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But (j) and (jj) are the required conditions of the desymmetrization
lemma in [9], thus u, |¢| = % ave nontangentially bounded a.c. on I.
Now Lemma 4 applies, and we can write f = g-+b, g e Lip(k, R*) and
b vanishes on a set F of measure close to Z. That ¢ et,(v) a.e, z e R®
can be seen in [2]. For the bad part b, we have bz+1) = O([t*) a.e.
» € F, which again can be improved to b(z-+1¢) = o(|¢|*) a.e. » e F, this
time a basic argument on density points applies [9].

(6.3) The L? counterpart in (5.2) is also true. The proof uses Theorem 2
(9], p. 248 in all its depth, i.e. the equivalences for non tangentially boun-
dedness for conjugate harmonic functions. Could be of some interest
to prove this result outside the framework of harmonic analysis as in (5.2).
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Basic sequences in a stable finite type power series space

by
ED DUBINSKY* (Potsdam, N.Y.)

Abstract. A characterization is given of when a nuclear Fréchet space with
basis is isomorphic to the subspace generated by a basic sequence in a stable finite
type power series space. The characterization is in terms of an inequality very similar
to the one obtained for basic sequences in (s) and a nuclearity condition. Several
structural facts are obtained as applications of the main result.

In [7] and [8] we chdracterized, respectively, subspaces and quotient
spaces (with bagis) of the infinite type power series space (s). An interesting
feature of this characterization iy that it is done in terms of inequalities
(type (dy), (d,) below) and the only difference between subspaces and
quotient spaces is the sense of the inequality. Recently, Alpseymen [1]
congidered the case of a stable infinite type power series space A.(a)
and determined, for the characterization of subspaces, that the same
inequality works with the additional requirement that the space be Ax{a)-
nuclear in the sense of Ramanujan and Terzioglu [13].

In this paper we turn to finite type power series spaces. It turns
out that subspaces with bases can again be characterized in terms of two
kinds of conditions: an inequality and a stronger type of nuclearity.
The inequality (type (d;) below) is only slightly different from the one
obtained for basic sequences in (s) [7] and the nueclearity condition is
A,(a)-nuclearity ag studied by Robinson [15].

Our regults on subspaces and quotient spaces have been extended
by Vogt and Wagner [16], [17] to eliminate the requirement of a basis.
So far, this has only been done for subspaces and guotient spaces of (s).

We apply our main theorem to obtain several results about the
structure of nuclear Koéthe spaces. We are able to completely describe
all power series subspaces of any stable power series space. We describe
all L,(b, r) subspaces of a stable finite type power series space and obtain
some new information in the absence of the stability assumption. Finally
we obtain the interesting fact that the only type (d;) subspace of a finite
type power series space is a (finite type) power series space.
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Preliminaries. We denote by N the set of positive integers. Our topo-

logical vector spaces are always assumed to be nuclear Fréchet spaces.

For the elementary theory of such spaces we refer to [12]. We will algo
make use of Kolmogorov diameters whose bagic properties are described
in [11]. By the term subspace we will understand a closed infinite dimensio-
nal subspace of a nuclear Fréchet space.

. A sequence (x,) in a nuclear Fréchet space I is a basis if for each w ¢ B
there is a unique sequence (%,) of numbers such that # = 3 #,2,. The
sequence (u,) i8 a basic sequence in I if it is a basis for the closed subspace
whieh it generates. If (z,) is a basis in # and (p,) is & strictly increasing

sequence of positive integers with p, = 0, then a sequence (y,) in B is a

block basic sequence provided that each ¥, is a non-zero linear combination
of @;, Py << p,. It is easy to check that a block basic sequence is,
<in faet, a basic sequence.

By the absolute bagis theorem of Dynin and Mitiagin [9] the set
of nuclear Fréchet spaces with basis is essentially the same as the set
of Kéthe spaces. A Kithe space K (a) is determined by an infinite matrix
a = (a¥) which satisfies

' 0<af <af*', wm,keN,
at
VkeNﬂjeNaZ—;—L-< 0.
n U )
Then we seb
K@) ={6 = (&): 2:(8) = D all&] < oo, b N},
n

Using the fundamental system of norms (p,) the space K (a) becomes
a nuclear Fréchet space in which the coordinate sequences form a basis.
An alternative system of norms which i§ equivalent in the nuclear case
is given by (g;) where

95(€) = supaf|&,], keN.

If (¢,) is a sequence of positive numbers and K (@), K (b) are Kothe gpaces
with b = t,a%, then we have an isomorphism T: K (b) — K (a) by T(£)
= (t, &,). We call T' a diagonal transform.

The simplest and most useful examples of Kothe spaces are the
power series spaces. An increasing sequence « is said to be a nuclear ez-
logn

ponent sequence of finite type if lim .

=0 and of infinite type if
logn

. n
< co. In the former case we define the finits type power series

sup

(3
space 4,(a) to be the Kothe space K(a) with

k __ a—anfk
Ay = 6™

y MN,keN
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and in the latter case we define the infinite type power series space A, (a)

to be the Kothe space K (a) with

af = ¢"n,

n,keN.

We say that o is stable if' sup —:—f’i < oo, and the power series space is
n
stable if the expounent sequence is.

A more general class of Kothe spaces is given by the L,(b, r) spaces
of Dragilev [3]. Let f be a non-decreasing, odd, non-constant function
which is logarithmically convex on the real line. Let b = (B,) be a non-
decreasing sequence of real numbers and let —oo <7< co. We define
Iy (b, r) to be the Kothe space K(a) with
n,keN

where () is any sequence which increases monotonically to . In addition
there is a condition on f and b which is equivalent to nuclearity and too
complicated to be of interest here (see [3], p. 78). Obviously we obtain
the power series spaces when f iy the identity. It can be shown ([3],p. 78)
that every Ls(b,r) space is isomorphic either to one in which f is the
identity or f satisfies the following condition:

a:" = /i) ,

m J (i) = oo for all 1> 1.
oso0 f(@)
In this cage we say that f is rapidly increasing.

Our characterization of basic sequences in ;(a) will be in terms
of a new basis property, (ds). To justify this.notation and also for use
below we recall the definition of type (d;), ¢ =0, ..., 4. A space is o'f type
(d,) if it has a basis of type (d;). A basis (y,) in a space is of type (d,) if the
gpace hag a fundamental gystem of norms (I*llx) sueh that

for type (d,):
”yn+1“k+1

[Ynlt 1
< (/7 !

n, k €N
Wl ’

for type (d,):

. ; l1ally < llwall N
BlaVidle g <’ "

for type (dg)
Vka] 5 Vl “?/n"l < "?/n“:i n EN;

Wl Wall’
for type (ds):
Gnllerr  Wallera n, k € N;

Walle  Wallesr’
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for type (d,):

I[Z/n”k—]—z Hﬁ'/n”k“
Waliers Wl

The term regular is nsually used for bases of type (d,) and, unlike here,
this property is gemerally included as an hypothesis in the definitions
of types (di), (do). As given here, types (d,) and (ds) are equivalent but
types (d,) and (d,) are not. For details and other properties of these types
we refer to [2], [3], [7] and [8].

The second condition in our characterization is a type of nuclearity.
" Rather than recall the original definition, it suffices for our purpose
to observe that in view of [15], Theorem 2.6, it follows that 2 locally convex
space B is A,(a)-nuclear iff for cach barreled nbd of 0, U, in B there
exist a barreled nbd of 0, ¥, in F and O > 0 such that

ad,(V,U)< e %n, neN
where d, here refers to the nth Kolmogorov diameter.
Main results. The following lemma is a special case of Lemma 2 ([4],
P. 261) along with equation (3) of its proof. We omit the details of the
proof._
LemMA. Let (af) be an infinite matriz of positive numbers such that
1
LA+ n, keN.

n,keN.

¥ %
an a’n+1 B
Given numbers iy, ..., 1, we define, for & eN,
¢"(t1; ..., t,) = max{g: max|i|af = [t,) af}.
: 1<i<p
Then if 0 < gt <...< ¢"< p are integers, it 1s possible to choose numbers
Uiy ooy by with €3 5% 0 but otherwise arbitrary, t; =0 for i = g, ..., ¢" and
“ZH ”'Zk
bl = < It I E=1,2,... —1.
lgkl a;;#l qu+1| < lqkl a;;k+1 ’ y Ay eeey W

Moreover, if such a choice is made, then
qk(tlf teey tp) = qky
Our characterization of subspaces with bagis of 4,(a) is in terms
of & new bagis property, (d;). We will say that a basis (y,) in a nuclear
Fréchet space F is of type (d;) if there is a fundamental system of norms
(Il Ilz) and & number D> 1 such that
Wnller s ”?/n”}ﬁ-z
[l 1 nllosa !

v ‘We will say that a nuclear Fréchet space is of type (ds) if it has a basis
of type (ds).

k=1,...,m.

log n,keN.

=
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THEOREM. Lel o be a stable nuclear exponent sequence of finite type.
Then o nuclear Fréchet space B with a basis is isomorphic to a subspace
of Ay(a) if and only if B is of type (ds) and Ay(a)-nuclear.

Proof. First suppose that I has a basis and is isomorphic to a sub-
space of 4;(a). Without loss of generality we may assume that ¥ is the
space generated by a basic sequence (¥,) in 4,(a). Let (V,) be the fun-
damental system of nbds of 0 for 4,(a) given by

O e )< 1)

Then, given U we can find an index k and B > 0 and then choose V such
that :

1
RU VinB >V nE> 5 V.

Using elementary properties of diameters and the fact that Vi, Vi,
are ellipsoids in A;(a) we have

L .
a,(V, U) = den(f v, RU) < R, (V10 B, Vin B)

2)\%
< 'den<Vk+1! Vi) = R (%?5‘2)‘)
From the properties of a we have,
1 2 1 M < —Co
ogd,(V, U)<logR*—a,log ARSI »

where C is a.ppropriatély chosen. Thus, B is 4,(a)-nuclear.
Next, let (|- ],) be the inereasing fundamental system of norms for B
given by
l[&“k = Sﬂp IEn‘e*aﬂ”ci k EN’ ‘E = (Eﬂ) EE < Al(a)‘
n

‘We can write y, = (); so that
—a kit

lyalle = [W%le ™
an

where ¢% is the largest index at which the sup occurs. We then have

—a i+ 1) —a_jq1ftfe+ 1) —a o4 1/0e+ D
11 é

@ et 1) [t xle ltq;c‘+1|6 ! qﬁ+11

n
" = Za ik —e k% o= —a g1k
n tle yrale
]tqﬁl" | q’,‘,‘ &t
aqk._i_l/k(k-l- 1)

=6 "
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and so,

aqﬁ Y lli1 aqﬁ+ !

<
4D % Tyl S kL)
and increasing & by 1 in the left hand inequality leads to

a“ﬁ“ g. Wllzosy 2
(B+1) (k+2) = [l
Therefore we have .

o (o2
og el _ &P pis o

Walle ~ R(R+1)(k42) & Wllis (9 nllsa

which is the (d;) condition.

Turning to the converse we may assume without loss of generality
that ¢ is strietly increasing. Let o: N XN — N be the bijection given by
o(j, n) = 29120 —1). Let (J|-[;), D be such that the (d;) condition holds
for (y,) and set U, = {3 t,y, e B: S, lyals < 1}, keN. Applying

n

the fact the ¥ is 4,(a)-nuclear to U, we have a nbd of 0, V,in F and a
constant so the stated inequality holds. Choose %, so that Uy, is contained
in a multiple of V and assume that (¥,) has been permuted so that

dn(Uko} U,) =

, mneN.

Set D, = D™ and choose M > 1/D, from the stability. It then follows
that we can choose 0> 0 so that :

Cayy )< OMa, < logM’—‘“—"L—l, nmeN

We write of = Hyn“ko(k—l)+1 and it follows from the (d;) condition that
Jo+1 K+2

log c,,k <D010g—zk%, n, keN,
oﬂ n

Finally, set r, = 07! (MD,)** so that we have a fundamental system
of norms (|-|,) for 4,(a) given by

|l = sup|é,le™™, L eN, = (I‘En) € dy(a).

‘We begin our construction by selecting for each # a certain strictly
increasing sequence of indices (¢f), Set ¢, =1; 50 we have

1 1 C a ) 1l 1 c
—_ —]a =[0—-—— <0l <log —7 — Jog 2.
(n ra) L) ( MDO) a1 Y el
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Assume that ¢, < g} < ... < ¢¢ have been selected and let ¢“** be the
smallest index such that

log

n
i <

Cn

- o .
e Ty +1) o(gk* L n)

ekt (1 1
Assuming by induction that

1 1 cﬁ“’l
(o = o) e <18 5

Tk Tet1 n

it follows from the fact that « is strictly increasing that ¢f < ¢ft!, We

then have,
1 1
( ; : )a (1 = )a The1 Ty a"(’lﬁﬂ-")
. " k41 =\ 0 k1
T Tigo | 9@y ) r 7 gt ~1,n)
B4l T2 ' A Tl n 1 1 ﬂu(gﬁﬂ_,m)
Tx Tr1

EFIN s — Tt
< (10g ir)_lﬂ k2~ Tl
Vet 1P hge — PV ppa
o (MD*— (D4
= (MDO)M-H _ (_M-_Du)ﬂc

n

077‘:“ oe+e
n
Jlﬂ)ologwk———ﬂ_1 =log—v.
cn cn

We thus have constructed (g) to satisty

Ok+1

(S <log 2~ <
- _ a og -
e T g & o

—1 — ———1 n, keN
. 7‘;‘4_1 aa(qﬁ+l-n] [l ] eIV,
Next define the sequence (t7); by writing

@ ok Tk
1 @)

" =06 n,keN
olgfmy " o

and " = 0 if j is not equal to some ¢(g¥, ). Then,
1 {a - " L —~a
p A ( gkt ,m) “a(qg,m) < j k| <o ( o(a+ L m) a(a;ﬁm))
Tl '
u(qn,n)

We may then apply the above lemma (after an appropriate truncation).
Thus if we set 2, = (') € 4;(a) we have
_av(aﬁm)/’k

el = 120 10 =d, mkeN
k,
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so that (2,) is @ block basic sequence in 4,(a) which generates a subspace
isomorphic to H.

This completes the proof of the theorem.

The two conditions which characterize basic sequences in ,(a)
in our theorem are probably what we should expect in general. The nu-
clearity condition expresses the idea that any subspace of 4,(a) must be
“at least ag strongly nuclear” as /,(a). The (d;) condition, which i,
incidentally, independent of «, is an inequality that seems to be connected
with the set of finite type power series spaces. Similarly, the (d;) condition
is related to infinite type power series spaces (see [7]). Eventually it may
be possible to devise a mechanism for predicting inequalities which corre-
-pond to various classes of spaces.

Another simple observation to make is that this theorem gives more
spaces for which “block basie sequences are enough”. That is, we have
the following general question:

If I is a nuclear Fréchet space with basis and B is a subspace of F
and has o basis is there a block basic sequence in F which generates a sub-
space isomrophio to EY

According to our theorem, the answer is yes if F is a stable finite
type power series space. In [1] and [7] the question is answered affirma-
tively for stable infinite type power series spaces. ]

Turning to more technical issues we point out that it is important
to describe type (d;) in terms which do not depend on. the choice of basis
or even on the system of norms. This is particularly useful if one is trying
to show that a space is not of type (d;). In view of a well-known resulé
of Bessaga and Dragilev ([2], Lemma 2.0) and the absolute basis theorem
of Dynin and Mitiagin it is not hard to show that in a nuclear Fréchet
space of type (d;), every basis is of type (d;). Regarding the seminorms
we have the following results.

PROPOSITION 1. If a basis (y,) in a nudear Fréchet space B is of type
(ds) and (] 1) i8 any fundamental sequence of norms, then there is a sequence
“(k;) of indices and a sequence (D;) of positive constants such that

|ynlkj+1
l?/n!kj

Proof. Suppose that (y,) is of type (d;) and (]-|;) is a fundamental
system of norms. Let ([[-[,) be the system of norms and D the constant
given by the (d;)-condition. Then using the nuclearity we can select by
induction subsequences of indices (%;) and (I;) such that for each j there
exists n; such that

[Yule; 4y
log <Djlog& n,jeN.

H
I@/nlk]- +1

Iyn"kj +1 < “ynulj 41 < “yn"ﬂj +17 k-1 < Iynlkj 42! "= M.

icm
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Then for n > ny,

Wl (|lyﬂuz,,.+l-zj_1 )Dlw—’f—l (|ynikj+z Pl
Waley  Wally_, Wl 1y lynlkj+l)
and it suffices to take D; sufficiently larger than DY+ "Y~!go that the in-
equality holds for all n. This completes the proof.

We are now able to prove the converse of this result with the additional
assumption that the space B is A,(a)-nuclear.

ProOPOSITION 2. Let a be a stable nuclear exponent sequence of fimite
type and let B be a A,(a)-nuclear Fréchet space.

Suppose further that B has a basis (y,) and o fundamental system of

norms (|[-|[,) for which there exisis a sequence (D) of positive constanis such
that

Wals; oy

llynﬂkq-l“

Then E is of type (ds).
Proof. The result is established if we show that F is isomorphic

to a subspace of 4, (a). We do this by repeating the argument in the proof

of the theorem with a different choice of the sequence (7). An analysis
shows

A

log
Il ’

<Dy n,keN.

of that proof that the only properties of this sequence
that are required are:
1 S——
Limr, = 0, ———<C, —*. (Tivs =7asa) < L
& 71 s Topr  (Prpr—7%) MD;,

Moreover, if these properties hold then we can complete the construction
using the inequality in the statement of this proposition rather than
the (d5)-condition. To obtain these properties we merely select an increasing
sequence () such that the first two conditions hold and also,

Tk Can
R — keN (M = sup —).
Ye+1 ¥ h MD,’ np ay

But this relation implies the third property since the left hand side of the

inequality increases in 7., (with 7y, r.,, fixed) up to r"T go it is
Thpr %
dominated by that quantity and the proposition, is proved.

Applications. Our first application is to an analysis of L,(b, r) sub-
spaces of 4, (a). If « is stable, the information is now complete.
PrOPOSITION 3. Let o be a stable nuclear exponent sequence of finite
type. If f is identity, then Ly(b,r) is isomorphic to a subspace of A,(a) iff
a,
sup F”— < oo. If f 4s rapidly increasing and r < 0, then Ly(b,r) is mot
n n
isomorphic to a subspace of A,(a). If f is rapidly increasing and 0 < r < oo,
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then Lg(b, 7) is isomorphic to. a subspace of Ay(a) iff there exists @ positive
constant A <r such that

Q,
sup T < oo,

n f{AB,)

Proof. The first statement is an easy consequence of the theorem.
It is also implicitly contained in the results of [4] and [6]. The second
statement follows from the result of Zahariuta [18] that in this case,
every operator from L.(b, 7) to 4,(a) is compact.

For the last statement, we first observe that it is known [3] that
if 0 <7< oo, then L(b, #) is of type (d,) and hence (d,) so it is (dy). If
4 <7 and Ca, <f(4f,), n €N, then given k<7, let B =max(4,FE)
< j <. From the definition of rapidly incre sing we have

f(3B4) = 2f (BB,)

for n sufficiently large so

T(38) —f(RBy) = 2f (BB,) —f(kB,) = F(4B,)
and therefore
68 K ¢ UPn)=1(kBy)

The theorem can then be applied to conclude thab L,(b, r) is isomorphic
to a subspace of 4,(a). The converse is clear so the proof is complete.

The last statement in Proposition 3 can also be proved using the
characterization of Alpseymen [1] along with some recent results of T.
Terzioglu.

If o is mot stable, there is much less known. Using a variation of
our general method (cf. [5], proof of Theorem 1) we can obtain one new
result.

ProPOSITION 4. Hvery finite type power series space has a subspace
tsomorphic to some Ly (b, o0) space, f rapidly mereasing.

Proof. Without logs of generality we may assume that a given finite
type power series space A,(a) satisfies

Cpy1 Uy 1
— <
Gnt2 1

neN.

S am+1)’
Let 0 =p,<p, ;<P,,meN be a sequence of integers with Lim(p, —
—Py_1) = oo. Let (||-|l,) be the fundamental system of norms for 4,(a)
given by |[I&]| = sup|&,)e” W, & = (&) € 4;(a). Consider the XKothe

n
space K (c) where ¢, =1 and

1
Te(k—1) “Pp—1+k
of = o*EmD Tn-1tE b o 1, meN.

icm
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We will embed K (c) as a subspace of 4,(a) generated by the block basic
sequence (y,) where y, = ();, & = 0 unless p,_; <j<p, and

1
—_a, _ +k
kE Pn—t 1< k<p11 —Pp—1-

To establish the embedding we apply our lemma to show that

n Ak
tpn—1+k = €0

qk(tzn_li-l} "'7t$n) :pn—l""kﬁ 1<k<pn-pn—l'

To do this we must show that

1 1
[& ————
—1+E+1
_llk < g Rk+1) Pp—1 s 1<k<_pn_1’n—1'

Cn,

1
¢ Bk+1) Wp—1tk <

This is clear for ¥ = 1 and for % > 1 it reduces to

Oyt Dy +h1

B+l T k41

%oy g+k ooy +E+1
k—1. 5 k41

The right hand inequality is clear and the left hand reduces to

apn~1+k k—1
<-
Oy +h+1 2k

which holds because of our initial assumption.
It then follows from our lemma that

—ap, /e E ;
”yn”k = t;;n—l-l-ke D1t o Cps 1< k <pn —Pu-1

so that K(c) is isomorphic to a subspace of A,(a). On the other hand,
it follows from our initial assumption that

1
——
6apn~1+k< o F+Y) “Pu—1th+1 < eapn_1+k+1’ n,keN,

so that K (¢) = K(a) where af = ¢"Pn-1** But in [5] it was pointed out
that K (a) is an L,(b, 7) space so the proof is complete.

Our next application is to obtain a somewhat surprising restriction
on subspaces of a finite type power series space. Any L(b, r) space, r < 0,
is of type (d,), and we have seen above that in this case if f is rapidly
inereasing, then L (b, r) is not a subspace of A, (a) but if £ is the identity,
then it may be. We strengthen this result by showing that this is the only
way that a (dy) space can be a subspace of 4, (a), even if o is not stable.
A weaker version of this result was previously obtained by Ramanujan
and Terzioglu [14].

Prorosrrion 5. If B is a Kothe space which is of type (d,) and is
isomorphic to a subspace of a finite type power series space, then B is iso-
morphic o a finite type power series space.
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Proof. Using a standard argument with the (d,) condition we may
agsume that # is isomorphic to K(b) and

BBl < [BEF'T,  m, k,leN.

It is easy to see that this relation remains true if % runs through any
subsequences of N. Since F is isomorphic to a subspace of a finite type
power series space, it is isomorphic to a subspace of ome in which the
exponent sequence is stable. By our theorem, # is of type (d;) and by
Proposition 1 we may assume that F is isomorphic to K (¢) and we have
a sequence of positive constants (D) with

! T+l k2 \ Dy
c, o ol
- - o w, k, 1 eN.
LA \(c’,i“) o
Thus we have quantities D,;, n, ke N with 0 < D,, <D, and
Jo+1 k+2\ D,
I c nl
o) omeen
‘so that
02 For
T —cf,('—c’—}) , meNand k>2
n
where
1 1 1
Fop=— o e
" Dnl Dnl-Dn2 -Dnl e -Dn,k—z
Thus by a diagonal transform we may conclude that H is isomorphic
to K (a) where loga® = ', logp, and we have
1< By,
0< F'nk < Fn,k—l—ly
r J 1=F
i Sl Dy < Dy,

'Fn.k+2 —Fn,k+1

Py —Foprn S Fpppr =T, mnel.

Hence if we write I, = supF,,, it follows from the above relations that
I

F sup-Fnk = hm-Fnl m rm < o0, nelN.

We may then write

icm°

Basic sequences in a power series space o129

go that
—8n7
a'g; = 'yn nk?n! W’! k EN'

Therefore, by another diagonal transform we may conclude that E is

isomorphic to K (d) where @& = y,™* and
1<%  Sprgr <Supy limsy, =0, n,keN,
k
Sy —$

ek Tmktl  _ po.<D,, #,keN,

Sn,lc-)—l _*'S‘n,k-i-z
Spra1—S
Skl <1, wm,k,leN.

snk—sn,k-(-l
We will complete the proof by showing that K(d)

8
= logy™. First we show that inf—"%"" > 0,k >

= A,(a) with
3. If this were not

n Snk
,k+1
so for some k, then we would have an infinite N, = N with lim S =0,
neNy Sk
80
0 < 1 < Snpi1 " Snrr o Skt _ Suk41 1
__ < =
Dy, Spk — Sn k1 Spre ~Snk+1 | Suk 1 Sn,b+1
Snlc
which goes to 0 as n goes to oo in N, and this is a contradiction. Thus
we have,
: Snk
inf—>0 for %2=3.
n Sn3

Next we observe that since lims,, = 0 we have
k

$ Jed 1
L |
Suk — Sn, k41
or
Spiep1 < 28y meNand k>3
Hence,

limgup — Sk < 1imaFe =0,
k n Sps k

These two conclusions give us, on the one hand that for each 1> 3

n3d

8 1
we have k e N with - > =, n eN so that
' 0’[ =y —3nl <95 —8p3lk 6““71/7" n EN
1

and, on the other hand, for each k € N we have j € N with sup < <%
n Spy
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n eN so that

¢l = yoonslt i = @ p eN,
This shows that (d;) and e~“/* define the same Kothe space so the proof
is complete.
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A nondentable set without the tree property
by

J. BOURGAIN* (Brussel)

Abstract. The existence is shown of a bounded, closed, convex and nondentable
subset of {®°, which does not contain a tree.

Introduction. Tet X, || || be a Banach space with dual X*. If ze X
and e > 0, then B(x, ¢) denotes the open ball with midpoint » and radius e.
For sets A < X, let ¢(4) be the convex hull and ¢(4) the closed convex
hull of 4. We will say that A is dentable if for all ¢ > 0 there exists w € A
satistying @ ¢ ¢(ANB(x, ¢)). The Banach space X is said to be dentable
if every nonempty, bounded subset of X is dentable. We say that X
has the Radon—Nikodym property (RNP) provided for every measure
space (2, &, u) with 4(R) < oo and every u-continuous measure F: I — X
of finite variation, there exists a Bochner integrable function f: Q — X

such that F(B) = [ fdu for every HeZX. The RNP of X is equivalent
E . . s
with the fact that any uniformly bounded X-valued martingale on a finite

measure space is convergent a.e. (ef. [5], [187]). It is known that X is a
dentable Banach space if and only if X has RNP. The reader will find
the history of the equivalence between those two properties in the survey
paper [6] of J. Diestel and J. J. Uhl

A seb with the Radon-Nikodym property (RNP-set) is a bounded,
closed and convex subset of X such that each of its nonempty subsets
is dentable. For some remarkable properties of these sets, I refer the reader
to [1], [2] and [15].

DRPINITION 1. A bush B is a bounded subset of X such that for
some &> 0 the property @ e ¢(B\B(w, &) holds for all @ € B.

A tree 7 is o bounded subset of X such that for some &> 0 we have
that each point o e 7 is the midpoint of 2 points y € 7, 2 €T with {ly —2||
=&

* Agpirant, N. F. W. 0., Belgium.
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