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which is positive if e > 0 iy sufficiently small. Thus =% *®(u) is non-
decreasing for some small &> 0. Similarly, form (4.1), (4.4) we have
d

— (WP P (u)) < 0 if &> 0 is small. Hence ® ~[a+e b—e] for suf-
du !

ficiently small ¢ > 0. This completes the proof of Theorem 2 (i). We omit

the proof of Theorem 2 (ii) as the arg'umcnt is similar to that of part (i),

except that we now put k(s f T () @t for w = u == 1.

5. Proofs of Theorems 3, 4 and 5. Tt iy obvious that if D; e ¥<ay, by>
(4; =0, i =1,2), then @,P, € ¥<{a,-+ay, by +by). Since
P,0 D, (u) _ ¢2(@1(’“)) P, (u
W (B (u))
we have P,0®, € ¥Y{a,d,, b;b,>. Theorems 3 and 4 follow 1ead11y from
Theorem 2 and Lemmas 1, 2, 3.

We come now to prove Theorem 5. Since g, e M(ay b;) (4 =1, 2),
by Theorem 2 there exist @; e ¥<a;, b;) (¢ = 1,2) in [u,, co) such that
(8.1) B, Py (u) < oy(u) < Ko Dy(w) (8 =1,2)
for w = u,, Define @ by

)\
) (P1, 222 0),

w1

D, (u) if w2 g,
D(u) =1 Dy (%) Do (1) [Py (45 /4)  if 0 < u <<y,
0 ’ if  w=0.

It is clear that @ e Y <a, b). By Lemma 1, Lemma 3 and (5.1), we obtain
Theorem 5 immediately. -
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Weak-~type multipliers*

by
PETER M. KNOPT (Cornell)**

Abstract. In this work, we show, for multiplier operators, that weak-type
(p, p) for one fixed p, 1< p < 2, implies type (2 2). Wo obtain the same result for

any fixed p > 0 with the a priori condition m € Lloo. We also determine a best con-
gtant. The lagt part of the paper is a related counterexample.

I Introduction. Congider » Fourier multiplier operator Zf (@
“Ymf )(x) on R™ It T' is weak-type (p,p) for fixed p, 1<p < z,
then a duality interpolation argument implies T is strong-type (2,2) hence
m is bounded (see [8]). This argument breaks down if the operator is as-
sumed to satisfy the weak-type estimate only for a small subset 8 of L”.
In this paper we develop a new direct method for studying these
questions. In particular we show that if m e Lj,, and T is weak-type (p, p)
for any p > 0, then m is bounded (if 1 < p < 2, we need not agsume m & Lioe)
‘We algo find lmppropnate subsets § of L7, dependmg on p where we assume
T is weak-type (p, p), for which the same result holds. We go on to obtain
the best constant for the bound on m in terms of the weak-type constant.
We also construet & counterexample to show that the result is false if §
congists of all characteristic functions of intervalg, extending the work
of Ash (seo [L1] and [2]). The counterexample is particularly interesting

" for the following reason. Stein and Weiss ([3]) show that if one assumes T

is weak-type (p, p) against functions which are characteristic functions
of moasurable sets, then 7' extends to be weak-type (p,p) on all of L7.
The counterexample demonstrates that characteristic functions of inter-
valy is too small a class to obtain the extemsion.

2. Positive results, Notation:

(3
A N ¥ 1 \ s
Fomt o = [ [ (Fhrostorrho, o e, dys integes, 6> 0]
Yol

: ) . )
F, = {f fo [ ] (6”) e yolity) 0w e R, By’ s integers, 8> OJ‘A:
Jo

* The work presented here is contained in the author's Ph.D. thesis written
under Professor Robert Strichartz at Cornell Universiby. ) )
%k The anthor’s prosent address is Texas A & M University.
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Comment: In part (a) of the following theorem, we do not asusme T
commutes with translations, rather that it satisfies a certain convolution
property. This is necessary since translations of functions in the elags ﬁ'n
do not keep you in F - However it is easy to show that a weak-type (p, p)
operator on IL*(R"™), for 1 < p < 2, commutes with translations if and
only if it satisfies the convolution property by certain functional analysis
considerations. In part (b) of the theorem we deal with 0 < p < co. Because
the Fourier transform of an I? function with p > 2 and p < 1 is not gen-
erally well-defined, certain a priori assumptions on the multiplier will
be made. '

TumoreM 1. (a) Let T be an operator satisfying Tfrg = f«Tg for
f e.@tn (the convolution property), and Az a) < ¢®|f Iy fa Efor f eﬁ,,,, l<p<?
Then T is type (2,2) on all of I*.

(b) Let k be a non-negative integer. Assume m e Lk,. Then if Tgp(@)
=F " mfy)(w) is weak-type (p, p) with constant ¢ for fized p, 0 < P < oo,
against all functions g,, such that g, is a dilation and translation of functions
of the form (lumﬂ)"x(_l,l)(m) with p > 1/(k+1), then T is type (2,2) on
all of I*.

Observe that as p—0 more and more smoothness on gy is demanded
8ince [lgzll,— oo a8 p—1/(k-1). Also note that for % = 0 (i.e. p > 1) part
(b) is contained in part (a) of the theorem.

(¢) Suppose T satisfies the conditions of part (a) or (b) of this theorem.
If T is furthermore weak-type (p, p) with constant ¢ on all of I*(R™), p > 0,
then |m|l,, < ¢. This constant is best possible.

Before proving this theorem, we establish a lemmas:

LeMmA 1. If the assumptions of Theorem 1(a) are satisfied, then

N\ .
Tf(w) = m(@)f (@) with m L5, (RY).
AProof of Lemma 1. Note that [ifll, < o0, 1 <p < 2, whenever
fe#y,. It is well-known that weak I < LP~°+L#* with 1< p L+ b< 2.
~
Since Tf e weak L”, then by the Hausdortf-Young inequality 7f e L®-% -
+ IO+ where 2 < (p+b) < oco. Tt is easily seen that
N A
Tfxg(w) = If(@)j (2).
Since (Zfxg)(x) = (f+Tyg)(»), then
N\

We then have
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Define m(0) = 1/’} (w)/f(w) on supp f. The computations above show tl'lat
m is well-defined and m will be defined almost everywhere by allowing
gupp f to get large.

Thus 1/’]\“\(:)0) = m(w)f(») for fe.é’f,,. For any bounded measurable
sebin " chooso f such that supp f = the bounded set. Then ||mxm{,; I < oo
since supp f is compact and T e L@+ 4 L =¥, Hence m € Li,(R"). m

Proof of Theorem 1. Tirst, we prove part (a). Without loss
of generality we may assume ¢ = 1. First consider the case m(z) 2_0
a.0. and n = 1. Tf |ml|,, == 0, then we are done. So agsume [m(, > 0. Fix

k> 0. Fix e,
1) 0<e<tf6.
Congider any interval I such that |H|> 0 where ¥ = {weRNI: k—e

< m(2) < k). Fix L. m e Lj,, by Lemma 1, so by Lebesgue’s theorem. for -
differentation, there exists s, € I such that

1
(2) @9

1f (@) = m(a)f (@) +(k—m@)f (2).

By the Fourier inversion theorem (valid to apply by Lemma 1) one
obtains

[
f m (@, + &) do->m(w,) as 60,
—d

f (@) = Tf(@)+F [(k—m)f )(—)

where # denotes “Fourier transform”. Denote Hy(z) =F [(k.—m)f 1 —m).
Just for purposes of clarity, we will carry out a proof which does n91111
yield the best constant the method can produce. At the end, we wi
describe the modifications necessary to obtain the stated constant.

(3) Aeplo) < Apy(af2) + ZEf(a/?a).
By the hypothescs Qf the theorem
(4) Iag(0) < 29f 1P + Ag, (/2).

Without loss of generality @, = 0. Choose F (@) = (1/8) %(s,0 (). Then
f(@) = (sin2ndw) /(wéw). Wo obtain

(5) 18,1 = I [(b—m)f 1 —0)lleo < (6 —m)]
a8
3
<2 (—2—%—) ‘[ [ —m (@) do < 2-§| k—m(0)| < 3s

for 6 small enough by (1) and (2).
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Choose a = k. Then
(6) Amy (k[2) =

by (1) and (5).
By (4) and (6) we have

() }'lcf(k/z) <

[{z: |1 By(@)| > %/2)] = 0

27|15 [
sin 27 6 7 1y F » 1
=3 Bl @ = 5) 4

sin 2mw
(mow)

()

® = f

where 4; = A,(p) is finite and uniquely determined by ».
(9) Ay (/2) = ffw: 11f(@)] > k/2}] = |2 If(@)] > 1/2)]
N 1] 1 l . 1sin2nw 1)

- 75| =31 |y |~ = (5]

'
where 4, is finite and uniquely determined. Putting (8) and (9) into (7)
yields

sin2n éx
(7 bz)

( a) Ay < 274, )(0k7).

80 k< 2(4,/4,)", which concludes the main step.

To handle m(x) arbitrary, say [m], > 0, consider any %> 0, and
any interval I such. that |Z,| > 0 where E, {w el: k—el2< ]m(w)r < k}
with & as before. Then clearly there exists an angle ¢ and a set B ¢ B,
with [B| > 0 where B = {&: |m(x) — he'®| < e}NH,. The rest of the argu-
ment proceeds a8 before, Finally consider the n-dimensional case. Use

i . 1
F (@) —jgfw, and a = A7k where f (z;) =(5) Teor (@) With 4, as
before. Note that

Map(a) = |{w: ka(W)

-l [

7)) > A1) |>m{%

SFlay)| > AO}I == A”/rS"
and that

I = ]] I (25) 2,0, = A3]5"
with 4, and 4, as before. So one gets by the same argument ag before

A0 < AT[M(APRY,  k<[AMP)(4,4Y0)].

" eRNI E—eg mn)
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This concludes part (a) of the theorem. The proof of part (b) follows the
same mothod as part (a).

There is only left to do part (¢). Without loss of generality ¢ =1,
m(@) >0 a.e., n =1 If |ml, =0, we are done. So assume [m{l, > 0.
By part () ancl (b) of this theorem, M|, < B where B = B(p) < oo
is & constant depending only on p. Fix &, 1 <k < B(p). Fix e 0 <e<h.
As before, consider any interval I on B such that (B> 0 where B = {»
kYy. Fix I. By Lebesgue’s theorem for differen-
tiation there exigts an @, e B such that:

4
(10) (1/28) [ Im(@y--a) — k| do—>|m(@w))—k| 85 --0s
—

Without loss of generality @, = 0.

‘We now construct an f sueh thab |fl, o If lwesxze 204 such that
dies off exponentially. One then dilates this # by ¢ with the same purpose
in mind as in the proof of the first part of the theorem.

Let

flw) == 1/2 > o~ @l%? i (@, 0< 8, < 1.
T Op
1 2 sm2ﬂ:w
f (Bgr)* 2
W) == m—— 6
f (@) T —

Define fy(#) = = f( ) Tix e, > 0. Olearly one can choose & and & > 0

small enough so that

(11) i(l——eml{w @) > (1 ___81}|_2‘<60’
1
Wl —2 < ey and o< &

Tix & > 0 small, but such that %(1— ) e > 2. Following the lines of
the proof of part (a) one arrives at

(12) Hg{To (L)) < Apgy{lo (L — &) (L — &a)) + Ty
‘where

By = |fw: 1F (= m)fy](@)] > B(L—e) el

As before
17 | sin (20 8)
1 ot = (30/5) B N
< 3 fllc m ()| e~ (=2]9)
-0
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and now

1 7 ,
<T§ f'k-—m(w)Ie“""’”"” dw

o/} U
AT e remoreonra
—d[dg a/ag ~co
1 L w
4B
< (2/6) (m) f |7o—-’)’i’b(a:)[da;—[—-T f@"("nw/d)ﬂdw
_‘a/dg afe?

= I-4-1II.

By (10), I<e,.
After a change of variables, one obtains

o 2B
)

o 4B F 4B
- ¢ mdm<T fe dw:-a—e‘”"0<so by (11).

/3o ? 15 0

Following the same method ag in part (a) and using (11), (12) re-
duces to ’

[{17efs (@)] > Bo(1— &1)}| < I8/ TT(L— &) (1 — &) 17
Continuing to argue in the manner of part (a) one finally gets

(2~ 80) /8 < (24 £) [OK7(1 — )7

(T

Since &, and s, were arbitrary: k< 1.

This is clearly best possible by simply consideri L
erator. m Py ring the identity op-

TumoREM 2. Let Tfxg = f+Tg for all fr9eF,, and let T satisfy
Ap(a) < OlfIgJo®  for

Then T is type (2,2) on all of I
Proof. Without loss of generality ¢ = 1, m(w)
and # = 1. One handles m complex-valued and =

Hence

l<p<2.

=0 a.e., [ml, > 0,
general in the same

way as in the proof of Theorem 1. As in the proof of Lemma 1, T/])(as)

Weoal-type mullipliors 79
=m(w)f (@) with m e L, As in the proof of Theorem 1, let B={w e R
AL E—e<<m(®) <k} with k> 0 and |B| > 0. Again we have

4
(1/26) [ m(@y+a)dw->m(w,) as -0 for some a,,
-3

and without logs of generality we may chooge @, = 0. Choose (@)
= sin (27@/8) [(nw) 0 that feFy. Lot h(m) = yg (@)
ok ()] (@) = h (@)m(@)f (@) +(k —m(@)h @] ().
Define
H(f) (@) =#[Af 1().

By the Fourier inversion theorem (applicable by the proof of Lemma 1},
we have

KH (f) (@) = H(T(f)) (@) -+ [(°k—m)hf 1(—2).
By a similar argument as in Theorem 1, we reduce to
1) Tgy(a) < Agyla).
It is ‘woll-known (see [8]) that for the Hilbert transform H,
Hy: weak LP —weak IP  for 1<p<2.
However it is easy to see that

~

i (@) =(%) U0+ 0) — Hola— ).

From this it is clear that

H: weak L? »—>.Wea,kL” for 1<p<2.
This yields the following eqtmtioﬁ:
@) sup [o? Agrry(@)] < Lo(p) sEp[a%f(a)]-
But T is wealk-typo (p, p) against f. So this means that .
(3) sup [ Ay (a)] < IF 1
Combining (2) and (3) and substituting into (1), one arrives at
(4) K@) < Lo (P)IFIG [0” -
It is trivial to wverify
(8) IFIf = 2/3.

Choose a = L.k, B, chosen in a similar way as in Theorem 1. (4), (),
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and the choice of a yield:

(6) hap(LyJe) < 2B, [(LEHP).
() dgy(Ln k) = |{9’ |KHf ()| > 79L1}l

= {w: |Hf(@)| > L,}|

= |[{w: |(sin2mw)mm)ey 1, 0m)] > L]

Bl e i

where Lj is a constant depending only on L,. Substituting (7) into (6),
we finally have

(%) L, < 2L, /(812 12).

8o k< [2Lo /(L L) . m

3. Counterexample. From these and Ash’s results (sec [1]) the
question arises as to what would be the “smallest class” against which
weak-type (p, p) implies type (2, 2). The following counterexample shows
that if the class consists of f such that f(x) = L-a5@+N), N,z eR; 6> 0,
then the class is too small for 1 < p < oo. ]?rewously there was only a
counterexample for p = 2 againgt this clags (see [2]).

COUNTEREXAMPLE. If m(z) = ZW(—I pl@—n®) with p > af(a—2),

then m is a weak-type (p, p) mulmplwr operator against the class f(z)
= Y-s,0(@+N), in fact (strong)-type (p, p) against the class, but is not
type (2, 2).
Proof. f(#) = y_s,s(@+N) |fll, = (28)1/p. Hence
n (sin2mdx) N

F = 2

For convenience we will only do the ease p > 3/2 which is general.

oo
m(x) = Z o,y —nt).

n=2
Clearly |lmll, = oo s0 T is not type (2, 2) where Tf(x) = F~Y(mf)(x). Then
oo w4l
Tf(w) = D) [ e ™ (sin2ndy) @™V [(my) dy
n=2,6_1

by the Fourier inversion formula,
1

fw o sin2nd (y -4 nd) > —al
— S 210 z)n
T ande f [27d (y +n%)] 24

=2 -1
after change of variables.

icm
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- 1
Immma 2. If §(w) = [g(y)e™ ¥y, then
-1

. 1
lg ()] < yorm (llglloo 4119’ oo

]

where the co-norm takes place only on the interval [ —1, 1.

Proof. Intograting by parts is all that is needed to obtain the result
28 we now show:

1
1§ @] =] [ lg(y)eay|
-1

) (525) [

-1

.‘ni.u/d
I Mm "(y)e yl

(2 le) 2 gl -+ (2 i l)llg "2

( )[!Igllm-HLtI floo]. m

We now return to the proof of the counterexample. Define

1
I= [[sin2rd(y+n)/2m8(y-+n) ™ -ngy,
-1
Then

1) \Tf ()

22416|I]

n=g

Leb g(y) = [sin2xd(y +-n°)1/2x8 (y +n°). Then I = g(1/(¥ —a)). First con-
sider the case d < 1 and n®< 1/6. Clearly |lgl, < 1 and

e

Hence by Lemma 2 we havo

kY

2

B2

2n6(y o )
for all n = 2.

l9' ()] =

i

sin 27 (y »}—hfn“’») ]

)[co&md(u +0f) -

(2) I < (142)/n| ¥ 0| =3/n|N—a] for |[N—a|=1.
If |N—w| <1, then one obtaing
1
(3) 1< [ |[sin2mé (y +n) [2m6 (y +nf)] V- |dy < 2.
-1

8 — Studia Mathematica LXVIT.L
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Now we handle the case d <1 and n°>1/é.

1
f [8in 278 (y + n°) (2w (y 4+ nS) 2N~y
~-1
= 08 (2mdnt) f [5in2mdy /20 (y -+ nf)] 2™ -y 4
~1

1
-+sin(2mon®) [ [cos2mdy [2md (y -+ n)] -y
=1

1
= (cos2ndn’ n%) f [8in2mdy [27 (1 + 4 /nf) ] ™™ N =Wy - 2nd term
-1

=I,+1,.
Let g(y) = sin2ndy /26 (1 4y /nf).
llo<2 for ye(—1,1] and n>2

’ 1 : .
lg’ ()] =‘(m) (cos2m8y — sin2mdy (270 (y —}-nﬁ)) < 2
for ye[—1,1] and > 2.
Hence by Lemma 2 we have
sl < (242)[an | N —o| = 4/mn® | N —w| for [N—o>1
To handle I, let g(y) = cos2ndy/2=d(1+y/m).lgl, <1/8 and it
is easy to check that [lg’ll, < 2/d. Again by Lemma 2 we obtain
ol < 6/07n® [N —@| for |N—a|>1
So this means )
(4) I < 10/ménf|N—2| for |N—u|>1 since §<<1.
If [N—2|<1, then we have

1
I < (1/nf) [ [[sin2mdy 28 (1+ynf) 16T -aW| dy < 2 jnS,
c—1
and
1
o] < (1/8nf) [ [cos2mdy [2m (L 4y /n®)]e™ &~ qy < 2 /8nS.
-1

This gives
(5) | <4/6n for |N—a<1
We may further break up inequality (1) to obtain

oo 1/81/6
ITf(@) < 3 2ms|I| < Z‘ 2n8|I| -+ 2‘ 208 |1).

n=2 nw=1/g1/6
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(For convenicnce we are assuming 1/6"¢ is an integer.) For |N —u| > 1,
one has

1/81/6
|Tf () 1(2 28w |N —a| }J 2n6- 10/1\:61@“11\7 x|
N==f n-cl/dl/ﬁ
by (2) and (4).
|Tf (@)] < (88/7|N —al) (1/67)(1/6°+1) /2 +20/5 | N —a] > 1/nf
nm1fsl/6
K 68 | N — |-+ (20 | N —wl) /2 (L] 5)
= 168"° I |V —a].
For |[N—u| <1, one hag
1/81/6
IZf (@) < D] 2nd-2+ Z n8-4/6n° by (3) and (B),
umz n=1/8116

K462 4-46""  in the same way as above,
= 8§,
We eonclude that
(6) 1211, < 406 for p>3/2 and 6<1
ag can be easily calculated.
Now consider the case ¢ > 1. We begin with the following break-up:
1
= [[sin2md(y +nS)/2md(y -+ n) Jem gy
-1
1 -
------ = (cos 27mon’ Ind) fl‘(egml"”‘«(’ "““”’)/(zi~27r6(.1. -y )| =Wy ).
-1

1

|- (sin2m§n5 /,nb) j |(6-mmu e -:m[m/)/(z Qs (L 4y /,"‘6)) ] a-zn'/(N.a')udy
-1

1 Iy Iy,

One can express I, in the following manner:

1

) cos2nmdn® ~ oy Nt B

L = Tinnbis f 1/ (l 1777’) [Vt W N =W ] gy
-1

Do a similar break-up for T,.
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By the same method used to handle 6 < 1 one arrives at
[I|<[4/m66 if |[N—24+4d<1,
3/n2n66|N~mi61 if |[N—2+6/>1 when 6> 1.
By (1) we had

(M

1Tf ()] < i’znam.

N=L

So by (7) we see

4/n if
6/n* | N —wtdl if
Hence we obtain the following bound:
(8) IZfll, < 28/%  if

a8 can be verified by a straightforward computation.
To sum up, for p > 3/2, ||f}}, = (26)"7, IZfll, < 28/ for 6 > 1 by (8)
and |Tf|, < 408*® by (6). Hence 1T, < 40/2Y%|f[,, whenever p = 3/2. m

N —2td <1,

T <
| f(”)f\l |¥N—®-£8>1 when &= 1.

p=3[2 for §>1
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Analytic formulae for determinant systems
in Banach spaces

by )
A, BURACZEWSKI (Olsztyn) and R. SIKORSKI (Warszawa)

Abstract. Formulas are proved for the determinant systems of linear map-
pings 4 = S+ 1" where § is a fixed Frodholm mapping from a Banach space X into
another one ¥, and 7' is a quasi-nuclear (or nuclear) mapping from X into Y.

The theory of determinants in an arbitrary Banach space X was
first created for linear endomorphismy 4 = I--7 where I is the identity
mapping in X, and T is a nuclear or quasi-nuclear endomorphism in X,
(Grothendieck [2], Lezarski [3], Ruston [4], sce also Sikorski[6].) The
theory yields analytic formulae for the determinant system of 4, con-
sidered as & function of the quasi-nucleus (or nucleus) ¥ of 7. Buraczewski
[1] generalized the theory to the case of endomorphsisms of the form.
4 = 8+ whero 8 is a Fredholm endomorphism in X, , and T is a quasi-
nuclear endomorphism in X. Ho also formulated analytic formulae for
the determinant system. of 4 = §--7 (when considered as a function
of the quasi-nuclens # of T'), but only under the additional hypothesis
that 8 is right-hand or left-hand invertible (see Buraczewski [1], Theorem
(xiv)). The subject of the present paper is to generalize the formulae to
the case of 4 = 8T whero § is any fixed Fredholm mapping of a Banach
space X into another one ¥, and T is a quasi-nuclear mapping from X
into ¥. It is not assumed that S is right-hand or left-hand invertible.
It is not assumed that ¥ = X, i.e. it is not assumed that 4 , S and T are
endomorphisms. The theory of determinant gystems, developped in this
paper, is formulated in terms of tho category of isomorphically conjugate

airy of Banach spaces, The objeet of the catoegory are the pairs of Banach
spaces just mentioned (for definition, see Section 1), The morphisms are
operators defined in Seetion 2. The main theorem of the paper is Theorem
7.1.

Note that the terminology in our earlier papers on determinant
systems differ sometimes from that in the present paper.

1. Pairs of conjugate Banach spaces. Tn this paper, either all linear
Spacos are real, or all are complex. If B denotes a normed space, then H*
denotes the Banach space of all continuous linear functionals on .
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