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By the same method used to handle 6 < 1 one arrives at
[I|<[4/m66 if |[N—24+4d<1,
3/n2n66|N~mi61 if |[N—2+6/>1 when 6> 1.
By (1) we had

(M

1Tf ()] < i’znam.

N=L

So by (7) we see

4/n if
6/n* | N —wtdl if
Hence we obtain the following bound:
(8) IZfll, < 28/%  if

a8 can be verified by a straightforward computation.
To sum up, for p > 3/2, ||f}}, = (26)"7, IZfll, < 28/ for 6 > 1 by (8)
and |Tf|, < 408*® by (6). Hence 1T, < 40/2Y%|f[,, whenever p = 3/2. m

N —2td <1,

T <
| f(”)f\l |¥N—®-£8>1 when &= 1.

p=3[2 for §>1
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Analytic formulae for determinant systems
in Banach spaces

by )
A, BURACZEWSKI (Olsztyn) and R. SIKORSKI (Warszawa)

Abstract. Formulas are proved for the determinant systems of linear map-
pings 4 = S+ 1" where § is a fixed Frodholm mapping from a Banach space X into
another one ¥, and 7' is a quasi-nuclear (or nuclear) mapping from X into Y.

The theory of determinants in an arbitrary Banach space X was
first created for linear endomorphismy 4 = I--7 where I is the identity
mapping in X, and T is a nuclear or quasi-nuclear endomorphism in X,
(Grothendieck [2], Lezarski [3], Ruston [4], sce also Sikorski[6].) The
theory yields analytic formulae for the determinant system of 4, con-
sidered as & function of the quasi-nucleus (or nucleus) ¥ of 7. Buraczewski
[1] generalized the theory to the case of endomorphsisms of the form.
4 = 8+ whero 8 is a Fredholm endomorphism in X, , and T is a quasi-
nuclear endomorphism in X. Ho also formulated analytic formulae for
the determinant system. of 4 = §--7 (when considered as a function
of the quasi-nuclens # of T'), but only under the additional hypothesis
that 8 is right-hand or left-hand invertible (see Buraczewski [1], Theorem
(xiv)). The subject of the present paper is to generalize the formulae to
the case of 4 = 8T whero § is any fixed Fredholm mapping of a Banach
space X into another one ¥, and T is a quasi-nuclear mapping from X
into ¥. It is not assumed that S is right-hand or left-hand invertible.
It is not assumed that ¥ = X, i.e. it is not assumed that 4 , S and T are
endomorphisms. The theory of determinant gystems, developped in this
paper, is formulated in terms of tho category of isomorphically conjugate

airy of Banach spaces, The objeet of the catoegory are the pairs of Banach
spaces just mentioned (for definition, see Section 1), The morphisms are
operators defined in Seetion 2. The main theorem of the paper is Theorem
7.1.

Note that the terminology in our earlier papers on determinant
systems differ sometimes from that in the present paper.

1. Pairs of conjugate Banach spaces. Tn this paper, either all linear
Spacos are real, or all are complex. If B denotes a normed space, then H*
denotes the Banach space of all continuous linear functionals on .
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A pair (5, X) of Banach spaces is said to be & pair of conjugate Banach
spaces provided that, to every & € Z and « e X, there is assigned a number,
denoted by &z, in such a way that £z is a continuous bilinear functional
on Hx X, and the following cancelation laws are satisfied:

() if £x=0 for every {e &, then # =0,

(¢') if éw = 0 for every # e X, then & = 0.

The bilinear functional is called the scalar product on Ex X. The
number & is the scalar product of & and w.

It follows from (e} and (¢’) and from the continuity of the scalar
product that every element £e & can bo interpreted as a continuous
linear funetional on. X and, analogously, every element @ € X can be
interpreted as a continuous linear functional on 5. In symbols,

(1) FcX*, XecBg*

This causes that every element £ e & has two norms: the ordinary norm
[&] a8 an element of the Banach gpace 5, and the norm
(@) ' |E* = sup|éa|

. jwl<t
as a functional on X.

Similarly, every element x ¢ X has two norms: the ordinary norm |x|
ag an element of the Banach space X, and the norm

(2") |#* = sup|éw]

et
as a functional on 5. Denoting the scalar product (i.e. the bilinear func-
tional on & x X in question) by I, and its norm by {I|, we have
(3) & < |Z]-1¢]  and
for all {5 and e X.

The most important case iy when the norms | | and | |* are equivalent,
for both the spaces Z and X. We say then that (&, X) is a pair of isomorphic-
ally conjugate Banach spaces. A pair (5, X) is a pair of isomorphically
conjugate Banach spaces if and only if, in interpretation (1), & ix & closed
subspace of X*, and X is a closed subspace of E*; or cquivalently, if and
only if there exists a positive number ¢ such that

(4) &< 0|1,
for all £e & and e X.

lel" < L] jol

lz] < o |o]*

2. Operators., If 4 is o bilinear functional defined on the product
of a pair of Banach spaces, say 2 and X, then the value of A at a point
(0,2) e 2% X will be denoted by wAz.

Let (&, X) and (2, ¥) be pairs of conjugate Banach spaces. It follows
from the cancelation laws for the pairs of the Banach spaces that every

icm

Analytic formulae for determinant systems in Banach spaces 87

continuous bilinear functional 4 on Q x X can be interpreted as a linear
mapping from X into £* and, simultancously, as a linear mapping from Q
into X*. The value of those mappings at points o and w, respectively,
will be denoted by Az and wd. Namely, 4o and w4 are the only points
in @ and X*, respectively, such that

w(dr) = wdr for every we
and

(wd)w == wdrx for overy we X,

We shall be interested only in the continuous bilinear functionals 4.
on 2x X that satisfy the conditions

(1) AreY for every we X,
and
) wd el for every we Q.

In this case we shall say that A is an operator (more precisely, that A.
is & (8, X)-weakly continuous operator on (2 x X)). The set of the operators
will be denoted by
(2) op(R—+5, X~Y).
Let (&, X), (R, ¥) and (4, Z) be pairs of conjugate Banach spaces.
By the composition BA of operators
4 eop(R—>E,X~>Y), Beop(d->Q,Y2)

we shall mean the bilinear functional on A x X whose value A(BA)x
at a point (4, 2) e 4 X X is given by the formula

(3) A(BA)z = (iB)(4w),
i.e. it is the scalar product of the elements AB e 2 and 4z € Y. It follows
from the definition that '
(4) BA eop(Ad—5, X—+7).

Let (£, X) and (2, ¥) be pairs of conjugate Banach spaces. Let .4
be an operator in (2) and let B be an operator in
(5) op(E->Q, ¥-+X).

Then BA e op(&-+&, X-+X) and ABA is again in (2). The operator B
is said to bo a guasi-inverse of A provided

(6) ABA = A.
If, moreover,
(6") BAB = B,

B is said to be a rediprocal quasi-inverse of A.
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3. Bi-skew symmetric multi-linear functionals. Wo shall examine
only continuous multi-linear functionals defined on the cartesian product
E*Xx XY™ of the Cartesian powers 5 and ¥™ of fixed Banach spaces 5
and Y. The value of such a multi-linear functional D at a point

(517 rrry bu ?/15 LA ?/m) EE"X 1"”
will be denoted by

(1) ])(51"”’5"

Yir ooy Ym

The multi-linear functional (1) is said to be bi-shew symmetric it it
is skoew symmetric in upper variables &, ..., &, and it is skow symmelrie
inlower variables gy, ..., ¥,,, that is if, for any permutation D= (Pry ey D)
of the integers 1,..., 4 and for any permutation q = (Quy vy @) Of the

integers 1, ..., m,

D(E"l’ e E””) = ﬂgnpsgan(él’ o S ):
?/qﬂv"yqu yly"'7ym!
-where sgn. p and sgng denote the signs of the permutations P and ¢, regpect-
ively, i.e. they are equal to 1 for oven permutations, and equal to —1
for odd permutations.

The Banach space of all continuous (in norm) bi-skew symmetric
multi-linear funectionals (1) will be denoted by

) (n=>0, m>0).

@) 88, (£, T).
Lét (1) and
(Eay ey &
(3) D (=0, n=0)
Yir vves Un

be bi-skew symmetric multi-linear functionals.

The bi-skew symmetric produet of D and D’ is a bi-skew fymmetrie
fungtional D" on E*** x ¥™+* defined by '

D”(E“ v "t“'”) = Z sgnpsgng D ('S"l’ T ‘517“)13, (EJ"MV T By ),

Yis oy Ypn e a1 Yq,, Yo 410 1 Yy o,
where 3 is extended over all permutations P = D1y -y Puyy) oF the

ma
integers 1,..., u+» and all permutations g = Q11 +++) Qo) OF the in-
tegers 1, ..., m-n, such that

Pr<Pe<-<Puy Du1 <Pugr < eor < Pppys
Q1 < QZ <. < %n! QWH-I < Qm—{-z <o < (_7m+7L'

The bi-skew symmetric product D'’ of D and D’ will be denoted by De D’.
The multiplication e is associative.
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Suppose that Fand ¥ are members of pairs of conjugate Banach spaces
(&, X) and (2, ¥).

Bvery element # e X can be interpreted as an element D in bssy, (&, X)),
viz. D (&) = &x for & e 5. Similarly, every element o e 2 can be interpreted
ag an element D in bss,; (&, ¥), viz. D(y) = wy for y ¢ ¥. More generally,
we can form multi-vectors

(4) X =wme..05 whre x,..,z,eX,
(4") O =we..0u, where w,...,0,ecQ.

If B is an operator in op(&->Q, Y-»X), then B e besy (&, ¥). More
generally, we can form the following moditied powers of B

(5) B =2 BeBe..eB (n=0,1,2,..)
n! .
n-times

which are elements of bss,, (&, ¥).
We can also form the bi-skew symmetric products

(6) B*"exe ».

The multi-linear funetionals (4), (4'), (5), (6) are the main examples
of bi-skew symmetric functionals which appear in the theory of deter-
minant systems,

4. Weak continuity of multi-linear functionals. Let (&, X) and

(2, ¥) be pairs of conjugate Banach gpaces. A multi-linear functional
fieey 5“)

Yis ooy Ym
defined on &% x X™ (u = 0, m > 0) is said to be (2, X)-weakly continuous
if the following two conditions are satisfied: )

(w1) for any fixed clements &, ..., & _,, Sip1y ooy €85 and y,,...
oy Y € ¥ there exists an element # ¢ X such that
517 A 61?»11 £’ 5,;;4; AR Eu)
Yago o 0 0w ey U
for every §e &, ¢ =1,..., u;

(ws) for any fixed cloments &,..., &, & 5 and ¥y, ..., Yimty Yip1y oee
<oy Y € Y there existy and element o € 2 such that

(D?] =D(El? H #)
Yis ooy Yrm10 Us Yigrs «vvy Um

for every ye ¥, j =1,...,m.

1) D(

éw ~=I)(
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It follows directly from the definition that every (2, X)-weakly conti-
nuous funetional (1) is continuous in each of the variables &,..., &,
Yas - ey Yy SeDarately. Thus it is continnous with respect to the ordinary
norm

(2) D] = sup

J)(E” o 5") D&l sl Lfor 4 =1,..., 4 and
Yiy ooy Yml | )

lyl << 1 for § =1,...,m{.

4.1. If (5, X) and (Q, X) are pairs of isomorphically conjugate Banach
spaces, then the set of all (u--m)-linear (2, X)-weally continuous functionals
(1) on E* X X™ is a Uinear closed subset of the Banach space of all (u-+m)-
linear continuous (in the norm (2)) functionals on F*x Y™, Therefore that
set with the norm (2) is a Banach space. Consequently the set of all (u-+m)-
linear (2, X)-weakly continuous bi-skew symmetric functionals on F¢x Y™
is a Banach space with the norm (2).

We have to prove that if D,~+D in the norm (2) and all the func-
tionals .D,, are (£, X)-weakly continuous, then the limit D is also (@, X)-
weakly continuous. For this purpose, consider the expressions

Dn(él’“.’fﬂ)’ D(Sl?"‘lsl‘)
Y1y ooy Ym Y1y eees Ym
as functions of one variable, say y,, the remaining variables being fixed.
By the (R, X)-weak continuity of D,, there exists an w, e 2 such that

£y e
v "E") for every y, e ¥.

wnyl=-Dn(
Yir-o1Ym

Since (see Section 1, (2))
lwn_“wk[* = 80P [(w, — o) ¥
lyy =<1
< ]Dn—Dk] [51| LA |§,u[ WEI LA W‘m':

the sequence oy, w,,... satisties the Cauchy condition in the Banach
space £ with thenorm | [*. Since the norm | |*is equivalent to the norm | |,
the sequence satisfies the Canchy condition with regpect to the norm | |.
Thus the sequence converges, with respect of the norm | |, to an elomont
o € 2. Since the sealar multiplication is continuous, wo have

wyy = (imw,)y;, = lim(w,y,)
N->00 n->00

=1imDn(El’ o E“) =I)(£1’ v 5")

00 Y1y ceesy Ym Yus oeey Y
for every y, e Y.

Analytic formulae for determinant systems in DBanach spaces 91

4.2. If (E, X) and (R, Y) are pairs of isomorphically conjugate Ba-
nach spaces, Dy, Dy Dy, ...are (u-+m)-linear (2, X)-weakly continuous
functionals defined on E" x Y™, and ‘

®) S0, < o,

frer
then the series

" o) = S )

Yis ooy Unm k=0 Yiseoor Ym,
converges n norm and its swm also is a (u-m)-linear (Q, X)-weakly conti-
nuous functional defined on E* x Y™,
This i3 & direct consequence of 4.1.
4.3. If (5, X) and (R, X) are pairs of isomorphically conjugate Banach
spaces, then the sets of operators .
op(R—>&, X-Y) and op(5F—>Q,Y->X)
are Banach spaces with respect to the ordinary norms
4| = sup |wde] and |4 = sup |£4y]
lzl <1 fﬂii
respectively.
This follows from 4.1 (the case where u = 1 = m) because a bi-

linear functional 4 on & x ¥ (or 2 x X) is an operator if and only if it is
(Q, X)-weakly continuous ((&, ¥)-weakly continuous).

5. Continuous nuclei. Let (&, X) and (£2, ¥) be pairs of conjugate
Banach spaces. If # ¢ X and o € 2, then the symbol @+« denotes an oper-
ator in

(1) op(E—~ 2, Y»X)

whose value at a point (£, ¥) € &x ¥ is equal to the product of the num-
bers fr and oy, in symbols

o)y = fu-wy.

Let ' be any continuous linear functional defined on the space (1),
i.e. an element in the Banach space

(2) op(E—Q, Y—»X)*.
The formula
(3) ofr = Pz o)

defines a bilinear functional F on Q2x X. We shall be interested only
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in the eage where F ig an oporator, more precigoly, where F is an clement
of the space

(4) op(2—&, X—Y).
The space of all I in (2) such that F is in (4) will be denoted by
(5) en(R—5, X->Y),

The elements of (5) will be called continuous wudlei (or simply nuclei).
More preecisely, if T = I\, wo say that the functional F is a (continuous)
nucleus of the operator I' in (4). Liet @ be the mapping from (2) into the
Banach space bss; ; (2, X) of all continuous bilinear functionals on Q x X,
defined by

(6) S =F for Fin (2).

The restriction of @ to the subspace (5) of (2) will be called the canonical
tramsformation. )

5.1. If (&, X) and (R, Y) are pairs of isomorphically conjugate Banach
spaces, then the space (5) of all continuwous nuclei is & closed subset of the
Banach space (2), and therefore it itself is a Bamach space. The canonical
tramsformation is & continuwous mapping from (5) into (4).

By a simple calculation (see Section 1, (3)),

\F| < II]+19]-|F)

where |I| and |J| are norms of the scalar products I and J in (8, X) and
(2, Y), respectively. This proves that & is continuous, and consequently
80 is the canonical transformation. By 4.3, (4) is a closed subspace of
bss,; 1(2, X). Consequently, its inverse image by @, i.e. the space (5)
is a closed subspace of (2). '

Let D ebss, (5 ¥) be an (L, X)-weakly continuous multilinear
functional, 4 > 0, m > 0, and let F be a nucleus in (2). Pix all the variables
Sayoevy €4 and ¥y, ..., ¥, and consider the expression

D(sl, )

Yis eoey Y

a8 & funetion of £ and y, only, i.e. as an operator A4 in (1). Take the value
F(A4) of F' at A. Denote the value by

(" FDD(EZ’“" ").
Yas veiy Yy

Denote by Fo.D the funetion which assigns to Sy éueFandy,, ..., ¥,
€ Y the number (7). It is easy to see that )

?

FoDe bssp—],m—-l(‘E’ Y) .

icm®

Analylic formulae for dolerminant systems in Banaoh apaces 93
It p>1 and m>1, and if POD is (2, X)-weakly continuous, we can
repeat this procedure and define
GOFOD € b8,y a( 2, X)

for any nucleus @ in (2). We can iterate the procedure k-times, where
% == min(u, m), and define

BoD, PolnoD,., .. P,orobD,

provided the iteration preserves tho (2, X)-weak contituity. We shall
deal only with the case where the last condition is always satistied. By
definition,

(7') BB, 0 B POD e 088, o8, T (< E).

If I is o fixed nucleus in (2), then 7'y will denote the mapping which
asgigng oD to every D e bss,, (8, X). Clearly,

ro...mo

is the composition of mappingsF, 00, ..., F,01 determined by nuclei F,. .., F,

in (2).

We shall denote by F™ the modified i-th power of a nucleus F in (2),
that is,

; 1
(8) P =—Fo...Fofo.
& N et
i~timos
In particular, ™ = Fn.

6. Estimations. Let (5, X) and (2, ¥) be pairs of conjugate Banach.
spaces. Lot |I| and |J| denote respectively the norms of the sealar products
I,J in those pairg.

We recall (seo Section 3, (4)) that if @,...,®, are elements in X,
then ® = w;e, ..., 's @, is the following mulbi-linear functional (mulsi-
vector) in bss, (5, ¥)

&y o Sy,
(1) B(Ery o B =l
5/&‘7)1 e Sl‘mﬂ
Similarly, for any ey, ..., o, in Q 't]lp symbol o = wye,..., s,
denotes the following multi-linear functional (multi-vector) in bsgy,m (Ey X}
W11 e wiym
(1’) CD(?/“ rery ym) = e
DpY1 o v DY
Under the above notations, o v
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6.1. The follbwing inequalities hold:
2) @l < Vr 1 @
@) lof S Vo™ [T [™ @] ... [0,].
This follows directly from. the Hadamard inequality.

Let & and o be as above and let B e op(&-»R2, ¥-X). Under theso
hypotheses,

6.2. The following estimation holds:
(8) |B®"eweon|
ftml (ntp)!

nim! alal

S IF W™ a3 oo ] 3] oo 0] 1BI i

Denote B*"exe ® by D, for brevity. By definition (sce p. 88-89)
517 ARAS ‘fn-l-#)
D( = 3 a, B,y
Yiy eoos Y y,zq‘ marere

where p and ¢ are permutations of the integers 1,...,n+u and 1, ...
...y B4m, respectively, such that

(4) P <. < pm pvw—l < < fpn-&-m
(41) /6% << Qn? QW.-]-I <o < %H-m!
and
€ BYq, v & BYg,
Qpg =]« « « o o . b
£p, BYy, €p, BYq,,
El’n+1w1 E-’ﬂn—uwl‘ wlyﬂ’n-ﬂ te wlyﬁn+m
Bo=1| . ol Y= .
Eﬁn—(-pml R 5]17;.;.,4 H mmf'/pn.;.l . winypn+m
Hence
E1peeny bny )
D( N Ma, l1Bal1vl.
’ yl? ) :’/n-l-m = % J’rd‘ ﬂﬁ b’al
Suppose that
[Gl<1l  and  Jyl<1 for 4 =1,...,n+pu and j =1, vy Ntm.
It follows from 6.1 that
®) Bol VAT (4] ... |,
(8 [yel SVM™ITI™ fay] ... [,y
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Applying the Hadamard inoquality to the determinant a, ., we got
(6) loty, gl < V" BJ",

Inequality (3) follows directly from (3), (B’), (6) and the fact that
the nurnbers of permutations p and ¢ satisfying (4) and (4'), respectively,
are equal to

(n - u)!
ary

(n~-m)!
nlm!

Now, let B, 2, @ be as above, let
D == Bt'u-l-ln‘m‘ o

for brevity, let F e en(R-—5, X—>Y) be a continuous nucleus, and let

1)'(5“ o 5”""‘) = FO... FobD (E

4 ’

1reees Err Sy eeny Enp

) .
y]’ A yn'|*7n

oy ?/13-*-7?/;01 Yigoros Ynem
Under these hypotheses,

6.3. The following inequality holds:
() 1D Il oon @] J0a] oo |l [T ™ B F X ]
T (n+T4+p)! (n+k+m)!

sV ptm™(n -+ k) T iul (mrkyiml

‘We have
I.DI\ »_'«BHI)I,D’(E“ ey fnnﬂl): IEAQI for 4 =1,...,n+,u
Yiy o ooy Ynm

and |y;l <1 for j'=1, ...,n—l—m‘

< |]!7|I"S‘llp[AD(£§’ ooy Gy By ey n,—l-li):

s enes Wiy Yoy oot Yncon
|Gl for 4= 1,..,k, | <1 fori=1,...,n+u,

lysl =5 1 for j

H

Ty loy gyl €1 dor j =1, ...,n—}-ml
= |F*|D].
Now apply (3) where n should be replaced by n--Tk.

7. Determinant systems. Lot (5, X) and (2, Y) be pairs of conjugate
Banach. spacos.

‘We shall use the following notation. If D is a multi-linear functional
defined on & x X", and y is a fixed element in Y, then the symbol Dy
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will stand for the multi-linear funetional defined on &* x ¥» by

. A )
7/17'"7ym ?/7y11"~;ym

Roughly speaking, Dy is obtained from D by the fixation of tho firgt
lower variable. If D ebss, . (&, ¥), then Dy ebss, (5, ¥). It 4 is
an operator in

(2) op(R—>8, X-¥),

then DA will denote the function which assigns, to every w e X , tho fune-
tional D[Ax], i.e. the result of the substitution of the clement Y = Aw
for the first lower variable in D.

Analogously, if D is a multi-linear functional defined on &* x ¥,
and £ iy a fixed element in &, then the symbol £D will stand for the multi-
linear functional defined on &*x ¥™ by

(2,) ED(EI’.“,EM)=.D(E’ 517“-75;4)
Yiy eoey Ym Yis vy Un

Roughly speaking, &D is obtained from D by the fixation of the first
upper vaxiable. If D ebss,,; (5, ¥), then £D ebss, (5, X). I 4 is an
operator in (2), then AD will denote the function which assigns, to every
@ € 2, the functional [wA4]D, i.e. the result of the substitution of the
element & = wd for the first upper variable in D. -

It D e bss, (5, ¥) and O e op (55, X+ X), then the symbol OeD
will denote the funetion which assigns, to every » e X, the skew product
CzeD ebss, 1 n(8, Y) of OreX < 5* and D.

Anal_c)ygously, if D ebss, (85, ¥) and 0 e op( Q- 02, YY), then the

symbol CeD will denote the function which asyigng, to every o e,
the skew product wCeD ebss, ,,.\(5, ¥) of o e @ ¢ T* and D.

In what follows, the letters I and J will denote the gsealar products
in (&, X) and (R, Y), respectively. The operator I, interpreted as a mapping
of & (of X) into itself, is the identity mapping of 5 (of X) onto itself.
Analogously, the operator J interpreted ag a mapping of 2 (of Y) into
itself is the identity mapping of 2 (of Y) onto itself,

By a determinant sysiem for an operator 4 in (2) wo ghall wean any
infinite sequence of multi-linear functionals

(3) Doy Dyy Dy, ...

such that

(dy) all the functionals are bi-skew Symmetric, more precisely,

(4) : D, ebss, , (5, ¥)

icm
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where
(5) Hn == o 4'“1 My, == My +n
and
(5" 00 (g, o) == 0;

(dg) all the multi-linear fanctionals (3) are (R, X)-weakly continuous;
(dy) there oxists a non-negative integer » such that D, # 0;
(d,) the following identities hold for s = -1,0,1,2, ...

(6) Dyd =1eD,,

(6" AJ)H-[-l = '}‘-Dn'

The case of n == —I1 requires an explanation. In that case the right-
hand sides of (6) and (6') have no senge and ghould be replaced by 0.
The left-hand side of (6) is sensible only if m, > 0; then it should be equal
to zero. Analogously, the left-hand side of (6') is sensible only if u, > 0;
then it ghould be equal to zero. By (b'), it is excluded that both u, and
m, are powitive, If wy = 0 = m,, the left-hand sides of (6) and (6") have
no sense and both. (6), (6°) are, therefore, satistied.

If m = 0, then equations (6) and (6') are abbreviations of the following
identities :

(7)

D (50,51, ) "_}"j%(__l),,m_l, (f by éﬂ.l,--.,s,,n),
- - v n

" ADy Y1y oy Ymy, im0 A 9 Ymy,
(7)

m,
.D (WAy 517 T Eﬂn) = ‘ﬁ(—l)jﬂ)yj'-pu<fl, ....... ! EM)
. Yos Y1y =vvs Ymy, om0 Yoy coos Yi1s Ypr1r oo o9 Ymy,

7.1, Tun MArN Tnmomem. Let (8, X) aend (2, Y) be pairs of fisf)-
morphically conjugate Banach spaces. For every continuous nucleus I in

(8) o (Q+8, X-Y),
let '
(9 Dy, ) = D, for my kb =0,1,2,...
Then
(i) the function
(10) Dyt o0 ( Q-5 ) X T)->Dbs8,, o (8, T)

s 'a homogeneous polynomial, of degree &, which assigns, to every continuous
. . N Yy .
nucleus I, the multi-linear functional 2, () defined on Ern X X™5;

7 ~ Studla Mathematica LXVIL1
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(ii) there exist positive mumbers a,; (n,k = 0,1,2,.,.) that do not

depend on T, and such that for every fized n the limit lim, Snalerr owists
. S . feroa an’"

and is finite, and the following estimation of the norm of the poiy%omial

D,y holds:

(11) I@n,k[ < an,lc/k!’
that ts,
(11) B0, )] < B (1

(iii) the series

“ |
D 1Pl (n=10,1,2,..)

k=0

(12)
converges amd, consequently, the series

2 Py D DupB) (n=0,1,2,..)

Fo==0) Fo=0

129 M9, (B,
=0
converge;
(iv) the functions

(13)

2, = ,; Dyt (B X T)=>bss, 0 (5, ¥)  (n=0,1,2,..),

that s,
(13 D (F) = D' D, ,(F),
k=0

are analytic functions (power series) and

dn
(14) 7 Z0F) = T2, (6F)  (y & number);
(v) for every fized F im (8) the sequence
(16) 20(F), D(F), DoB), ... (2,(F) ebss, ,, (5, T))

18 o determinant system for the operator A -F in (2);
(vi) moreover, for T = 0 the determinant system (1B) coincides with (3).
To prove the correctness of the definition of the D, and their

(42, X)-weak continuity we introduce the following terminology. A multi-

D(é‘l,..., 5/»)
yl:"'iym

linear functional

(16)

icm®
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is said to bo simple i it ean be ropresented in the form

51 yreey 5/; 1”] mo-n o
(1M I)( ‘ ) wa @ & -Bﬂ/ , .ﬁ g . £ o
Yigeors Ym Juad ])j “ ] 14 ”"ﬂ Df +n"f

where By @ op (B> Q, Y>X)for j =1,...,n, 0,6 Qforj =1,...,m—n,
wyeX for § o1y .y p=—n (< min(u, m)), ¢ is a number, p,...,p,
is u permutation of tho integers 1, ..., u, and ¢y, ..., g, i8 2 permutation
of thoe integers 1, ..., m. It may happen that any of the integers n, u—n,
m—n are oqual to zero, then the correspouding factor [] ... is supposed
to bo ogual to 1.

A multi-linear functional (16) is said to be semi-simple provided it is
the sum of a finite number of simple multi-linear funetionals.

By a reagoning similar to that in Lezanski [3], pp. 248-250, we
prove that if (16) is simple, then. 0D is also simple, for any 7 in (8).

Mhis implies that if a multi-linear functional (16) is gemi-simple, so is

oD, It follows directly from representation (17) that every simple
multilinear functional (16) iy (R, X)-weakly continuows. On the other
hand, it follows from. a theorem by Sikorski [6] that if (3) is a determinant
system for an operator 4 in (2), then, for an integer r > 0,

D, =0 for r<n and D, =DB*""ewex for n3zr,

where B i o quasi-inverse of A and therefore an operator in
op(E->2, ¥ X)),

and & and o are multiveetors, like in formula (6), Section 3. Thus all the
multilinear functional (3) are semi-simple, and therefore (R, X)-weakly
continuous, By the argument just formulated, the multi-linear functionals
FoD,, Fob,, FrD,, ..., are semi-simple and, therefore (£, X)-weakly
continuous. By the same argument, FrFrD,, FOF0D,, ForfoD,, ...,
are somi-gimplo and (@, X)-weakly continuous, and go on. Thus all the
multi-linear functionaly
B Fod, .,
Festlmos
are semi-gimplo and (&, X)-woeakly continuous. The functionals’ &, .
diffor from those funetionals by constant factors, thus they are well defined,
semi-gimplo and (2, X)-woeakly continuous.
(i) is obvious. The estimation quoted in (i) follows from 6.3 (to
got (11) tuke as @, the product of all factors on the right-hand side of
6.3 (7), oxcopt the factor |7|%). The convergence of series (12) follows from

(11) and from the d’Alambert tost applied to the numerical serieskz; @[T

All other statements in (ili) aro consequences of (12). (iv) is obvious.
(vi) follows directly from the defintion of @, (see (13), (13')).
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We have to prove (v). Clearly, sequence (15) has property (d,;) with
the same u, and m,. Property (d,) follows from Theorem 4.2 and the
(Q, X)-weak continuity of D, just proved.

Let r be the smallest integer such that D, s 0 and let F») = 2,(y, I
for all numbers y. The function f is analytic. It does not vanish at the
point 0 because f(0) = ,(0) =.D, 5= 0 by (vi). Therefore there oxists

n
P f(y)) # 0. This implies,
el
by (14), that 9, ,(F) # 0. Thus for every fixed I soequence (15) has
property (d,). ‘

To prove property (d,) first observe that the following identitios

hold:

a non-negative integer # such that

wA, &, &
(18) .@W,;,(F)( T )

yo’ yl? e "./mn

=2(—1)‘-wy¢-%,k(1ﬂ)(&’ T "E”")_
i=o

Yor Yus oees Yimry Yigrse ey Ymy,
(DI’T, STRIET E“n)

- @7L—}-1,70-1(F) ( ’
Yor Yaseevy Yy,

&y &y LRS) E,.
18) g, <F>( )
i Am:@/u-“’ymn
My .
= 2(~1>¢~fiw-@n,k<ﬁ>(

7=0

EO: 517 ey 51:—-1) ‘51-1-17 ARRF] 51‘%)
Yis o v v e Y
Fw;yly'“:ymn

The proof of (18) and (18’) is similar to that of Lezadski [31, pp. 254256,
or Sikorski [5], pp. 37-38. Adding all equations (18) with respeet to %
we get (7’). Similarly, adding all equations (18") we get (7).

- @‘nJI-l,Ic—-l (F) (
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