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Some properties of asymptotic functions

by
L. Y. CHAN, Y. M. CHEN and M. C. LIU (Hong Kong)

Abstract. The present paper is concerned with some new properties of three
types of asymptotic functions which have previously been introduced by J. Marcin-
kiewicz ({4], [5]), 8. Koizumi ([3]) and Y. M. Chen ([11, [2])- We shall prove (Theorem 2)
that these three types of asymptotic functions are in a certain sense equivalent and that
they are related to convex funetions. As an immediate consequence of these results
we can generalize two interpolation theorems due to Marcinkiewicz and Koizwmi
which have various applications in approximation theory.

L. Definitions and notation. Throughout this paper we use K to
denote some positive constants which may be different from one occur-
rence to another. We use K, K,, ... to denote some specified positive
constants so that K, # K, if ¢ = 4.

DEprNrrion 1. Let — co < a<b < co and ¥ a measurable subset
of ( — oo, o0). (For most practical purposes we take B — (0, c0) or = [0, co).)

(a) By @ ~ [a, b] we denote the non-negative even functions defined
in #, which are not identically zero in F, satistying

(i) @(u)/|u|* is non-decreasing as |u| increases;

(i) @(u)/|u is non-increasing as |u| increases.

The class of all such funections is denoted by Y[a,b].

(b) ¥ a<b, by & ~<a,b> we denote the function @ ~ [a+ &,
b—e¢] for some small &> 0. The class of all such functions is denoted
by ¥<a, b>. ‘

(¢) In a similar way as in (a) and (b), we define P e Y {a, b] and
@ e Y[a, by, which means that @ ~ (a, b] and & ~ [a, b, respectively
(. [1], pp. 362-363).

Remark 1. If @ >0 and @ ~[a, ], then we have lim®(u) = 0.

U—0

In this case we put ®(0) = 0 so that & is continuous in (— oo, o) ([2],
Lemma 1).

Remark 2. If L(u) is a slowly varying function in the sense of
Hardy and Rogosinski (i.e., given any small 8 > 0, »~°L(u) is non-increa-
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sing and #°Z (») is non-decreasing for large . See [6], I, p. 186.), then for
any 6>0, L(u) ~[—34, é] for large u.

DEFINITION 2. By M(a,b), where 0<a<b< oo, we mean the
‘elags of all continuous non-decreasing functions ¢(u) defined in [0, oo},
which are not identically zero and satisfty ¢(0) =0 and the following
relations:

(1.1) [ eyt = 0 (ubp(w)),

(1.2) [retemar = 0 (g (),
1

af U—>co.

DerINITION 3. By Z(0, b), where 0 < a < b < oo, we mean the sub-
clags of M (a, b) such that all funetions in Z(a, b) satisfy the following
relations:

1
(1.3) [relp)dt = 0 (up(w),
(1.4) [t e ()it = 0 (u*p(w),
as u—> +0.

Remark 3. The original definitons of ¢ introduced by Marcinkiewicz
([6], II, p. 116) and Koizumi ([3], p. 195) are slightly different from those
introduced here. In their definitions, only the case 1< a < b < oo was
considered. Furthermore, in [6] the additional condition,

(1.3) g(2u) = 0(p(w)
as u—o0o, was defined. In. fact condition (1.5) is superfluous since it follows
from the other conditions. We observe that

4u 0
wPp(2u) < Kp(2u) [ 'A< K [P p(t)dt < Kulp(u).
2u U

Similarly, in [3] the additional condition,
(1.6) ?(2u) = O (p(w))
a8 %—> -+0 may be omitted. .
DEFINITION 4. Quasi-linear operators (cf. [6], IT, p. 111).
(2) Let R be a measure space with measure u, and let 0 < r < oo.
Let f be any real- or complex-valued function defined on R. We write

Ny f) = ([ 1frau)”
R

which coineides with ||fll, ., the (r, 4) norm of f when r >1.
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An operator T defined on the class of functions f is said to be quasi-linear
if )

(i) T(fi+fs) is uniquely defined whenever Tf, and Tf, are defined,
and if -

(1) 1T (fi+1 )l < E(|Tfi] +1Tf,]), where K is independent of f, and f,.

(b) Let 0 <7< co and 0.< s < co. A quagi-linear operator 7' which
maps functions f defined on the measure space B, to functions Tf defined
on the measure space Ry, is said to be of type (r, s) it

N (s, »; If) < EN (7, 5 f),

where K is independent of f and u, » are measures defined on the measure
spaces R, and R, respectively.

2. Main results. It- will be shown that the classes ¥ < a,b> and
Z(a, b) are dominated by each other, although Y <{a, b) is in fact a proper
subclass of Z(a, b) (Lemma 1). Indeed, the three classes of asymptotic
functions M (a, b), Z(a, b) and ¥ {a, b) are equivalent to each other.in
some set E < [0, co) (Theorem 2). Hence the functions in the classes
M, Z and Y, in a number of inequalities may be interchanged. Our results
give immediate generalizations (in Theorems 3, 4, 5) of two interpolation
theorems (Lemmas 2, 3) due to Marcinkiewicz and Koizumi, which have
various applications in approximation theory.

TramOREM 1. If @ ~[a,b], where —oo<a <b< co, then & is
absolutely continuous in [&, N] (0 <e< N < oo).

Remark 4. Since the proof of Theorem 1 follows essentially the same
line as that of Lemma 1 in [2] (when 0 < @ < b < oo), We omit the proof
here. Here we wish to correct a discrepancy in [1] (p. 363, lines 9 and 10).
It was thought that @ ~ {—1,1> has no meaning since @ may not be
meagurable. But now we find that this is not so. By Theorem 1, &
~ {—1,1) is absolutely continuous in [¢, N] and is thus measurable
in [&, N] for any &> 0. It is therefore measurable in (0, co) and also in
(—o0, 0). So we can define the class ¥ [a, b] when —co < a << b < oo
ingtead of the particular case when 0 < a<<b < oo ag in [1] and [2].

THBOREM 2. Let 0 < a< b < oo.

(i) Suppose that ¢ € Z(a, b) and that p(u) > 0 when u > 0. Then there
evists a function @ ~ La, by in [0, o), such that & 4s twice continuously
differentiable in (0, oo), and that

21) K0 (u) < p(u) < K0 (w)
Jor wz= 0, where K, and K, are independent of w. In particular, if a > 1,
then @ is convex.

(i) Suppose that ¢ € M(a,b) and that @(u) >0 when w> uy,> 1.
Then there exists a twice continuously. differentiable fumection @ ~ <a, b)>
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defined in [u,, co), satisfying
E,B(u) < p(u) < Kb (u)

Jor w > wy, where K, and K, are independent of u. In particular, if a > 1,
then D s convew.

In the following Theorems 3, 4, 5 we let 0 So<bh<oo(i=12,..
-+y ). Let B, and R, be measure spaces with measuroes # and », respecti-
vely, and T a quasi-linear operator.

1@1 ) n
TumorEM 3. Let o =2a,>0, b=3b, and let the operator T
. il fe=l
be of types (a, a), (b, b).
(i) (a generalization of Lemma 2). Suppose that u(R,) < oo, ¥ (Ry) < o0
. k3
pieM(a,b) (1=1,2,..., n)y and @(u) = [T @;(u). Then
=1

(1) If is defined for every f with o(If1) indegrable over By, and
(2) Rf¢(1Tf|)dw<Kthp(lf])d,u-l‘K, where K is independent of f.
2 1

(ii) (a generalization of Lemma 8). Suppose that u(R,) < 00, ¥ (R,) < oo,
. n
PieZ{ag,b) (6 =1,2,...,0), and ¢(u) = Il 9:i(u). Then

. . =1
(1) 7f @8 defined for every f with o(|f]) integrable over R,, and
(2) Rfrp(ledegKqu:(lﬂ)dy, where K is independent of f.
2 1

’

n n

TaEOREM 4. Leét « =11]1 4> 0, b=[]b;, and the operator T be
of types (a, a), (3, b). -

(i} (a generalization of Lemma 2). Suppose that u(R,) < oo, »(R,)
< oo, ;e M(a,d) (1=1,3,..., n); and @(u) =g, 0 Pn—10 - Oy (),
where o denotes the usual compositon of mappings. Then

(1) Zf 45 defined for every f with @(|f1) integrable over Ry, and

@) quﬂ(lel)dV<Kﬁf¢(lf|)d#+ff, where K 45 independent of .

- ‘2 1

(ii) (a generalization of Lemma 3). Suppose u(R,) < oo, ?(RBy) < o0,
P €Z(ag b;) (i =1,2,...,n) and P(%) = @,00,.1 0 ... 0p,(w). Then
(1) If is defined for every f with ®(1f]) integrable over Ry, and
(2) R{cp([Tf])dv< KRf<p(|ﬂ)d/z, where I is independent of f.
1

THEOREM 5 (a generalization of Lemma 3). Suppose that u(R,) < 00,

;}(1:,2) < oo,-cpi( € M(;z,, b) (¢ =1,2,) and ¢,, @, are Dpositive when u = u, > 0.
6 @ = min(ay, ay) > 0, b = max (b, by). If T is of ¢

and g 5 defimas 1y 1y ba). If f types (a, a), (b, 1),

@1(1) i w>u,,
P(u) = { @u(Uo)ps (o) fu (W2 fu)  if O <us g,
: 0 i w=0,
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then :

(1) If is defined for every f with ¢(|f|) integrable over R,, and

@) [o(Tf)dy < K [o(If]) du, where K is independent of .
Ity &y

3. Preliminary lemmas.

LmvmA 1 (ef. [1], Theorem 1). Suppose that 0 < a < b << oo. We have
(i) ¥<a, by S Z(ay b),

(ii) of ¢(uw) e M (a, b), then

(8.1) u* = o(p(u))
as u— oco. If, in addition, p(u) e Z(a,b), then besides (3.1) we also have

(3.2) u’ = op(u)
as u—> +0.
Proof. We first prove Y <a,b) SZ(a,b) (0<a<b< o). Let ¢
€ ¥{a, by. It is clear that ¢ is continuous, non-decreasing, ¢(0) = 0
(ef. Remark 1), and @(2u) << 2%(u) when u [0, o). Since @(u)/us"®
is non-decreasing in (0, co) for some z> 0, we have
1w u ' U
[t Ypmar = J eyt < wp (u) [erear < Bumep(u).
0 0 - 0
Hence (1.2) and (1.4) are satisfied. By similar method we can show that
(1.1) and (1.8) are satisfied. Thus ¢ & Z(a, b). Since conditions in Defi-
nition 1(b) are pointwise conditions but (1.1)—~(1.4) are asymptotic re- .
lations, it is not difficult to construct a function ¢ eZ(a, b)\¥<a, bd>.
In order to show that (3.1) is true as u-» oo, we observe that from
(1.2) we have u® < Kop(uw) when. « > B, which is large. Then from (1.2)
we havo

U w
Eu=p(u) > [t @)1 at > [ Kt~ dt— oo,
1 B

a8 u-> oo, Hemeco (3.1) follows (3.2) is proved in a similar way.

Lemma 2 (Mareinkiowicz’s intorpolation theorem: [6], II, p. 116).
Suppose that u(By) < oo, »(Ry) < oo, where u and v are measures of the
spaces By and Ry, respectively, and that the quasi-lincar operator T 48 of types
(@, a), (b, ), where 0 < a<b< oo, and that ¢ & M(a,b). Then we have

(1) Zf 45 defined for every f with o(|f|) integrable over R,, and

(ii) quo(\fl‘ﬂ)dv S K [o(f)du+ K, where I is independent of f.

A I

"L
Levma 3 (Theoremy 4 in [3]). Suppose that p(R,) < oo, v(Ry) < oo.
If T is of types (a, a), (b, b), where 0 < g < b < oo and @ € Z(a, b), then
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(ii) in Lemma 2 can be replaced by
[o0nfNay <K [o(f)du,
Ry Ry

where K s independent of f.

Remark 6. Lemma 2 is a generalization of the Marcinkiewicz interp-
olation theorem ([6], IL, p. 116) in which 1< a <b < oo is agsumed.
Lemma 3 is a generalization of Theorem 4 in [3] in which u(B,) = oo,
v(By) = o0 and 1< a<b< oo are assumed. In fact, following all the
original proofs in [6] and [3] without any essential alteration we can
prove these generalizations.

4. Proof of Theorem 2. Suppose that ¢ €Z(a,b). By definition,
@ is continuous, non-decreasing, ¢(0) =0, and ¢ satisties the following

relations:

(1.3) p(2u) = O (p(w),

(1.1) fm T lp(t)dt = O (ubp(u)),

(1.2) [t lpmar = 0w %(u),
1

as u—> - co;

(1.6) ¢(2u) = 0 (p(u),

(1.8) [t g ()@t = 0 (wPp(w)),

(1.4) [t*Tp@)dt = O (u%(u),

a8 u—> +0. ’

Put

) = f” o (1) dt

It follows from the above relations that g(u) and h( (w) are both finite when

= f tlpt)dt  and  h(u

w>0. Write &(u) =u’g(u)+uh(u) (w>0) and let @D(0) = 0.
Straightforward caleulation shows that when w > 0,
@D (u) [dur = u~*{b(b—1)ulg(u) + a(a —~1)u%h (1) — (b — &) (u)}

which is continuous in (0, co). If @3> 1, we have

2D (u)/dud > w2 {b (b—1)Pp(w) ft"’“‘dt —(b —a)cp(u)} =0,

and then @ is convex.
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Next, we shall prove that
(2.1) Ky (u) < p(u) < K@ (u)

when € [0, o0). Since the funection u%¢(w) is continuous in [e, oo) for
any &> 0, and from hypothesis ¢(u)> 0 (u > 0), it follows from (1.1),
(1.3) and (3.2) that

ftwl) 1

for % > 0, where K ig independent of w. Similarly, from (1.2), (1.4) and
(3.1) we have

(4.1) t)dt < Ku"p(u)

(4.2) h(u) ft"" o (8) dbt < Ko~ % (u)
for w > 0, where K is independent of w. On the other hand, since ¢ is

non-decreagsing in [0, oo), we have

pu)u’ < Ko(u) [ 170'd < Eg(u)
w
for w € (0, co). Since the function ¢(u Vp(u/2) is continuous in [e, N]
for 0 < s< N < oo, it follows from (1.5) and (1.6) that ¢(uw) < Ep(u/2)
n (0, co). Since a > 0 and ¢ is non-decreasing, we have

(4.3)

(4.4) (B dt < Kh(u).

p(uyu=® < Ko (u/2) [ g < K f ™

u{z w2
Combining (4.1) and (4.3) we find
(4.5) Eyubg(u) € p(u) <
for all u € (0, co). Similarly, from (4.2) and (4.4) we obtain
(4.6) Euth(u) < p(u) < K, uh(u)

for all u e (0, o). Adding up (4.5) and (4.6) we obtain (2.1) for » > 0.
Since P(0) = 0 = ¢(0), (2.1) is also satisfied at w = 0.

Tinally we shall prove that & ~ {g,b> (0K a<b< o). Let 6> 0
be small such that b —a—e> 0. When % > 0 we have

K ulg(u)

(b—a—e)ut=a==1 [ =Yg (t)dt — e

W

d —(—8 .
Y D (u) =

v
= e () d
[
= I, say.
It follows from (4.3) and (4.2) that
= (b—a— &) Eub "yl (u) — eKu™ " u~ % (u)
=(b—a—e) K —:K) ‘“"‘““%pl(u),
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which is positive if e > 0 iy sufficiently small. Thus =% *®(u) is non-
decreasing for some small &> 0. Similarly, form (4.1), (4.4) we have
d

— (WP P (u)) < 0 if &> 0 is small. Hence ® ~[a+e b—e] for suf-
du !

ficiently small ¢ > 0. This completes the proof of Theorem 2 (i). We omit

the proof of Theorem 2 (ii) as the arg'umcnt is similar to that of part (i),

except that we now put k(s f T () @t for w = u == 1.

5. Proofs of Theorems 3, 4 and 5. Tt iy obvious that if D; e ¥<ay, by>
(4; =0, i =1,2), then @,P, € ¥<{a,-+ay, by +by). Since
P,0 D, (u) _ ¢2(@1(’“)) P, (u
W (B (u))
we have P,0®, € ¥Y{a,d,, b;b,>. Theorems 3 and 4 follow 1ead11y from
Theorem 2 and Lemmas 1, 2, 3.

We come now to prove Theorem 5. Since g, e M(ay b;) (4 =1, 2),
by Theorem 2 there exist @; e ¥<a;, b;) (¢ = 1,2) in [u,, co) such that
(8.1) B, Py (u) < oy(u) < Ko Dy(w) (8 =1,2)
for w = u,, Define @ by

)\
) (P1, 222 0),

w1

D, (u) if w2 g,
D(u) =1 Dy (%) Do (1) [Py (45 /4)  if 0 < u <<y,
0 ’ if  w=0.

It is clear that @ e Y <a, b). By Lemma 1, Lemma 3 and (5.1), we obtain
Theorem 5 immediately. -
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Weak-~type multipliers*

by
PETER M. KNOPT (Cornell)**

Abstract. In this work, we show, for multiplier operators, that weak-type
(p, p) for one fixed p, 1< p < 2, implies type (2 2). Wo obtain the same result for

any fixed p > 0 with the a priori condition m € Lloo. We also determine a best con-
gtant. The lagt part of the paper is a related counterexample.

I Introduction. Congider » Fourier multiplier operator Zf (@
“Ymf )(x) on R™ It T' is weak-type (p,p) for fixed p, 1<p < z,
then a duality interpolation argument implies T is strong-type (2,2) hence
m is bounded (see [8]). This argument breaks down if the operator is as-
sumed to satisfy the weak-type estimate only for a small subset 8 of L”.
In this paper we develop a new direct method for studying these
questions. In particular we show that if m e Lj,, and T is weak-type (p, p)
for any p > 0, then m is bounded (if 1 < p < 2, we need not agsume m & Lioe)
‘We algo find lmppropnate subsets § of L7, dependmg on p where we assume
T is weak-type (p, p), for which the same result holds. We go on to obtain
the best constant for the bound on m in terms of the weak-type constant.
We also construet & counterexample to show that the result is false if §
congists of all characteristic functions of intervalg, extending the work
of Ash (seo [L1] and [2]). The counterexample is particularly interesting

" for the following reason. Stein and Weiss ([3]) show that if one assumes T

is weak-type (p, p) against functions which are characteristic functions
of moasurable sets, then 7' extends to be weak-type (p,p) on all of L7.
The counterexample demonstrates that characteristic functions of inter-
valy is too small a class to obtain the extemsion.

2. Positive results, Notation:

(3
A N ¥ 1 \ s
Fomt o = [ [ (Fhrostorrho, o e, dys integes, 6> 0]
Yol

: ) . )
F, = {f fo [ ] (6”) e yolity) 0w e R, By’ s integers, 8> OJ‘A:
Jo

* The work presented here is contained in the author's Ph.D. thesis written
under Professor Robert Strichartz at Cornell Universiby. ) )
%k The anthor’s prosent address is Texas A & M University.
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