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n eN so that

¢l = yoonslt i = @ p eN,
This shows that (d;) and e~“/* define the same Kothe space so the proof
is complete.

References

[1]1 M. Alpseymen, Thesis, University of Michigan, 1978.

[2]1 C. Bessaga, Some remarks on Dragilev's Theorem, Studia Math. 81 (1968),
pp. 307-318. :

[8] M. M. Dragilev, On regular bases in nuclear spaces, Amer. Math. Soc. Transl.
93 (1970), pp. 61-82,

[41 E. Dubinsky, Infinile type power series subspaces of finite type power series
spaces, Israel J. Math. 15, (1973), pp. 257-281.

[8] — Concrete subspaces of nuclear Fréchet spaces, Studia Math. 52 (1975), pp.
209-219.

(6] — Infinite type power series subspees of infinite type power series spaces, Israel
J. Math. 20 (1975), pp. 359-368. :

[71 — Basic sequences in (s), Studia Math. 59 (1977), pp. 288-293.

[8] E.Dubinsky and W. Robinson, Quotient spaces of (s) with basis, Studia Math.
63 (1978), pp. 267-281.

[9] A.8.Dynin and B. 8. Mitiagin, Criterion for nuclearity in terms of approvimative

dimension, Bull. Acad. Polon. Sci. 8 (1960), pp. 535-540.

V. V. Kashirin, Subspaces of a finite center of an absoluie Riese scale which

are isomorphic lo an infinite center, Sibirsk Mat. Z. 16 (1975), pp. 863—865 (Rus-

sian). '

B. 8. Mitiagin, Approzimative dimension and bases in nuclear spaces, Russian

Math. Surveys 16 (1961), pp. 59-127.

A. Pietsch, Nukleare Lokalkowvexe Riume, Berlin 1965.

M. 8. Ramanujan and T. Terzioglu, Power series spaces Ap(a) of finite type

and related nuclearities, Studia Math. 53 (1975), pp. 1-13.

—; — Subspaces of smooth sequence spaces, ibid. 65 (1978), pp. 209-312.

W. B. Robinson, On A, (a)-nuclearity, Duke Math. J. 40 (1973), pPp. 541-546.

D. Vogt, Charakierisierung Der Unterriume von (8), Math. Z. 155 (1977), pp.

109-117.

D. Yogt and M. J. Wagner, Oharakterisierung Der Quotientenriwme von (s)

und eine Vermutung Von Martineau, to appear.

V. P. Zahariuta, On the isomorphism of Oartesian products of locally convex

spaces, Studia Math. 46 (1973), pp. 201-221.

[10]

(11}

f12]
[13]

[14]
(15]
[16]
7

[18]

OLARKSON COLLEGE OF TECHNOLOGY
POTSDAM, N.Y.

Received November 23, 1977 (1375)

©

icm

STUDIA MATHEMATICA, T. LXVIIL (1980)

A nondentable set without the tree property
by

J. BOURGAIN* (Brussel)

Abstract. The existence is shown of a bounded, closed, convex and nondentable
subset of {®°, which does not contain a tree.

Introduction. Tet X, || || be a Banach space with dual X*. If ze X
and e > 0, then B(x, ¢) denotes the open ball with midpoint » and radius e.
For sets A < X, let ¢(4) be the convex hull and ¢(4) the closed convex
hull of 4. We will say that A is dentable if for all ¢ > 0 there exists w € A
satistying @ ¢ ¢(ANB(x, ¢)). The Banach space X is said to be dentable
if every nonempty, bounded subset of X is dentable. We say that X
has the Radon—Nikodym property (RNP) provided for every measure
space (2, &, u) with 4(R) < oo and every u-continuous measure F: I — X
of finite variation, there exists a Bochner integrable function f: Q — X

such that F(B) = [ fdu for every HeZX. The RNP of X is equivalent
E . . s
with the fact that any uniformly bounded X-valued martingale on a finite

measure space is convergent a.e. (ef. [5], [187]). It is known that X is a
dentable Banach space if and only if X has RNP. The reader will find
the history of the equivalence between those two properties in the survey
paper [6] of J. Diestel and J. J. Uhl

A seb with the Radon-Nikodym property (RNP-set) is a bounded,
closed and convex subset of X such that each of its nonempty subsets
is dentable. For some remarkable properties of these sets, I refer the reader
to [1], [2] and [15].

DRPINITION 1. A bush B is a bounded subset of X such that for
some &> 0 the property @ e ¢(B\B(w, &) holds for all @ € B.

A tree 7 is o bounded subset of X such that for some &> 0 we have
that each point o e 7 is the midpoint of 2 points y € 7, 2 €T with {ly —2||
=&

* Agpirant, N. F. W. 0., Belgium.
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Obviously every tree is & bush. It is also routine to check that every
bush (resp. tree) contains a countable bush (resp. tree).

We say that a subset of X possesses the bush- (resp. tree-) property
if it contains a bush (vesp. tree). The interest of these notions will be clear
from the following 2 results:

ProrosrroN 1 (Huff-Morris, see [9]). Al nondentable bounded,
closed and convex sels and therefore all Bamach spaces failing RNP have
the bush-property.

ProrosiTioN 2 (Stegall, see [147]). Buery nondentable conmvew w*-
compact subset of a conjugate space has the tree property. All duals without
RNP have the tree property.

This leads to the natural questions:

ProprEM 1. Is it true that every Banach space failing RNP has
the tree-property?

ProBLEM 2. If a bounded, closed and convex set in a Banach space
is not dentable, does it necessarily confain a tree? !

Clearly an affirmative answer to Problem 2 would solve Problem 1
affirmatively. Unfortunately the answer to the second question is negative
a8 will be shown in this paper and hence Problem 1 remains open.

If A is a subset of X and Y a subspace of X*, we agree to call ¥
A-norming provided ¢F: X™ - ¥* mapy 4 viewed as a subset of X**
isometrically on 4*(A), where i: ¥ — X* ig the canonical imbedding.
The following is related to the problems mentioned above.

PrOPOSITION 3. (1) If C is a nondeniable bounded, closed and convex
subset of X and Y is a C-norming subspace of X*, then either C has the
tree-property or It imbeds isomorphically in Y.

(2) If X is a separable Banach space failing RNP, then X has the tree-
Dproperty provided o, is not isomorphic o o quotient-space of X.

Proof. (1) If 4: ¥ - X* iy the canonical imbedding, then *(0)
is a nondentable subset of ¥* From Theorem 1 of [2], the required result
is obtained.

(2) This is an immediate consequence of (1) and [19].

Counterexample to Problem 2. We will first establish a result about
the convergence of martingales in finite-dimensional spaces.

If a is a positive real number, let [a] denotes its integer part. For
each integer d,12(d) will be the d-dimensional euclidean space.

Lmvma 1. Let d eN and (&, ), be on (d)-valued martingale on
a probability space (2, X, p), which is uniformly bounded by M > 0. Then
Jor every e > 0 there exists some k< [M?e~*]-+1 satisfying (&, — &l < &,

icm°®
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Proof. Since for every coordinate ¢ =1,...,d, (&), is a real mar-
tingale, we obtain [ &&. du = &[5 and hence

, 66— ELIE = 1€ 15 — 15515,
Therefore

a
Y [Er— &l = > 1EL, 1 — EIE = Nl — &

i=1
Now suppose # € N such that (&, —&l, = e for all k =1,...,n Then
we find: .
n
12 < D) [pa— &l < ) Ean — &lll = Nl — 1&J5 <
sl kel
and hence o < M%~*. This completes the proof.

PROPOSITION 4. Let T be a real d-dimensional Banach space and .let
(£, Zi)i be an F-valued martingale on o probability space (2, Z, ',u) which
is umiformly bounded by M > 0. Then for every e>> 0 there exists some
k< [MPd%2]+1 satisfying & — &l < &

Proof. Itis known that F admits a biorthogonal sequence (e;, €7)1<ica
with fie;| = llefll = 1. It T: F —*(d) is the operator defined by T
= (€} (®), ..., ¢y(®)), then it is easily verified that ||| < Vd and H_l’flll <va.
Since the I*(d)-valued martingale (T&;, X), is bounded by l/d M, there
is some k% < [Md%e*]+1 so that |T&,, —T&l, < &/Vd and thus

(& — &l < e . '
" lI*‘or ;1111 r, 8 € N with » < s, we let B, ; be the Banach space [ Defm.e
B= @ B,, as the I®-sum of the spaces B,,. If < s, then there is
a natlrlifa:jrprojection 7, 5¢ B = B,,. Take [2l,, = [loz,. o(22)]l; llll, = sszp izl s
and [z = sup|l»|, for each zeB.
The nelxst‘fgection is devoted to the proof of the following result.
TumorEM 1. Let n: N xN-N be any function which increases in both
variables. )
Then there ewist a subspace X of B, a sequence (@1)1.'@ B and fm.' e.aah:
s e N an operator ,: B—>B, such that the following conditions are satisfied:
(1) X = span(er; I);
(2) lerl, <775
(3) {er; It is a bush in X; . o
(4) The restriction p,|X of each operator @, has finite rank, which is
denoted by 1k,; i
(8) llpsll < 35
(6) & = limg,(w) for all »eX;
800


GUEST


134 J. Bourgain

(N If r < s, n< ke, ), 24,..., 1, etler; I) and 2y, ..., 2, >0,
then the inequality

| 3 St

m=1 me=1
holds. !

Using Theorem 1, a counterexample to Problem 2 will be obtained.
More precisely:

LoyMA 2. Define n: NxN—N by 7(g,r) = 2 and let X, (o),
and (@,), be as.is Theorem 1. Then ¢ = &(er; I) is a nondentable subset of X
without the tree-property.

Proof. Remark that izl < #~'if @ € O and in particular € is contained
in the unit ball of X. The fact that O is not dentable is an immediate
consequence of (3). It remains to show that ¢ does not possess the tree-
property. If we assume the converse, then there is an's > 0 and a system
(@4,1)5,1-1,.....2% in € such that B =3By 10001 +30y 5 a0d 14 1,20-1 — @ 1,01l
> e ’

For each k we let X, be the algebra of subsets of [0, 1[ generated by
the intervals [(1—1)27%127%[ (1=1,...,2% and & = Z0s L= 1y0—F, g0~ -

Then (&, Z}); is clearly an X-valued martingale on the Lebesgue
space [0, 1[ and is uniformly bounded by 1. Hence by (4) and (5), for
each s, the martingale (p,&,, Z,), ranges in an rk,-dimensional subspace
of B and is uniformly bounded by 3. Take r = [4e7'Tand k, = 91k 1
for each s3z=r. Clearly 12y ~ B0, 00 10 > /2, 1, — 25 1,0l > /2 and
therefore [[&,(2) — &,..(0)I > ¢/2 for t e [o, 1[.

It s>r and k <k, then 2% < 2%*1< y(rk,, r) and we deduce from

7
1 21
ro-1,84-1 = r+1 1 ol — o (@)
M=

@
lozg, 1 — @5 (@,1) ] = 122 %, _Ezz_k%(wk,z)”m.l,s+1
1 1
> 2 = @l = 2 160 a8 01

and the same with % replaced by %--1. This implies that
2,1 — @5 (%o,1)

1 1
> ﬂ——If ”E"H(t)_fk(t)”'dt“m'f”% Erp1 (8) — s &4 (D) @2

& 1
> 2(,._,_1"")_ “m 195 Ex 1 — @5 gl

<
e 1 — @5 Exlly < 1/r. Tt follows that 60,0 — @y (0,1)1l > 1 /20 ( 1), for all
8> r. From (6), we get the required contradiction.

By Proposition 4, we can find for each s =1 some k<%, so that

icm
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Proof of Theorem 1. Let m denote the Liebesgue measure on [0, 1].
By induction we define sequences (o), and (f,), of positive integers,
taking
oy =8 =1, 01> 7(2,1)...09(2,s) and Bopr = 80,43,

For each integer s, let ¢, be the algebra of subsets of [0, 1[_ gene'.mted
by the intervals [(¢—1)Q;", ¢Q;'[ where ¢ =1, ..., 2,, which will be
called s-primitive. We consider the algebra ¥ = () %,. We say that an

8
interval is primitive if it is s-primitive for some s. Remark that 2 primitive
intervals are either disjoint or comparable. For each integer s, we let
g2 Y%, be the mapping defined by 8 = U . A. For all s=7r
Asgg.A_c .
we introduce a subfamily &, , of . We proceed by mductlon. on 7:
Let &, (s 2 1) consist of the intervals which are ¢-primitive for

some t2>s. Assume DOW (Fig)miy--ey (Frslsmr Obtained. &y, (82>
n

=r+1) will contain all sets of the form () (8;N\t_,S;), where o<
=1
7(Rs_1,7) and k
Spe U&Fpv...v U &, foreach k =1,...,n.
=1 i>r

Take p, = Q7 for s 21 and p, o = 7(Re1y 1) ... 9{ Ry, r—1) ;7 for
szr>1. ‘ )

The reader will verify that u,., increases when r increases and de-
creases when s increases. Moreover, we have

LemmA 3. If reN, then lim pu,, = 0.

827,8-»00
Lovma 4. If S € &, , (s = 7) and t = s, then m(8) < p, s and m(S\,8)
< e
Proof. (By induetion on r.) .
For 7 = 1, the statement is almost obvious.
Assume now the property true for ¢ =1,...,7 and let Se &, ,
n

(s>r+1). Then 8 =I{J (8 N4.1 8) Where n < 5(Q,_y, r) and
=1

SpeJPuv...v Y Fyforall k=1,...,n _
’ uzr
%)7:3 show that if 1o, T'e&,, (u>¢) and »-+1>r, then

(TNt T) < phypn- We use the induction hypothesis and distinguish
2 cases:

(i) v <u = m(TNe, T) < MT) S fhou < Bo,041 S Hrpprts

({) vz u =>m(IN\, T)< Pl S Pryoge

From this it follows that m(8) < n(Qe_1y ¥) thy,s == Hypi1,,- L€t further
t > s. It is clear that

NS < U [8\[t—18 Ve (8N t-180)]] -
x=1
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But ™ since 4,_,8,Un (8N, 8) = 4 8, it follows that AN
n
U8\ 8,) and hence
k=1

m{(8S\y 8) < (21, ”')Nr,t+1 < 74y, P fiyg1 = Ppg1,41+

So the proof is complete.

Lemma 5. If S€ &, ., (s+1=7), then 1, 8 = O.

Proof. By Lemma 4, m(8) < p, .0, < 2%, the measure of the
s-primitive intervals. .

From Lemma 3 and Lemma 4, we obtain

LemMa 6. If r e N, then lim supm(S) = 0.

g>00 Ses,

It is clear that for s > » the famﬂ;syr,x is infinite and therefore can be
identified with N. For each primitive interval I , we introduce an-element
e; of B = rg—B}er' by taking ep®S = %—%
ously flefll, < 1/r.

Let X = span (e;; I primitive).

Levva 7. (ef); és a bush in X.

Proof. If T is an s-primitive interval, then I is the disjoint union
of o = 0,,, (s+1)-primitive intervals Iy, oy I, Tt is easily verified
that

for Se #,,. Obvi-

__ _W"(Il) m(Ia)
o= “m(I) ot m(I)

o

1
81a=;611+... +‘&-BI .

For each n =1, ..., 0 we have that

o1

lor ez I > ley* i —epitin) = —— > 4.
For each t e N we define ¢;: B - B by
741 X
%(w)r,s,s = gh®S _ 1T prtLi+LS\yS if r EN, s>rand Se yr,a'

r

Obviously ¢; is a linear operator and || < 3.

LemMMA 8. The rank rk, of the restriction ol X is at most Q,.

Proof. In fact ¢(X)= span (p,(e;); I t-primitive). To see this, let J
be a w-primitive interval. If w <, then using Lemma 7, we obtain
eyec(er; I t-primitive) and hence @i(es) espan(qat(el); I t-primitive).
If w1, then J is contained in some -primitive interval I. For r e N,
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s=zrand Se &, we find

_1mn8)  1mIn@ENg) 1 mdnys)

elen)” = r m(J) T m(J) T m(dJ)
IS
L) s

showing that ¢,(e;) = @;(ez)-
LeMMA 9. & = limg, (@) for each » e X.
i—00

Proof. Of course we can take # = ¢; where I is primitive. If r e N,
s>rand Se,,, then

1 m(IN(S\48))
(@ — )5 = 7 M( .

m(I)

Choose &> 0 and take 7, e N with 75’ < e. Take then t,>r, such that
m(T)< m(I)e whenever r <y, t=1%, and T € ¥,,, which is possible
by Lemma 6. We claim that ||z —g (@) < eif £ > ¢,. Let thus reN, s> r
and § e Fp,. If r=r,, then |[(B—gz)"%| <ri<rg'i<e It r <y,
then -1 < ro and m(8N\yS) < m(I)s, since S\yS € &,.,;.,. Therefore
also |(# —@@) 5| < e ‘

It remains to verify condition (7) of the theorem. By Lemma 8,
it will be enough to prove

Levma 10. If r <8, n < (2, 7), @1, ..., @, € E(6r; I primitive) and

Ay ooy Ay = 0, then

Hg IO — ,,; Anps ()

Proof. Clearly we may assume &y, ..., &, € ¢(¢;; I primitive). Let
@y = Z1 Py 76r Where B, ;>0 and 278, , =1 for each m =1,..., n.

Take § > 0. For each m =1,...,n, there is some g, =1,...,7,
gome §,, = o, and some S, € & such that

n
Ly .
r+1,841 2 r_]_l "_,4:1 Mllwm (Ps(mm)“ .

mafm
[[mm _‘psxmlr < I(mm —“Pamm)gm’sm'sm] -+ 4.
m (I (8,\1,8,))

. eSS, — ¥ .\ LA
Since (m'm_ 97sxm)gm’sm'sm =2}ﬂm,1(01—(p£61)9m SmoSm _‘ZIaBm,I N ’
we obtain

> .. mIAE,NGS,) -
}‘m”w-m —tpswm“r < 2 AmZIﬂm,I “——M.’bﬁr—— + 8 Z lm'

M=l M=l me=1
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n
Now by definition of &,,,,.,, we have that § — U (8nNu8,)

M=l

€ Prire41- Since 8 = @ by Lemma b5, it follows

Z Zm”wm "qgs(mm) ”r

m=1

O m(Ing) >
. ‘ )
S 2y PP T 40 D

s
B

= z'mzllﬂm,l(r"'_ 1) (31 _“Psel)ﬂl'a-l‘l,s-i— 8 2 Zm

m=1

3

n n
=41 D (on =g 0515 N,

m=1 m=1

7
18 sz.
r+1,841
m=1

< (r41) ” Zn:‘lmmm - j An®e( @)
m=1 m==1

Since 6> 0 was arbitrarily choosen, the proof i3 complete.

Added in proof. Problem 1 is shown to have also negative solution, by some

joint work of H. P. Rosenthal and the author: Martingales valued in certain subspaces
of L', to appear in Israel Journal Math.
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