. After this work was completed we received some
work of A. Araujo and B. Giné. It contains different conditions for the
general domain of attracion problem similar to those in [14]. However,
our condition as well ag proof are simple and follow easily from our main
Theorem 2.10. Thus our methods are entirely different.

We have also received work [3] of de Acosta, Araujo and Giné which
contains conditions for convergence to i.d. laws. However, again their
conditions and methods are entirely different. In both works, they consider
the general (non-symmetric) case.

4.8. THROREM. If X is in the domain of attraction of a symmetric stable
law of index p < A on any real separable Banach space I, then

P> 1) ~ 20

1®

as t— oo, where L(t) is a slowly varying fundtion ([5], p. 276). In particular,
for any symmetric stable random variable on B we get | X | is finite for
0<<qg<p.

‘We note that in the latter part one only uses the fact that a symmetric

stable random variable is in its own domain of normal attraction ([15],
p. 139). )

Note added in proof: We thank Professor S.A. Chobanian for pointing out an
error in the original version of Theorem 2.8.
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Abstract. We prove weighted integral inequalitics between the Lusin area inte-
gral and the nontangential maximal funetion of a funetion harmonic in a Lipschitz
m—— ' domain. These inequalitics are extensions to the Lipschitz case of inequalities obtained
by Gundy and Wheeden [7] for functions harmonie in a half space.

1. Imiroduction. In this paper we shall prove integral inequalitics
between area integrals and nontangential maximal funetions for functions
barmonic in 4 Lipschitz domain @ < R That is, we shall assume thatb
to each boundary point P e 92 there is associated an open cone I'(P)
with vertex at P such that I'(P) = €. If now u is harmonic in Q we define

Afw, P) = [1P=QF"Pu(@)am (@)
I,
and "
N(u, P) = sup|u(Q)].
(P)

Tere Vu denotes the gradient of « and m denotes the Lebesgue measure.
Our main result is that if the cones I'(P) satisfy suitable regularity con-
ditions (to be formulated later) then for all harmonic funections « vanishing
at a fixed point I* wo have

(1.1) 0, [olA)ap< [ BN ()< Oy [ P4 (w)dp.

kel aq a9
Tlere w is ollowed to vary over & wide class of meagures which includes
the surface measure of 9 and the harmonic measure. The precige assump-
tion on g is that u is positive, nonvanishing on any component of 9L
and that there are numbers 4 > 0 and 0 > 0 sueh that for all P & 82 and
all > 0 we have that whenever B < A(P,r) then

wlB) o@ \° (D o < (1 N
az A(’?}V(Ql(’l;ﬂ)’)) and (AR, 20) < OulA (R, 7).
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